
IJSRSET1622190 | Received : 31 March 2016 | Accepted : 15 April 2016 | March-April 2016 [(2)2: 755-766]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

755

Analytical Research on Decision Tree Algorithm and Naive
Bayesian Classification Algorithm for Data Mining

Muhammad Mustaqim Rahman*1, Tarikuzzaman Emon2, Zonayed Ahmed3

*1Département Informatique, Universite de Lorraine, Nancy, France
2,3 Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh

ABSTRACT

The paper presents an extensive modification of ID3 (Iterative Dichotomiser) algorithm and Naïve Bayesian

Classification algorithm for data mining. The automated, prospective analyses offered by data mining move beyond

the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools

can answer business questions that traditionally were too time consuming to resolve. They scour databases for

hidden patterns, finding predictive information that experts may miss because it lies outside their expectations. Most

companies already collect and refine massive quantities of data. Data mining techniques can be implemented rapidly

on existing software and hardware platforms to enhance the value of existing information resources, and can be

integrated with new products and systems as they are brought on-line. This paper provides an introduction to the

basic technologies of data mining. Examples of profitable applications illustrate its relevance to today‘s business

environment as well as a basic description of how data warehouse architectures can evolve to deliver the value of

data mining to end users.

Keywords: ID3, Naive Bayesian, Algorithm, Data mining, Database.

I. INTRODUCTION

Data mining is the exploration of historical data (usually

large in size) in search of a consistent pattern and/or a

systematic relationship between variables; it is then used

to validate the findings by applying the detected patterns

to new subsets of data. The roots of data mining

originate in three areas: classical statistics, artificial

intelligence (AI) and machine learning. Pregibon et al.

[6] described data mining as a blend of statistics,

artificial intelligence, and database research, and noted

that it was not a field of interest to many until recently.

According to Fayyad et al. [7] data mining can be

divided into two tasks: predictive tasks and descriptive

tasks. The ultimate aim of data mining is prediction;

therefore, predictive data mining is the most common

type of data mining and is the one that has the most

application to businesses or life concerns. Predictive

data mining has three stages. DM starts with the

collection and storage of data in the data warehouse.

Data collection and warehousing is a whole topic of its

own, consisting of identifying relevant features in a

business and setting a storage file to document them. It

also involves cleaning and securing the data to avoid its

corruption. According to Kimball et al. [8], a data

warehouse is a copy of transactional or non-transactional

data specifically structured for querying, analyzing, and

reporting. Data exploration, which follows, may include

the preliminary analysis done to data to get it prepared

for mining. The next step involves feature selection and

reduction.

Mining or model building for prediction is the third

main stage, and finally come the data post-processing,

interpretation, and deployment. Applications suitable for

data mining are vast and are still being explored in many

areas of business and life concerns.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

756

Figure 1. The stages of predictive data mining

This is because, according to Betts et al. [9], data mining

yields unexpected nuggets of information that can open

a company's eyes to new markets, new ways of reaching

customers and new ways of doing business.

II. METHODS AND MATERIAL

To evaluate performance of data mining we are using

two predictive algorithms:

A. Predictive Algorithm 1 (Decision Tree Induction)

During the late 1970s and early 1980s, J. Ross Quinlan,

a researcher in machine learning, developed a decision

tree algorithm known as ID3 (Iterative Dichotomiser).

This work expanded on earlier work on concept learning

systems, described by E. B. Hunt, J. Marin, and P. T.

Stone. Quinlan later presented C4.5 (a successor of ID3),

which became a benchmark to which newer supervised

learning algorithms are often compared. In 1984, a

group of statisticians (L. Breiman, J. Friedman, R.

Olshen, and C. Stone) published the book Classification

and Regression Trees (CART), which described the

generation of binary decision trees. ID3 and CART were

invented independently of one another at around the

same time, yet follow a similar approach for learning

decision trees from training tuples. These two

cornerstone algorithms spawned a flurry of work on

decision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e.,

nonbacktracking) approach in which decision trees are

constructed in a top-down recursive divide-and-conquer

manner. Most algorithms for decision tree induction also

follow such a top-down approach, where the Algorithm:

Generate decision tree. Generate a decision tree from the

training tuples of data partition D.

