Smart Classroom Attendance System Using Facial Biometrics
DOI:
https://doi.org/10.32628/IJSRSET2512545Keywords:
Face Recognition System, TensorFlow, TFlearn, OpenCV, Tkinter, Image ProcessingAbstract
Facial recognition is a reliable and widely used method for identifying individuals based on their unique facial features. This technology plays a crucial role in applications such as security, access control, and personal authentication. A face recognition system typically operates in two key stages: face detection and face recognition. The detection phase identifies whether an image contains a face, while the recognition phase matches the detected face to a stored identity or database. This paper focuses on designing and implementing a robust face recognition system using advanced image processing techniques. It leverages popular libraries such as TensorFlow and TFlearn for building the recognition model. These tools provide a flexible framework for developing machine learning algorithms, enabling accurate detection and identification of faces from input images. Additionally, the paper introduces a feature for generating audio feedback by recording and storing the names of authorized individuals. This enhances the system's usability by providing audible confirmation of recognized individuals, making it suitable for various interactive applications. The integration of OpenCV for image handling and Tkinter for creating a user-friendly graphical interface further enriches the system's functionality. By combining advanced image processing methods and intuitive design, this work showcases a practical approach to real-time face recognition, offering a versatile solution for real-world scenarios.
📊 Article Downloads
References
K. Puthea, R. Hartanto, and R. Hidayat, “The Attendance Marking System based on Eigenface Recognition using OpenCV and Python,” J. Phys. Conf. Ser., vol. 1551, no. 1, pp. 1–13, 2020, doi: 10.1088/1742-6596/1551/1/012012. DOI: https://doi.org/10.1088/1742-6596/1551/1/012012
K. Kahar et al., “Optimization of MEMS-based Energy Scavengers and output prediction with machine learning and synthetic data approach,” Sensors Actuators A Phys., vol. 358, no. May, p. 114429, 2023, doi: 10.1016/j.sna.2023.114429. DOI: https://doi.org/10.1016/j.sna.2023.114429
E. S. Babu, A. S. Kumar, and A. A. Reddy, “Attendance Management Automated System Based on Face Recognition Algorithms,” Lect. Notes Electr. Eng., vol. 698, pp. 347–354, 2021, doi: 10.1007/978-981-15-7961-5_34. DOI: https://doi.org/10.1007/978-981-15-7961-5_34
Q. Liang and W. Fang, “College Student Attendance System Based on Face Recognition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 466, no. 1, pp. 1–6, 2018, doi: 10.1088/1757-899X/466/1/012107. DOI: https://doi.org/10.1088/1757-899X/466/1/012107
A. Prakash, A. Pathak, and A. Shukla, “Face Recognition Based Attendance System,” Proc. - IEEE 2023 5th Int. Conf. Adv. Comput. Commun. Control Networking, ICAC3N 2023, vol. 9, no. 06, pp. 335–337, 2023, doi: 10.1109/ICAC3N60023.2023.10541491. DOI: https://doi.org/10.1109/ICAC3N60023.2023.10541491
H. Shen, X. Wang, and X. Zhang, “Batch Attendance System Based on Face Recognition,” IOP Conf. Ser. Earth Environ. Sci., vol. 252, no. 3, pp. 1–6, 2019, doi: 10.1088/1755-1315/252/3/032145. DOI: https://doi.org/10.1088/1755-1315/252/3/032145
M. Y. F. Siddiqui and Sukesha, “Face recognition using original and symmetrical face images,” Proc. 2015 1st Int. Conf. Next Gener. Comput. Technol. NGCT 2015, no. September, pp. 898–902, 2016, doi: 10.1109/NGCT.2015.7375249. DOI: https://doi.org/10.1109/NGCT.2015.7375249
O. A. R. Salim, R. F. Olanrewaju, and W. A. Balogun, “Class Attendance Management System Using Face Recognition,” Proc. 2018 7th Int. Conf. Comput. Commun. Eng. ICCCE 2018, pp. 93–98, 2018, doi: 10.1109/ICCCE.2018.8539274. DOI: https://doi.org/10.1109/ICCCE.2018.8539274
S. Lukas, A. R. Mitra, R. I. Desanti, and D. Krisnadi, “Student attendance system in classroom using face recognition technique,” 2016 Int. Conf. Inf. Commun. Technol. Converg. ICTC 2016, pp. 1032–1035, 2016, doi: 10.1109/ICTC.2016.7763360. DOI: https://doi.org/10.1109/ICTC.2016.7763360
S. Sawhney, K. Kacker, S. Jain, S. N. Singh, and R. Garg, “Real-time smart attendance system using face recognition techniques,” Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019, pp. 522–525, 2019, doi: 10.1109/CONFLUENCE.2019.8776934. DOI: https://doi.org/10.1109/CONFLUENCE.2019.8776934
M. Varsha and S. Chitra Nair, “Automatic Attendance Management System Using Face Detection and Face Recognition,” Lect. Notes Networks Syst., vol. 244, no. 11, pp. 97–106, 2022, doi: 10.1007/978-981-16-2919-8_9. DOI: https://doi.org/10.1007/978-981-16-2919-8_9
K. Kahar and R. Dhekekar, “Micro Scale Energy Scavengers for Low Power Applications in Rural Areas,” Micro Scale Energy Scav. Low Power, vol. 1, no. 1, pp. 104–108, 2023.
Kamlesh Kahar, Ritanshu Khatke, Pranav Bhople, Jayesh Tayde, and Hariom Modokar, “The IoT Based Exercise Cycle,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 2, no. 2, pp. 354–359, 2022, doi: 10.48175/ijarsct-3668. DOI: https://doi.org/10.48175/IJARSCT-3668
K. Kahar, R. Dhekekar, M. Bhaiyya, S. Balpande, and P. Kale, “MEMS based energy scavenger with interdigitated electrodes,” in Materials Today: Proceedings, Elsevier Ltd, 2023, pp. 350–360. doi: 10.1016/j.matpr.2022.08.106. DOI: https://doi.org/10.1016/j.matpr.2022.08.106
B. Hajare, K. Ruhatiya, and K. Kahar, “Vehicle Safety system for Blind Spot and Hilly Areas,” SSGM J. Sci. Eng., vol. 1, no. 1, pp. 40–43, 2023.
K. Kahar, S. Golam, S. Mathurkar, and P. Kale, “Industrial Robotic Arm System,” SSGM J. Sci. Eng., vol. 2, no. 1, pp. 62–67, 2024, [Online]. Available: https://www.researchgate.net/publication/382002723
A. Hadid and M. Pietik, “A Discriminative Feature Space for Detecting and Recognizing Faces 2 Face Description with Local Binary,” Comput. Vis. Pattern Recognition, vol. 2, no. ii, pp. II-797-II-804 Vol.2, 2004. DOI: https://doi.org/10.1109/CVPR.2004.1315246
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.