Physical Properties of Zinc Doping on the Nanostructured Fe₂O₃ Thin Films Deposited by Chemical Spray Pyrolysis Technique
DOI:
https://doi.org/10.32628/IJSRSET2512535Keywords:
Fe2O3, Zinc doping, thin film, chemical spray pyrolysis, XRD, AFM, opticalAbstract
This study systematically examines the influence of zinc doping (0, 1 and 3 %) on the Physical Properties properties of nanostructured Fe₂O₃ thin films deposited via chemical spray pyrolysis (CSP). (XRD analysis confirms the formation of the hexagonal polycrystalline Fe₂O₃ phase with a preferred (204) orientation. Incorporating zinc enhances the grain size from 11.26 nm in the Pure film to 15.72 nm at 3% Zn, while simultaneously reducing the dislocation density by 27% (from 55.41 to 40.42 × 10¹⁴ lines/m²) and lattice strain by 35% (from 15.75 to 10.21 × 10⁻⁴), indicating a notable improvement in crystalline quality. AFM shows that Zn doping refines the surface morphology, decreasing average roughness from 6.37 to 3.65 nm and reducing grain size from 74.12 to 50.81 nm. Optically, zinc incorporation lowers transmittance while increasing the absorption coefficient. and narrows the bandgap from 2.30 to 2.20 eV. Additionally, both the extinction coefficient and refractive index decrease with doping.
📊 Article Downloads
References
A. Jrad, W. Naffouti, T. Ben Nasr, S. Ammar, and N. Turki-Kamoun, Effect of manganese concentration on physical properties of ZnS:Mn thin films prepared by chemical bath deposition, J. Mater. Sci. Mater. Electron. 28 (2017) 1463–1471. DOI: https://doi.org/10.1007/s10854-016-5682-z
S. T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar, Shashwati Sen, V.B. Patil, Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications, Ceram. Int. 39 (2013) 6453–6460. DOI: https://doi.org/10.1016/j.ceramint.2013.01.074
A. U. Ubale and M. R. Belkhedkar, Size dependent physical properties of nanostructured α-Fe2O3 Thin films grown by successive ionic layer adsorption and reaction method for antibacterial application, J. Mater. Sci. Technol. 31 (2015) 1–9. DOI: https://doi.org/10.1016/j.jmst.2014.11.011
R. Ben Ayed, M. Ajili, J. M. Garcia, A. Labidi, and N. K. Turki, Physical properties investigation and gas sensing mechanism of Al: Fe2O3 thin films deposited by spray pyrolysis, Superlattices Microstruct.129 (2019) 91–104 DOI: https://doi.org/10.1016/j.spmi.2019.03.002
K. Bang et al. Effects of Li doping on the structural and electrical properties of solutionprocessed ZnO films for high-performance thin-film transistors, J. Alloys Compd. 739 (2018) 41–46. DOI: https://doi.org/10.1016/j.jallcom.2017.12.186
I. Cesar, A. Kay, J. A. G. Martinez, M. Gratzel, Translucent thin film Fe2O3 photoanaodes for efficient water splitting by sunlight: nanostructure- directing effect of Si -doping, J. Am. Soc. 128 (2006) 4582–4583 DOI: https://doi.org/10.1021/ja060292p
R. Ben Ayed, M. Ajili, A. Thamri, N. T. Kamoun, and A. Abdelghani, Substrate temperature effect on the crystal growth and optoelectronic properties of sprayed α- Fe2O3 thin films: application to gas sensor and novel photovoltaic solar cell structure, Mater. Technol. 33 (2018) 769–783. DOI: https://doi.org/10.1080/10667857.2018.1503385
H. Kong, C. Lv, C. Yan, and G. Chen, Engineering mesoporous single crystals Co-Doped Fe2O3 for high-performance lithium ion batteries, Inorg. Chem. 56 (2016) 7642–7649. DOI: https://doi.org/10.1021/acs.inorgchem.7b00008
R. Ben Ayed, M. Ajili, and N. K. Turki, Physical properties and Rietveld analysis of Fe2O3 thin films prepared by spray pyrolysis: effect of precursor concentration, Phys. B Condens. Matter 563 (2019) 30–35. DOI: https://doi.org/10.1016/j.physb.2019.03.029