Input

• Data partition, D, which is a set of training tuples

and their associated class labels.

• Attribute list, the set of candidate attributes.

• Attribute selection method, a procedure to determine

the splitting criterion that ―best‖ partitions the data

tuples into individual classes. This criterion consists

of a slipping_attribute and possibly either a split

point or splitting subset.

Output - A decision tree.

Method

 create a node N

 if tuples in D are all of the same class, C then

 return N as a leaf node labelled with the class C

 if attribute list is empty then

 return N as a leaf node labelled with the

majority class in D; // majority voting

 apply Attribute selection method(D, attribute list)

to find the ―best‖ splitting criterion

 label node N with splitting criterion;

 if splitting attribute is discrete-valued and

multiway splits allowed then // not restricted to

binary trees

 attribute list attribute list �splitting attribute; //

remove splitting attribute

 for each outcome j of splitting criterion //

partition the tuples and grow subtrees for each

partition

 let Dj be the set of data tuples in D satisfying

outcome j; // a partition

 if Dj is empty then

 attach a leaf labelled with the majority class in

D to node N

 else attach the node returned by Generate

decision tree(Dj, attribute list) to node N endfor

 return N

1) Entropy

 The Formula for entropy is:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

757

 (

) (

) (

)

 (

)

 Where p is the positive samples

 Where n is the negative samples

 Where S is the total sample

 The Entropy from the Table 1 is:

 (

) (

) (

) (

)

Table 1. Class Labelled Training Tuples From All

Electronics Customer Database

2) Information Gain

ID3 uses information gain as its attribute selection

measure. This measure is based on pioneering work by

Claude Shannon on information theory, which studied

the value or ―information content‖ of messages. Let

node N represents or hold the tuples of partition D. The

attribute with the highest information gain is chosen as

the splitting attribute for node N. This attribute

minimizes the information needed to classify the tuples

in the resulting partitions and reflects the least

randomness or ―impurity‖ in these partitions. Such an

approach minimizes the expected number of tests

needed to classify a given tuple and guarantees that a

simple (but not necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D

is given by

 ∑

Where pi is the probability that an arbitrary tuple in D

belongs to class Ci and is estimated by jCi,Dj/jDj. A log

function to the base 2 is used, because the information is

encoded in bits. Info(D) is just the average amount of

information needed to identify the class label of a tuple

in D. Note that, at this point, the information we have is

based solely on the proportions of tuples of each class.

Info(D) is also known as the entropy of D.

Now, suppose we were to partition the tuples in D on

some attribute A having v distinct values, fa1, a2…av, as

observed from the training data. If A is discrete-valued,

these values correspond directly to the v outcomes of a

test on A. Attribute A can be used to split D into v

partitions or subsets, fD1, D2, : : : , Dv, where Dj contains

those tuples in D that have outcome aj of A. These

partitions would correspond to the branches grown from

node N. Ideally, we would like this partitioning to

produce an exact classification of the tuples. That is, we

would like for each partition to be pure. However, it is

quite likely that the partitions will be impure (e.g., where

a partition may contain a collection of tuples from

different classes rather than from a single class). How

much more information would we still need (after the

partitioning) in order to arrive at an exact classification?

This amount is measured by

 ∑
| |

| |

 ()

