A Comprehensive Survey on Machinability and Mechanical Properties of Natural Fiber Reinforced Polymers
DOI:
https://doi.org/10.32628/IJSRSET2512540Keywords:
Natural fiber reinforced composites, machinability, tool life, deep cryogenic treatment, mechanical properties, tribological properties, ANOVA, tool wear, surface finish, sustainable manufacturingAbstract
Natural fiber reinforced polymer composites (NFRPs) has attracted much attention as a cheap and environmentally friendly solution. The survey explores the machining and mechanical properties of NFRPs (especially those that contain natural fibers like jute and hemp). The results of the deep cryogenic treatment effect on the cutting tool employed in machining these composites are examined concerning the tool wear, tool life, cutting force as well as the surface finish. Environmental analysis measures the static and dynamic mechanical properties, tensile strength, flexural strength, and hardness. Also, the tribological behavior of the composites is assessed in terms of the coefficient of friction and wear rate in order to determine how the composites perform during the machining process. The paper also discusses the optimisation of machining processes through statistical means like ANOVA, in order to increase productivity and tool life. The results open a new direction in the machinability of NFRPs to their wider use in sustainable processes.
📊 Article Downloads
References
D. Wang, P.Y. Onawumi, S.O. Ismail, H.N. Dhakal, I. Popov, V.V. Silberschmidt, A. Roy, Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining, Composites Part A: Applied Science and Manufacturing, Volume 119, 2019, Pages 188-195. https://doi.org/10.1016/j.compositesa.2019.01.028 DOI: https://doi.org/10.1016/j.compositesa.2019.01.028
Alarifi, I. M. (2022). A Review on Factors Affecting Machinability and Properties of Fiber-Reinforced Polymer Composites. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2022.2154304 DOI: https://doi.org/10.1080/15440478.2022.2154304
Abd-Elhady, A. A., H. E. D. M. Sallam, I. M. Alarifi, R. A. Malik, and T. M. A. A. EL-Bagory. 2020. Investigation of fatigue crack propagation in steel pipeline repaired by glass fiber reinforced polymer. Composite Structures 242 (April):112189. doi:10.1016/j.compstruct.2020.112189 DOI: https://doi.org/10.1016/j.compstruct.2020.112189
Azmi, A. I., R. J. T. Lin, and D. Bhattacharyya. 2012. Experimental study of machinability of GFRP composites by end milling. Materials and Manufacturing Processes 27 (10):1045–50. doi:10.1080/10426914.2012.677917. DOI: https://doi.org/10.1080/10426914.2012.677917
Babu, T.N., Singh, S., Prabha, D.R. et al. Mechanical, machinability and water absorption properties of novel kenaf fiber, glass fiber and graphene composites reinforced with epoxy. Sci Rep 14, 29955 (2024). https://doi.org/10.1038/s41598-024-81314-0 DOI: https://doi.org/10.1038/s41598-024-81314-0
Zhang, C. et al. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J. Clean. Prod. 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390 (2023). DOI: https://doi.org/10.1016/j.jclepro.2022.135390
Periasamy, D. et al. Assessing the recycling potential of thermosetting polymer waste in high-density polyethylene composites for safety helmet applications. e-Polymers 24(1), 20230080 (2024). DOI: https://doi.org/10.1515/epoly-2023-0080
Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., Pazhanivel, B. (2010).‘Influence of alkali-treated fibers on the mechanical properties and machinability of roselle and sisal fiber hybrid polyester composite’.Polymer Composites.31,723-731 DOI: https://doi.org/10.1002/pc.20853
Davim, J.P., Reis, P., António, C.C. (2004).‘A study on milling of glass fiber reinforced plastics manufactured by hand-lay up using statistical analysis (ANOVA)’.Composite Structures.64,493-500 DOI: https://doi.org/10.1016/j.compstruct.2003.09.054
Demir, H., Atikler, U., Balköse, D., Tihminlioğlu, F. (2006).‘The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites’.Composites Part A: Applied Science and Manufacturing.37,447-456 DOI: https://doi.org/10.1016/j.compositesa.2005.05.036
Grande, C., Torres, F.G. (2005).‘Investigation of fiber organization and damage during single screw extrusion of natural fiber reinforced thermoplastics’.Advances in Polymer Technology.24,145-156 DOI: https://doi.org/10.1002/adv.20037
Calzada, K. A., S. G. Kapoor, R. E. Devor, J. Samuel, and A. K. Srivastava. 2012. Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced polymer composites. Journal of Manufacturing Processes 14 (2):141–49. doi:http://dx.doi.org/10.1016/j.jmapro.2011.09.005. DOI: https://doi.org/10.1016/j.jmapro.2011.09.005
