
IJSRSET1622190 | Received : 31 March  2016 | Accepted : 15 April 2016 | March-April 2016 [(2)2: 755-766]  

 

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

755 

 

 

Analytical Research on Decision Tree Algorithm and Naive 
Bayesian Classification Algorithm for Data Mining 

 
Muhammad Mustaqim Rahman*1, Tarikuzzaman Emon2, Zonayed Ahmed3 

*1Département Informatique, Universite de Lorraine, Nancy, France 
2,3 Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh 

 
ABSTRACT 
 

The paper presents an extensive modification of ID3 (Iterative Dichotomiser) algorithm and Naïve Bayesian 

Classification algorithm for data mining. The automated, prospective analyses offered by data mining move beyond 

the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools 

can answer business questions that traditionally were too time consuming to resolve. They scour databases for 

hidden patterns, finding predictive information that experts may miss because it lies outside their expectations. Most 

companies already collect and refine massive quantities of data. Data mining techniques can be implemented rapidly 

on existing software and hardware platforms to enhance the value of existing information resources, and can be 

integrated with new products and systems as they are brought on-line. This paper provides an introduction to the 

basic technologies of data mining. Examples of profitable applications illustrate its relevance to today‘s business 

environment as well as a basic description of how data warehouse architectures can evolve to deliver the value of 

data mining to end users. 

Keywords: ID3, Naive Bayesian, Algorithm, Data mining, Database. 

 

I. INTRODUCTION 

 

Data mining is the exploration of historical data (usually 

large in size) in search of a consistent pattern and/or a 

systematic relationship between variables; it is then used 

to validate the findings by applying the detected patterns 

to new subsets of data. The roots of data mining 

originate in three areas: classical statistics, artificial 

intelligence (AI) and machine learning.  Pregibon et al. 

[6] described data mining as a blend of statistics, 

artificial intelligence, and database research, and noted 

that it was not a field of interest to many until recently. 

 

According to Fayyad et al. [7] data mining can be 

divided into two tasks: predictive tasks and descriptive 

tasks. The ultimate aim of data mining is prediction; 

therefore, predictive data mining is the most common 

type of data mining and is the one that has the most 

application to businesses or life concerns. Predictive 

data mining has three stages. DM starts with the 

collection and storage of data in the data warehouse. 

Data collection and warehousing is a whole topic of its 

own, consisting of identifying relevant features in a 

business and setting a storage file to document them. It 

also involves cleaning and securing the data to avoid its 

corruption. According to Kimball et al. [8], a data 

warehouse is a copy of transactional or non-transactional 

data specifically structured for querying, analyzing, and 

reporting. Data exploration, which follows, may include 

the preliminary analysis done to data to get it prepared 

for mining. The next step involves feature selection and 

reduction. 

 

Mining or model building for prediction is the third 

main stage, and finally come the data post-processing, 

interpretation, and deployment. Applications suitable for 

data mining are vast and are still being explored in many 

areas of business and life concerns. 
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Figure 1. The stages of predictive data mining 

 

This is because, according to Betts et al. [9], data mining 

yields unexpected nuggets of information that can open 

a company's eyes to new markets, new ways of reaching 

customers and new ways of doing business.  

  

II. METHODS AND MATERIAL 
 

To evaluate performance of data mining we are using 

two predictive algorithms: 

A. Predictive Algorithm 1 (Decision Tree Induction) 

 

During the late 1970s and early 1980s, J. Ross Quinlan, 

a researcher in machine learning, developed a decision 

tree algorithm known as ID3 (Iterative Dichotomiser). 

This work expanded on earlier work on concept learning 

systems, described by E. B. Hunt, J. Marin, and P. T. 

Stone. Quinlan later presented C4.5 (a successor of ID3), 

which became a benchmark to which newer supervised 

learning algorithms are often compared. In 1984, a 

group of statisticians (L. Breiman, J. Friedman, R. 