Information gain is defined as the difference between the

original information requirement (i.e., based on just the

proportion of classes) and the new requirement (i.e.,

obtained after partitioning on A). That is,

In other words, Gain(A) tells us how much would be

gained by branching on A. It is the expected reduction in

RI

D

Age Inco

me

Stud

ent

Credit_rati

ng

Class:buys

_computer

1 Youth High No Fair No

2 Youth High No Excellent No

3 Middle

_Aged

High No Fair Yes

4 Senior Medi

um

No Fair Yes

5 Senior Low Yes Fair Yes

6 Senior Low Yes Excellent No

7 Middle

_Aged

Low Yes Excellent Yes

8 Youth Medi

um

No Fair No

9 Youth Low Yes Fair Yes

10 Senior Medi

um

Yes Fair Yes

11 Youth Medi

um

Yes Excellent Yes

12 Middle

_Aged

Medi

um

No Excellent Yes

13 Middle

_Aged

High Yes Fair Yes

14 Senior Medi

um

No Excellent No

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

758

the information requirement caused by knowing the

value of A. The attribute A with the highest information

gain, (Gain(A)), is chosen as the splitting attribute at

node N. This is equivalent to saying that we want to

partition on the attribute A that would do the ―best

classification,‖ so that the amount of information still

required to finish classifying the tuples is minimal (i.e.,

minimum InfoA(D)).

 Calculating the information gain for each of the

attributes:

 For Age

 For Income

 For Student

 For Credit_rating

For Age

o E = 0.940

o S = (9+, 5-)

Figure 2. Decision tree construction with the root age

 (

) (

) (

)

For Student

o E = 0.940

o S = (9+, 5-)

Figure 3. Entropy calculation of the attribute student

 (

) (

)

For Credit_rating

o E = 0.940

o S = (9+, 5-)

 (

) (

)

Now, selecting the root from all information gain:

o Compute information gain for each attribute:

Gain (credit_rating) = 0.048

Gain (student) = 0.151

Gain (income) = 0.029

Gain (age) = 0.246

o Select attribute with the maximum information

gain, which is 'age' for splitting.

Figure 4. Entropy calculation of the attribute credit rating

Inco

me

Stud

ent

Credit_r

ating

Cl

ass

High

No Fair No

High No Excellent No

Medi

um

No Fair No

Low Yes Fair Ye
s

Medi

um

Yes Excellent Ye

s

Inco

me

Stud

ent

Credit_r

ating

Cl

ass

Medi
um

No Fair Ye
s

Low yes Fair Ye

s

Low Yes Excellent No

Medi

um

Yes Fair Ye

s

medi

um

No excellent No

Income Student Credit_rating Class

High No Fair Yes

Low Yes Excellent Yes

Medium No Excellent Yes

High Yes Fair Yes

Figure 5. The attribute age has the highest information gain and

therefore becomes the splitting attribute at the root node of the

decision tree. Branches are grown for each outcome of age. The

tuples are shown partitioned accordingly.

Youth Middle_aged Senior

2+,3- 4+,0- 3+,2

-
E=0.971 E=0.0 E=0.971

Age

Yes No

6+,1- 3+,4

- E=0.592 E=0.985

Student

 Age?

Excellent

3+,3

-
E=1.0

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

759

―But how can we compute the information gain of an

attribute that is continuous-valued, unlike above?‖

Suppose, instead, that we have an attribute A that is

continuous-valued, rather than discrete-valued. (For

example, suppose that instead of the discretized version

of age above, we instead have the raw values for this

attribute.) For such a scenario, we must determine the

―best‖ split-point for A, where the split-point is a

threshold on A.

Figure 6. The Complete Decision Tree

We first sort the values of A in increasing order.

Typically, the midpoint between each pair of adjacent

values is considered as a possible split-point. Therefore,

given v values of A, then v+1 possible splits are

evaluated. For example, the midpoint between the values

ai and ai+1 of A is:

If the values of A are sorted in advance, then

determining the best split for A requires only one pass

through the values. For each possible split-point for A,

we evaluate InfoA(D), where the number of partitions is

two, that is v = 2 (or j = 1,2). The point with the

minimum expected information requirement for A is

selected as the split point for A. D1 is the set of tuples in

D satisfying A = split point, and D2 is the set of tuples

in D satisfying A >split point.

3) Gain Ratio

The information gain measure is biased toward tests

with many outcomes. That is, it prefers to select

attributes having a large number of values. For example,

consider an attribute that acts as a unique identifier, such

as product ID. A split on product ID would result in a

large number of partitions (as many as there are values),

each one containing just one tuple. Because each

partition is pure, the information required to classify

data set D based on this partitioning would

be . Therefore, the information

gained by partitioning on this attribute is maximal.