A. Kleiman-Shwarsctein et al., Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: experiment and theory, Chem. Mater. (2010) 510–517. DOI: https://doi.org/10.1021/cm903135j
A. Akbar, S. Riaz, R. Ashraf, and S. Naseem, Magnetic and Magnetization Properties of Co-Doped Fe2O3 Thin Films, IEEE Trans. Magn. 50 (2014) 4–7. DOI: https://doi.org/10.1109/TMAG.2014.2311826
M. Lie, H. Fjellvag, and A. Kjekshus, Growth of Fe2O3 thin films by atomic layer deposition, Thin Solid Films 488 (2005) 74–81. DOI: https://doi.org/10.1016/j.tsf.2005.04.063
Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, Optical and structural properties of Fe2O3 thin films prepared by ion-beam assisted deposition, Surf. Coat. Technol. 203(2019) 2646–2650. DOI: https://doi.org/10.1016/j.surfcoat.2009.02.085
A. Kleiman-Shwarsctein, Y. S. Hu, A. J. Forman, G. D. Stucky, and E. W. McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting, J. Phys. Chem. C 112 (2008) 15900–15907. DOI: https://doi.org/10.1021/jp803775j
A. Watanabe and H. Kozuka, Photoanodic Properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles, J. Phys. Chem. B 107 (2003) 12713–12720. DOI: https://doi.org/10.1021/jp0303568
A. B. C. Ekwealor and F. I. Ezema, Effects of precursor concentration on the optical and structural properties of Fe2O3 thin films synthesized in a polymer matrix by chemical bath deposition, J. Ovonic Res. 9 (2013) 35–43.
A. A. Yadav, T. B. Deshmukh, R. V. Deshmukh, D. D. Patil, and U. J. Chavan, Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium, Thin Solid Films 616 (2016) 351–358. DOI: https://doi.org/10.1016/j.tsf.2016.08.062
K. M. Kwon et al. α-Fe2O3 anchored on porous N doped carbon derived from green microalgae via spray pyrolysis as anode materials for lithium ion batteries, J. Ind. Eng. Chem., 69 (2019) 39–47. DOI: https://doi.org/10.1016/j.jiec.2018.09.004
E. A. Villegas, R. Parra, and L. Ramajo, Integral nanoindentation evaluation of TiO2, SnO2, and ZnO thin films deposited via spray-pyrolysis on glass substrates, J. Mater. Sci.Mater. Electron. 30 (2019) 1360–1365. DOI: https://doi.org/10.1007/s10854-018-0404-3
O. Bazta et al., Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis, Ceram. Int. 45 (2019) 6842–6852. DOI: https://doi.org/10.1016/j.ceramint.2018.12.178
W. B. Ingler, J. P. Baltrus, and S. U. M. Khan, Photoresponse of p-Type zinc-doped iron(III) oxide thin films, J. Am. Chem. Soc. 126 (2004) 10238–10239. DOI: https://doi.org/10.1021/ja048461y
Y. C. Chen, C. L. Kuo, and Y. K. Hsu, Facile preparation of Zn-doped hematite thin film as photocathode for solar hydrogen generation, J. Alloys Compd. 768 (2018) 810–816, 2018. DOI: https://doi.org/10.1016/j.jallcom.2018.07.315
M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and M. Musaddique, Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorption and reaction method, J. Assoc. Arab Univ. Basic Appl. Sci. 21 (2016) 38–44. DOI: https://doi.org/10.1016/j.jaubas.2015.03.001
J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, and N. Savvides, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si, J. Phys. Chem. C, 111 (2007) 16477–16488. DOI: https://doi.org/10.1021/jp074556l
M. Valodkar, A. Pal, and S. Thakore, Synthesis and characterization of cuprous oxide dendrites: new simplified green hydrothermal route, J. Alloys Compd. 509 (2011) 523–528. DOI: https://doi.org/10.1016/j.jallcom.2010.09.089
H. Guney and D. İskenderoğlu, The effect of Zn doping on CdO thin films grown by SILAR method at room temperature, Phys. B Condens. Matter 552 (2018) 119–123. DOI: https://doi.org/10.1016/j.physb.2018.09.045