Cepero-Mejías, F., J. L. Curiel-Sosa, A. Blázquez, T. T. Yu, K. Kerrigan, and V. A. Phadnis. 2020. Review of recent developments and induced damage assessment in the modelling of the machining of long fibre reinforced polymer composites. Composite Structures 240:240. doi:10.1016/j.compstruct.2020.112006. DOI: https://doi.org/10.1016/j.compstruct.2020.112006
Chegdani, F., and M. El Mansori. 2019. New multiscale approach for machining analysis of natural fiber reinforced bio-composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME 141 (1):1–24. doi:10.1115/1.4041326. DOI: https://doi.org/10.1115/1.4041326
Cococcetta, N. M., D. Pearl, M. P. Jahan, and J. Ma. 2020. Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. Journal of Manufacturing Processes 56 (December 2019):1304–16. doi:10.1016/j.jmapro.2020.04.025. DOI: https://doi.org/10.1016/j.jmapro.2020.04.025
El-Ghaoui, K., J. F. Chatelain, and C. Ouellet-Plamondon. 2019. Effect of graphene on machinability of Glass Fiber Reinforced Polymer (GFRP). Journal of Manufacturing and Materials Processing 3 (3):1–12. doi:10.3390/jmmp3030078. DOI: https://doi.org/10.3390/jmmp3030078
Gaitonde, V. N., S. R. Karnik, J. C. Rubio, A. E. Correia, A. M. Abrão, and J. P. Davim. 2008. Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. Journal of Materials Processing Technology 203 (1–3):431–38. doi:10.1016/j.jmatprotec.2007.10.050. DOI: https://doi.org/10.1016/j.jmatprotec.2007.10.050
Hung, N.P., Loh, N.L., Venkatesh, V.C.Low, I.M. (1998).‘Cutting tools for metal matrix composites’.Advanced Ceramics for Cutting Tool Applications.Switzerland:, Trans Tech Publications289-325 DOI: https://doi.org/10.4028/www.scientific.net/KEM.138-140.289
Kabir, M.M., Wang, H., Lau, K.T., Cardona, F., Aravinthan, T. (2012).‘Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites’.Composites Part B: Engineering.43,159-169 DOI: https://doi.org/10.1016/j.compositesb.2011.06.003
Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M. (2011).‘A review on the tensile properties of natural fiber reinforced polymer composites’.Composites Part B: Engineering.42,856-873 DOI: https://doi.org/10.1016/j.compositesb.2011.01.010
Lei, W., Lei, W-G., Ren, C. (2006).‘Effect of volume fraction of ramie cloth on physical and mechanical properties of ramie cloth/UP resin composite’.Transactions of Nonferrous Metals Society of China.16,Suppl. 2,s474-s477 DOI: https://doi.org/10.1016/S1003-6326(06)60237-9
Mata, F., Gaitonde, V.N., Karnik, S.R., Davim, J.P. (2009).‘Influence of cutting conditions on machinability aspects of PEEK, PEEK CF 30 and PEEK GF 30 composites using PCD tools’.Journal of Materials Processing Technology.209,1980-1987 DOI: https://doi.org/10.1016/j.jmatprotec.2008.04.060
Mylsamy, K., Rajendran, I. (2011).‘Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites’.Materials & Design.32,4629-4640 DOI: https://doi.org/10.1016/j.matdes.2011.04.029
Reddy, R. A., Yoganandam, K. & Mohanavel, V. Effect of chemical treatment on natural fiber for use in fiber reinforced composites–Review. Mater. Today Proc. 33, 2996–2999 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.02.982
Geier, N., J. P. Davim, and T. Szalay. 2019. Advanced cutting tools and technologies for Drilling Carbon Fibre Reinforced Polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing 125:105552. doi:10.1016/j.compositesa.2019.105552. DOI: https://doi.org/10.1016/j.compositesa.2019.105552
Hwang, H. S., M. H. Malakooti, B. A. Patterson, and H. A. Sodano. 2015. Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Composites Science and Technology 107:75–81. doi:http://dx.doi.org/10.1016/j.compscitech.2014.12.001. DOI: https://doi.org/10.1016/j.compscitech.2014.12.001
Jagadeesh, P., M. Puttegowda, P. Boonyasopon, S. M. Rangappa, A. Khan, and S. Siengchin. 2022. Recent developments and challenges in natural fiber composites: A review. Polymer Composites 43 (5):2545–61. DOI: https://doi.org/10.1002/pc.26619
Jagadeesh, P., M. Puttegowda, Y. G. T. Girijappa, S. M. Rangappa, and S. Siengchin. 2022. Carbon fiber reinforced areca/sisal hybrid composites for railway interior applications: Mechanical and morphological properties. Polymer Composites 43 (1):160–72. doi:10.1002/pc.26364. DOI: https://doi.org/10.1002/pc.26364
Kangokar Mukesh, S., N. Bettagowda, J. Praveenkumara, Y. G. Thyavihalli Girijappa, M. Puttegowda, S. Mavinkere Rangappa, S. Siengchin, and S. Gorbatyuk. 2022. Influence of stacking sequence on flax/kevlar hybrid epoxy composites: Mechanical and morphological studies. Polymer Composites 43 (6):3782–93. DOI: https://doi.org/10.1002/pc.26655
Palanikumar, K. (2007).‘Modeling and analysis for surface roughness in machining glass fibre reinforced plastics using response surface methodology’.Materials & Design.28,2611-2618 DOI: https://doi.org/10.1016/j.matdes.2006.10.001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.