Clearly, such a partitioning is useless for classification.

C4.5, a successor of ID3, uses an extension to

information gain known as gain ratio, which attempts to

overcome this bias. It applies a kind of normalization to

information gain using a ―split information‖ value

defined analogously with Info(D) as:

 ∑
| |

| |
 (

)

This value represents the potential information generated

by splitting the training data set, D, into v partitions,

corresponding to the v outcomes of a test on attribute A.

Note that, for each outcome, it considers the number of

tuples having that outcome with respect to the total

number of tuples in D. It differs from information gain,

which measures the information with respect to

classification that is acquired based on the same

partitioning. The gain ratio is defined as:

The attribute with the maximum gain ratio is selected as

the splitting attribute. Note, however, that as the split

information approaches 0, the ratio becomes unstable. A

constraint is added to avoid this, whereby the

information gain of the test selected must be large—at

least as great as the average gain over all tests examined.

Age

Youth Middle_aged Senior

Student Yes Credit_ratin

g

No Yes Fair
Excellent

No Yes Yes No

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

760

4) Decision Tree Induction Algorithm

 Read the training data set D from a text file or

database

 Calculate the number of positive answers (p) & the

negative answers (n) in the class label of data set D

 Calculate the expected information needed to

classify a tuple in D [formula: -

(p/(p+n))*log2(p/(p+n))*- (n/(p+n))*)log2 (n/(p+n)]

 Calculate the expected information requirement for

the 1
st
 attribute.

 Calculate the gain in information for the 1
st
 attribute:

Gain(attribute_name)= Info(D) – Infoattribute_name(D)

 Recursively do the steps 4 & 5 for all the other

attributes

 Select the root attribute as the one carrying the

maximum gain from all the attributes except the

class label

 If any node of the root ends in leaves then put label

 If any node of the root does not end in leaves than

go to step 6

 End

5) Implementation of the Algorithm

Begin

Load training sets first, create decision tree root node

'rootNode', add training set D into root node as its subset.

For rootNode, we compute Entropy (rootNode.subset)

first

 , then

rootNode.subset consists of records all with the same

value for the categorical attribute, return a leaf node with

decision attribute:attribute value;

 , then

compute information gain for each attribute left (that

have not been used in splitting), find attribute A with

Maximum Gain(S,A)[where S = Sample and A=

Attributes].Create child nodes of this rootNode and add

to rootNode in the decision tree. For each child of the

rootNode, apply the algorithm from the beginning until

node that has entropy=0 or leaf node is reached.

End Algorithm.

Figure 7. Implementation of the Algorithm

6) Description of Implementation

To describe the operation of decision tree induction

algorithm, we use a classic 'buys_computer' example.

The symbolic attribute description:

Attribute

Possible values

Age Youth, middle_aged, senior

Income High, medium, low

Student Yes, no

Credit_rating Fair, excellent

Buys Yes, no

After implementing the above algorithm using visual

studio 2010 & XAMPP we implemented the algorithm:

Figure 8. Snapshot of the implemented algorithm

7) Extending Decision Tree Induction Algorithm to

real-valued data:

Decision tree induction algorithm is quite efficient in

dealing with the target function that has discrete output

values. It can easily deal with instance which is assigned

to a Boolean decision, such as 'true' and 'false', 'yes

(positive)' and 'no (negative)'. It is possible to extend

target to real-valued outputs. When we compute

information gain in our CODE, we tried to make is as

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

761

much dynamic as possible. So we can calculate both

discrete values and continuous values by our program.