Olshen, and C. Stone) published the book Classification 

and Regression Trees (CART), which described the 

generation of binary decision trees. ID3 and CART were 

invented independently of one another at around the 

same time, yet follow a similar approach for learning 

decision trees from training tuples. These two 

cornerstone algorithms spawned a flurry of work on 

decision tree induction. 

 

ID3, C4.5, and CART adopt a greedy (i.e., 

nonbacktracking) approach in which decision trees are 

constructed in a top-down recursive divide-and-conquer 

manner. Most algorithms for decision tree induction also 

follow such a top-down approach, where the Algorithm: 

Generate decision tree. Generate a decision tree from the 

training tuples of data partition D. 

 

Input 

 

• Data partition, D, which is a set of training tuples 

and their associated class labels. 

• Attribute list, the set of candidate attributes. 

• Attribute selection method, a procedure to determine 

the splitting criterion that ―best‖ partitions the data 

tuples into individual classes. This criterion consists 

of a slipping_attribute and possibly either a split 

point or splitting subset. 

 

Output - A decision tree. 

 

Method 

 create a node N 

 if tuples in D are all of the same class, C then 

 return N as a leaf node labelled with the class C 

 if attribute list is empty then 

 return N as a leaf node labelled with the 

majority class in D; // majority voting 

 apply Attribute selection method(D, attribute list) 

to find the ―best‖ splitting criterion 

 label node N with splitting criterion; 

 if splitting attribute is discrete-valued and 

multiway splits allowed then // not restricted to 

binary trees 

 attribute list attribute list �splitting attribute; // 

remove splitting attribute 

 for each outcome j of splitting criterion // 

partition the tuples and grow subtrees for each 

partition 

 let Dj be the set of data tuples in D satisfying 

outcome j; // a partition 

 if Dj is empty then 

 attach a leaf labelled with the majority class in 

D to node N 

 else attach the node returned by Generate 

decision tree(Dj, attribute list) to node N endfor 

 return N 

1)  Entropy 

 The Formula for entropy is: 
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 Where p is the positive samples 

 Where n is the negative samples 

 Where S is the total sample  

 

 The Entropy from the Table 1 is: 
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Table 1.  Class Labelled Training Tuples From All 

Electronics Customer Database 

 

2)  Information Gain 

 

ID3 uses information gain as its attribute selection 

measure. This measure is based on pioneering work by 

Claude Shannon on information theory, which studied 

the value or ―information content‖ of messages. Let 

node N represents or hold the tuples of partition D. The 

attribute with the highest information gain is chosen as 

the splitting attribute for node N. This attribute 

minimizes the information needed to classify the tuples 

in the resulting partitions and reflects the least 

randomness or ―impurity‖ in these partitions. Such an 

approach minimizes the expected number of tests 

needed to classify a given tuple and guarantees that a 

simple (but not necessarily the simplest) tree is found. 

The expected information needed to classify a tuple in D 

is given by 

          ∑      
 
    

 

   
 

 

Where pi is the probability that an arbitrary tuple in D 

belongs to class Ci and is estimated by jCi,Dj/jDj. A log 

function to the base 2 is used, because the information is 

encoded in bits. Info(D) is just the average amount of 

information needed to identify the class label of a tuple 

in D. Note that, at this point, the information we have is 

based solely on the proportions of tuples of each class. 

Info(D) is also known as the entropy of D. 

 

Now, suppose we were to partition the tuples in D on 

some attribute A having v distinct values, fa1, a2…av, as 

observed from the training data. If A is discrete-valued, 

these values correspond directly to the v outcomes of a 

test on A. Attribute A can be used to split D into v 

partitions or subsets, fD1, D2, : : : , Dv, where Dj contains 

those tuples in D that have outcome aj of A. These 

partitions would correspond to the branches grown from 

node N. Ideally, we would like this partitioning to 

produce an exact classification of the tuples. That is, we 

would like for each partition to be pure. However, it is 

quite likely that the partitions will be impure (e.g., where 

a partition may contain a collection of tuples from 

different classes rather than from a single class). How 

much more information would we still need (after the 

partitioning) in order to arrive at an exact classification? 