V. Bilgin, E. Sarica, B. Demirselcuk, and S. Turkyilmaz, Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: structural, morphological, optical, electrical and magnetic investigations, J. Mater. Sci. Mater. Electron. 29 (2018) 17542–17551. DOI: https://doi.org/10.1007/s10854-018-9855-9
A. Jrad, W. Naffouti, T. Ben Nasr, and N. Turki-Kamoun, Comprehensive optical studies on Ga-doped ZnS thin films synthesized by chemical bath deposition, J. Lumin. 173 (2016) 135–140. DOI: https://doi.org/10.1016/j.jlumin.2016.01.016
S. Riaz, A. Akbar, and S. Naseem, Ferromagnetic Effects in Cr-Doped Fe2O3 thin Films, IEEE Trans. Magn. 50 (2014) 8–11 DOI: https://doi.org/10.1109/TMAG.2014.2312977
L. Ribeaucourt, G. Savidand, D. Lincot, and E. Chassaing, Electrochemical study of onestep electrodeposition of copper-indium- gallium alloys in acidic conditions as precursor layers for Cu(In,Ga)Se2 thin film solar cells, Electrochim. Acta 56 (2011) 6628–6637. DOI: https://doi.org/10.1016/j.electacta.2011.05.033
M. G. Jeong, K. Zhuo, S. Cherevko, W. J. Kim, and C. H. Chung, Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors, J.Power Sources . 244 (2013) 806–811. DOI: https://doi.org/10.1016/j.jpowsour.2012.12.037
R. Reveendran and M. A. Khadar, Structural, optical and electrical properties of Cu doped α-Fe2O3 nanoparticles, Mater. Chem. Phys. 219 (2018) 142–154. DOI: https://doi.org/10.1016/j.matchemphys.2018.08.016
M. A. García-Lobato et al, Fe2O3 Thin Films Prepared by Ultrasonic Spray Pyrolysis, Materials Science Forum. 644, (2010) 105-108. DOI: https://doi.org/10.4028/www.scientific.net/MSF.644.105
Negar Khademi, M. M. Bagheri-Mohagheghi, The Structural, Thermoelectric and Optical Properties of SnO2-Fe2O3: Bi Thin Films Deposited by Spray Prolysis Technique, Thermal Energy and Power Engineering. 2 (2013) 89-93.
Kan-Rong Lee et al, Effects of Spin Speed on the Photoelectrochemical Properties of Fe2O3Thin Films, Int. J. Electrochem. Sci. 9 (2014) 7680-7692. DOI: https://doi.org/10.1016/S1452-3981(23)10997-7
E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Solar Energy Mater. And Solar Cells. 88 (2005) 131-144. DOI: https://doi.org/10.1016/j.solmat.2004.07.058
R. Cornell, U. Sh wentmunn, "The iron oxids: structure, properties, reation occurrence and uses." Darmstadt: wiley- VcH Gmb H and Co. KGaA, (2003).
Weng Wenjian, Ma Ming, Piyi Du, Zhao Gaoling, Shen Ge, Wang Jianxun and Han Gaorong, “Super hydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition,” Surf Coat Technol 198:340–344(2005). DOI: https://doi.org/10.1016/j.surfcoat.2004.10.071
7. J. Peng and C.C. Chai (1993). A study of the sensing characteristics of Fe2O3 gas sensing thin film. Sensors and Actuators B: Chemical 14 (1-3), 591-593. DOI: https://doi.org/10.1016/0925-4005(93)85105-J
C.D. Park, D. Magana, A. E. Stiegman, High-Quality Fe and γ-Fe2O3 Magnetic Thin Films from an Epoxide-Catalyzed Sol−Gel Process, Chem. Mater. 19 (2007) 677-683. DOI: https://doi.org/10.1021/cm0617079
Y. H. Elbashar and H. A. Abd El-Ghany, “Optical spectroscopic analysis of Fe2O3 doped CuO containing phosphate glass,” Opt Quant Electron, 49:310(2017). DOI: https://doi.org/10.1007/s11082-017-1126-0
Sami Salman Chiad1 and Tahseen H. Mubarak,The effect of Ti on physical properties of Fe2O3 thin films for gas sensor applications, International Journal of Nanoelectronics and Materials, Malaysia, Apr 2020, Volume 13, No. 2, PP. (221-232).
Y. Yang. H. Ma, J. Zhuang and X. Wang (2011). Morphology controlled synthesis of hematite nanocrystals and their facet effects on gas sensing properties. Inorganic chemistry 50, 10143-10151. DOI: https://doi.org/10.1021/ic201104w
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.