You will see the result as below:

Figure 9. Real Valued Dataset

From figure 9, we first calculate the total entropy:

 (

)

 (

)

Now calculating information gain for each of the

attributes:

 Age

 Parents

 Poverty

 Health

 Lives

 Age:

o E = 0.985

o S = (12+,9-)

 Parents:

o E = 0.985

o S = (12+, 9-)

 (

) (

)

Similarly computing the gain of poverty, health & lives

we have:

 Gain(S, Poverty) = 0.223

Gain(S, Health) = 0.075

 Gain(S, Lives) = 0.157

Now, we select attribute with the maximum information

gain, which is 'age' for splitting.

Figure 10. Final Decision Tree of Real Valued Dataset

Figure 11. Decision Tree Generated from the Dataset After

Implementation.

B. Predictive Algorithm-2 (Naïve Bayesian

Classification Algorithm)

It is based on the Bayesian theorem it is particularly

suited when the dimensionality of the inputs is high.

Parameter estimation for naive Bayes models uses the

method of maximum likelihood. In spite over-simplified

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

762

assumptions, it often performs better in many complex

real-world situations.

The naive Bayesian classifier, or simple Bayesian

classifier, works as follows:

1. Let D be a training set of tuples and their associated

class labels. As usual, each tuple is represented by an n-

dimensional attribute vector, X =

depicting n measurements made on the tuple from n

attributes, respectively,

2. Suppose that there are m classes, .

Given a tuple, X, the classifier will predict that X

belongs to the class having the highest posterior

probability, conditioned on X. That is, the naive

Bayesian classifier predicts that tuple X belongs to the

class ; if and only if

 | (|) for 1 ≤ j ≤ m, j ≠ i.

Thus we maximize | . The class Ci for which

 | is maximized is called the maximum posteriori

hypothesis. By Bayes' theorem,

 |
 |

3. As P(X) is constant for all classes, only |

need be maximized. If the class prior probabilities are

not known, then it is commonly assumed that the classes

are equally likely, that is, ,

and we would therefore maximize | . Otherwise,

we maximize | . Note that the class prior

probabilities maybe estimated by | | | |

where | | is the number of training tuples of class

 in .

4. Given data sets with many attributes, it would be

extremely computationally expensive to compute

 | .In order to reduce computation in

evaluating | , the naive assumption of class

conditional independence is made. This presumes that

the values of the attributes are conditionally independent

of one another, given the class label of the tuple (i.e.,

that there are no dependence relationships among the

attributes). Thus,

 | ∏ |

 | | |

We can easily estimate the probabilities |

 | | from the training tuples. Recall

that here refers to the value of attribute for tuple X.

For each attribute, we look at whether the attribute is

categorical or continuous-valued. For instance, to

compute | we consider the following:

(a) If is categorical, then | is the number of

tuples of class in D having the value for ,

divided by| |, the number of tuples of class in D.

(b) If is continuous-valued, then we need to do a bit

more work, but the calculation is pretty straightforward.

A continuous-valued attribute is typically assumed to

have a Gaussian distribution with a mean µ and standard

deviation σ, defined by

√

So that,

 |

These equations may appear daunting, but hold on! We

need to compute and which are the mean (i.e.,

average) and standard deviation, respectively, of the

values of attribute for training tuples of class Ci . We

then plug these two quantities into Equation, together

with , in order to estimate | for example, let X

= (35, $40,000), where and are the attributes age

and income, respectively. Let the class label attribute be

buys -computer. The associated class label for X is yes

(i.e., buys_computer = yes). Let's suppose that age has

not been discredited and therefore exists as a

continuous-valued attribute. Suppose that from the

training set, we find that customers in D who buy a

computer are 38 ± 12 years of age. In other words, for

attribute age and this class, we have µ = 38 years and σ

= 12. We can plug these quantities, along with = 35

for our tuple X into Equation in order to estimate P (age

= 35|buys_computer = yes).

5. In order to predict the class label of X, |

is evaluated for each class . The classifier predicts that

the class label of tuple X is the class C, if and only if

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

763

 | > (|) for 1≤ j ≤ m, j ≠ i.

In other words, the predicted class label is the class C,

for which | is the maximum.