This amount is measured by 

 

          ∑
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Information gain is defined as the difference between the 

original information requirement (i.e., based on just the 

proportion of classes) and the new requirement (i.e., 

obtained after partitioning on A). That is, 

 

                          

 

In other words, Gain(A) tells us how much would be 

gained by branching on A. It is the expected reduction in 

RI

D 

Age Inco

me 

Stud

ent 

Credit_rati

ng 

Class:buys

_computer 

1 Youth High No Fair No 

2 Youth High No Excellent No 

3 Middle

_Aged 

High No Fair Yes 

4 Senior Medi

um 

No Fair Yes 

5 Senior Low Yes Fair Yes 

6 Senior Low Yes Excellent No 

7 Middle

_Aged 

Low Yes Excellent Yes 

8 Youth Medi

um 

No Fair No 

9 Youth Low Yes Fair Yes 

10 Senior Medi

um 

Yes Fair Yes 

11 Youth Medi

um 

Yes Excellent Yes 

12 Middle

_Aged 

Medi

um 

No Excellent Yes 

13 Middle

_Aged 

High Yes Fair Yes 

14 Senior Medi

um 

No Excellent No 
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the information requirement caused by knowing the 

value of A. The attribute A with the highest information 

gain, (Gain(A)), is chosen as the splitting attribute at 

node N. This is equivalent to saying that we want to 

partition on the attribute A that would do the ―best 

classification,‖ so that the amount of information still 

required to finish classifying the tuples is minimal (i.e., 

minimum InfoA(D)). 

 

 Calculating the information gain for each of the 

attributes: 

 For Age 

 For Income 

 For Student 

 For Credit_rating 

For Age 

o E = 0.940 

o S = (9+, 5-) 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2. Decision tree construction with the root age 
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For Student 

o E = 0.940 

o S = (9+, 5-) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Entropy calculation of the attribute student 
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For Credit_rating 

o E = 0.940 

o S = (9+, 5-) 
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Now, selecting the root from all information gain: 

o Compute information gain for each attribute: 

Gain (credit_rating) = 0.048 

Gain (student) = 0.151 

Gain (income) = 0.029 

Gain (age) = 0.246 

o Select attribute with the maximum information 

gain, which is 'age' for splitting. 

 

 

Figure 4. Entropy calculation of the attribute credit rating 
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Income Student Credit_rating Class 

High No Fair  Yes 

Low Yes Excellent Yes 

Medium No Excellent Yes 

High Yes Fair Yes 
 

Figure 5. The attribute age has the highest information gain and 

therefore becomes the splitting attribute at the root node of the 

decision tree. Branches are grown for each outcome of age. The 

tuples are shown partitioned accordingly. 

Youth Middle_aged Senior 

2+,3- 4+,0- 3+,2

- 
E=0.971 E=0.0 E=0.971 

Age 

Yes No 

6+,1- 3+,4

- E=0.592 E=0.985 

Student 

  Age? 

Excellent 

3+,3

- 
E=1.0 
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―But how can we compute the information gain of an 

attribute that is continuous-valued, unlike above?‖ 

Suppose, instead, that we have an attribute A that is 

continuous-valued, rather than discrete-valued. (For 

example, suppose that instead of the discretized version 

of age above, we instead have the raw values for this 

attribute.) For such a scenario, we must determine the 

―best‖ split-point for A, where the split-point is a 

threshold on A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The Complete Decision Tree 

 

We first sort the values of A in increasing order. 