1) Applying Bayesian Classification on the Data Set-

Algorithm

1. Select any tuple ‗X‘ from the dataset.

2. Find the number of P‘s and N‘s from the class

label where P=Positive Answer and N=Negative

Answer.

3. Calculate the probability of P and N where P(P)

= P/(P+N) and P(N) = N/(P+N)

4. Find the probability of all the attributes from the

tuple ‗X‘ for P and N where

5. P (attribute | class label = P);

6. P (attribute | class label = N);

7. Multiply all the P (attribute | class label = P)‘s

as X1 and multiply all the P (attribute | class

label = N)‘s as X2.

8. Calculate R = P (P) * X1 and S = P (N) * X2.

9. If R>S then answer is P (Positive Answer).

10. Otherwise answer is N (Negative Answer).

2) Implementation of Naïve Bayesian Classification

Begin

Load training datasets first. Calculate the probability of

class labels containing the positive answer and the

negative answer. Take the values of the attributes from

the user as input; we assume that is Tuple X.

Calculate the probability of all the attributes from the

tuple X-

Probability of (attribute | class label = Positive Class

Label);

Probability of (attribute | class label = Negative Class

Label);

Multiply the probability of all the positive answer and

negative answer.

If Probability of (Positive Class Label) >Probability

of (Negative Class Label);

Then the answer is Positive Answer. Otherwise the

answer is Negative Answer.

3) Description of Implementation

The implementation of the proposed algorithm can be

depicted as follows:

Figure 12. Training dataset

Figure 13. Interface of the program implementing naïve

Bayesian algorithm

Our Real Valued Dataset:

The real valued dataset for this paper is constructed as

follows in the figure.

Figure 14. Real valued dataset

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

764

The Results of our Real Valued Dataset:

Figure 15. Program running with real valued data

4) Bayesian Networks

 Bayesian belief network allows a subset of the

variables conditionally independent

 A graphical model of causal relationships

 Represents dependency among the

variables

 Gives a specification of joint probability

distribution

 Nodes: random variables

 Links: dependency

 X,Y are the parents of Z, and Y is the parent of

P

 No dependency between Z and P

 Has no loops or cycles

5) Bayesian Belief Network: An Example

Figure 16. Bayesian Belief Networks

TABLE 2. THE CONDITIONAL PROBABILITY TABLE FOR THE

VARIABLE LUNG CANCER

The table shows the conditional probability for each

possible combination of its parents:

III. PREDICTION AND ACCURACY

A. Prediction

Regression analysis is a good choice when all of the

predictor variables are continuous valued as well. Many

problems can be solved by linear regression, and even

more can be tackled by applying transformations to the

variables so that a nonlinear problem can be converted

to a linear one. For reasons of space, we cannot give a

fully detailed treatment of regression. Several software

packages exist to solve regression problems. Examples

include SAS(www.sas.com), SPSS (www.spss.com), and

S-Plus (www.insightful.com). Another useful resource is

the book Numerical Recipes in C, by Press, Flannery,

Teukolsky, and Vetterling, and its associated source

code.

B. Accuracy and error measures

Now that a classifier or predictor has been trained, there

may be several questions. For example, suppose one

used data from previous sales to train a classifier to

predict customer purchasing behaviour. Then an

estimate of how accurately the classifier can predict the

purchasing behaviour of future customers, that is, future

customer data on which the classifier has not been

trained can be done. One may even have tried different

methods to build more than one classifier (or predictor)

and now wish to compare their accuracy. There are

various strategies to estimate and increase the accuracy

of a learned model. These issues are addressed next.
TABLE 3. CONFUSION MATRIX FOR THE EXAMPLE OF ALL

ELECTRONICS





n

i

ZParents iziPznzP

1

))(|(),...,1(

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

765

C. Classifier Accuracy Measures

Using training data to derive a classifier or predictor and

then to estimate the accuracy of the resulting learned

model can result in misleading overoptimistic estimates

due to overspecialization of the learning algorithm to the

data. Instead, accuracy is better measured on a test set

consisting of class-labelled tuples that were not used to

train the model. The accuracy of a classifier on a given

test set is the percentage of test set tuples that are

correctly classified by the classifier. In the pattern

recognition literature, this is also referred to as the

overall recognition rate of the classifier, that is, it

reflects how well the classifier recognizes tuples of the

various classes. We can also speak of the error rate or

misclassification rate of a classifier, M, which is simply

Acc(M), where Acc(M) is the accuracy of M. If we were

to use the training set to estimate the error rate of a

model, this quantity is known as the re substitution error.

This error estimate is optimistic of the true error rate

(and similarly, the corresponding accuracy estimate is

optimistic) because the model is not tested on any

samples that it has not already seen.

The confusion matrix is a useful tool for analyzing how

well your classifier can recognize tuples of different

classes. A confusion matrix for two classes is shown in

Table 3. Given m classes, a confusion matrix is a table

of at least size m by m. An entry, CMi, j in the first m

rows and m columns indicates the number of tuples of

class i that were labelled by the classifier as class j. For a

classifier to have good accuracy, ideally most of the

tuples would be represented along the diagonal of the

confusion matrix, from entry CM1, 1 to entry CMm, m,

with the rest of the entries being close to zero. The table

may have additional rows or columns to provide totals

or recognition rates per class. Given two classes, we can

talk in terms of positive tuples (tuples of the main class

of interest, e.g., buys computer = yes) versus negative

tuples (e.g., buys computer = no). True positives refer to

the positive tuples that were correctly labelled by the

classifier, while true negatives are the negative tuples

that were correctly labelled by the classifier. False

positives are the negative tuples that were incorrectly

labelled (e.g., tuples of class buys computer = no for

which the classifier predicted buys computer = yes).

TABLE 4. A CONFUSION MATRIX FOR POSITIVE AND NEGATIVE
TUPLES

Predicted class

Actual Class

Similarly, false negatives are the positive tuples that

were incorrectly labelled (e.g., tuples of class buys

computer = yes for which the classifier predicted buys

computer = no). These terms are useful when analyzing

a classifier‘s ability. “Are there alternatives to the

accuracy measure?” Suppose that you have trained a

classifier to classify medical data tuples as either

“cancer” or “not cancer.” An accuracy rate of, 90%

may make the classifier seem quite accurate, but what if

only, say, 3–4% of the training tuples are actually

“cancer”? Clearly, an accuracy rate of 90% may not be

acceptable—the classifier could be correctly labelling

only the “not cancer” tuples, for instance. Instead, we

would like to be able to access how well the classifier

can recognize “cancer” tuples (the positive tuples) and

how well it can recognize “not cancer” tuples (the

negative tuples). The sensitivity and specificity

measures can be used, respectively, for this purpose.

Sensitivity is also referred to as the true positive

(recognition) rate (that is, the proportion of positive

tuples that are correctly identified), while specificity is

the true negative rate (that is, the proportion of negative

tuples that are correctly identified). In addition, we may

use precision to access the percentage of tuples labelled

as “cancer” that actually are “cancer” tuples. These

measures are defined as

where t pos is the number of true positives (“cancer”

tuples that were correctly classified as such), pos is the

number of positive (“cancer”) tuples, t neg is the

number of true negatives (“not cancer” tuples that were

correctly classified as such), neg is the number of

negative (“not cancer”) tuples, and f pos is the number

of false positives (“not cancer” tuples that were

incorrectly labelled as “cancer”). It can be shown that

accuracy is a function of sensitivity and specificity:

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

766

The true positives, true negatives, false positives, and

false negatives are also useful in assessing the costs and

benefits (or risks and gains) associated with a

classification model. The cost associated with a false

negative (such as, incorrectly predicting that a cancerous

patient is not cancerous) is far greater than that of a false

positive (incorrectly yet conservatively labelling a

noncancerous patient as cancerous). In such cases, we

can outweigh one type of error over another by

assigning a different cost to each. These costs may

consider the danger to the patient, financial costs of

resulting therapies, and other hospital costs. Similarly,

the benefits associated with a true positive decision may

be different than that of a true negative. Up to now, to

compute classifier accuracy, we have assumed equal

costs and essentially divided the sum of true positives

and true negatives by the total number of test tuples.

Alternatively, we can incorporate costs and benefits by

instead computing the average cost (or benefit) per

decision. Other applications involving cost-benefit

analysis include loan application decisions and target

marketing mail outs. For example, the cost of loaning to

a defaulter greatly exceeds that of the lost business

incurred by denying a loan to a non-defaulter. Similarly,

in an application that tries to identify households that are

likely to respond to mail outs of certain promotional

material, the cost of mail outs to numerous households

that do not respond may outweigh the cost of lost

business from not mailing to households that would have

responded. Other costs to consider in the overall analysis

include the costs to collect the data and to develop the

classification tool.

―Are there other cases where accuracy may not be

appropriate?‖ In classification problems, it is commonly

assumed that all tuples are uniquely classifiable, that is,

that each training tuple can belong to only one class. Yet,

owing to the wide diversity of data in large databases, it

is not always reasonable to assume that all tuples are

uniquely classifiable. Rather, it is more probable to

assume that each tuple may belong to more than one

class. How then can the accuracy of classifiers on large

databases be measured? The accuracy measure is not

appropriate, because it does not take into account the

possibility of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a

probability class distribution. Accuracy measures may

then use a second guess heuristic, whereby a class

prediction is judged as correct if it agrees with the first

or second most probable class. Although this does take

into consideration, to some degree, the non-unique

classification of tuples, it is not a complete solution.

IV. CONCLUSION

This paper is representing predictive algorithms

regarding data mining. We have implemented those

algorithms in our software‘s. Further we used naïve

Bayesian algorithm for prediction. Our software can

predict successfully. Finally we worked on the accuracy

of our implemented software. So far the accuracy level

is moderate. In future we will compare our software with

other predictive algorithms (such as: neural networks

etc.) so check how well is our algorithms and code is

working. And we will work on increasing the accuracy

of prediction.

V. ACKNOWLEDGEMENT

First of all we acknowledge to Almighty for completing

this research successfully. Then we are grateful to all of

the authors individually. We would like to thank our

parents, friends for their invaluable suggestions and

critical review of our thesis.

VI. REFERENCES

[1] Decision Tree Algorithms: Integration of Domain Knowledge for Data

Mining, Aukse Stravinskiene, Saulius Gudas, and Aiste Davrilaite; 2012
[2] S.B. Kotsiantis, Supervised Machine Learning: A Review of

Classification Techniques, Informatica 31(2007) 249-268, 2007

[3] K. Karimi and H.J. Hamilton, Logical Decision Rules: Teaching C4.5 to
Speak Prolog, IDEAL, 2000

[4] Rennie, J.; Shih, L.; Teevan, J.; Karger, D. (2003). "Tackling the poor

assumptions of Naive Bayes classifiers"
[5] John, George H.; Langley, Pat (1995). "Estimating Continuous

Distributions in Bayesian Classifiers". Proc. Eleventh Conf. on

Uncertainty in Artificial Intelligence. Morgan Kaufmann. pp. 338–345
[6] D. Pregibon, "Data Mining", Statistical Computing and Graphics,vol. 7,

no. 3, p. 8, 1996.
[7] U. Fayyad, Advances in knowledge discovery and data mining. Menlo

Park, Calif.: AAAI, 1996.

[8] R. Kimball, "The Data Webhouse Toolkit: Building the Web‐enabled

Data Warehouse20001 The Data Webhouse Toolkit: Building the Web‐
enabled Data Warehouse. John Wiley & Son,, ISBN: 0‐471‐37680‐9
£32.50 Paperback", Industr Mngmnt & Data Systems, vol. 100, no. 8,

pp. 406-408, 2000.

[9] M. Betts, "The Almanac:Hot Tech", Computerworld, 2003. [Online].

Available: http://www.computerworld.com/article/2574084/data-

center/the-almanac.html