Typically, the midpoint between each pair of adjacent 

values is considered as a possible split-point. Therefore, 

given v values of A, then v+1 possible splits are 

evaluated. For example, the midpoint between the values 

ai and ai+1 of A is: 

 

       

 
 

If the values of A are sorted in advance, then 

determining the best split for A requires only one pass 

through the values. For each possible split-point for A, 

we evaluate InfoA(D), where the number of partitions is 

two, that is v = 2 (or j = 1,2). The point with the 

minimum expected information requirement for A is 

selected as the split point for A. D1 is the set of tuples in 

D satisfying A = split point, and D2 is the set of tuples 

in D satisfying A >split point. 

 

3)  Gain Ratio 

 

The information gain measure is biased toward tests 

with many outcomes. That is, it prefers to select 

attributes having a large number of values. For example, 

consider an attribute that acts as a unique identifier, such 

as product ID. A split on product ID would result in a 

large number of partitions (as many as there are values), 

each one containing just one tuple. Because each 

partition is pure, the information required to classify 

data set D based on this partitioning would 

be                    . Therefore, the information 

gained by partitioning on this attribute is maximal. 

Clearly, such a partitioning is useless for classification. 

 

C4.5, a successor of ID3, uses an extension to 

information gain known as gain ratio, which attempts to 

overcome this bias. It applies a kind of normalization to 

information gain using a ―split information‖ value 

defined analogously with Info(D) as: 
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This value represents the potential information generated 

by splitting the training data set, D, into v partitions, 

corresponding to the v outcomes of a test on attribute A. 

Note that, for each outcome, it considers the number of 

tuples having that outcome with respect to the total 

number of tuples in D. It differs from information gain, 

which measures the information with respect to 

classification that is acquired based on the same 

partitioning. The gain ratio is defined as: 

 

             
       

            
 

 

The attribute with the maximum gain ratio is selected as 

the splitting attribute. Note, however, that as the split 

information approaches 0, the ratio becomes unstable. A 

constraint is added to avoid this, whereby the 

information gain of the test selected must be large—at 

least as great as the average gain over all tests examined. 

 

 

 

 

Age 

Youth Middle_aged Senior 

Student Yes Credit_ratin

g 

No Yes Fair 
Excellent 

No Yes Yes No 
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4)  Decision Tree Induction Algorithm 

 

 Read the training data set D from a text file or 

database 

 Calculate the number of positive answers (p) & the 

negative answers (n) in the class label of data set D 

 Calculate the expected information needed to 

classify a tuple in D [formula: -

(p/(p+n))*log2(p/(p+n))*- (n/(p+n))* )log2 (n/(p+n) ]  

 Calculate the expected information requirement for 

the 1
st
 attribute. 

 Calculate the gain in information for the 1
st
 attribute: 

Gain(attribute_name)= Info(D) – Infoattribute_name(D) 

 Recursively do the steps 4 & 5 for all the other 

attributes 

 Select the root attribute as the one carrying the 

maximum gain from all the attributes except the 

class label 

 If any node of the root ends in leaves then put label 

 If any node of the root does not end in leaves than 

go to step 6 

 End     

5)  Implementation of the Algorithm 

 

Begin 

 

Load training sets first, create decision tree root node 

'rootNode', add training set D into root node as its subset. 

For rootNode, we compute Entropy (rootNode.subset) 

first 

 

                                , then 

 

rootNode.subset consists of records all with the same 

value for the categorical attribute, return a leaf node with 

decision attribute:attribute value;  

 

                                , then 

 

compute information gain for each attribute left (that 

have not been used in splitting), find attribute A with 

Maximum Gain(S,A)[where S = Sample and A= 

Attributes].Create child nodes of this rootNode and add 

to rootNode in the decision tree. For each child of the 

rootNode, apply the algorithm from the beginning until 

node that has entropy=0 or leaf node is reached. 

End Algorithm. 

 

Figure 7. Implementation of the Algorithm 

6)  Description of Implementation 

To describe the operation of decision tree induction 

algorithm, we use a classic 'buys_computer' example. 

 

The symbolic attribute description: 

 

Attribute 

 

Possible values 

Age Youth, middle_aged, senior 

Income High, medium, low 

Student Yes, no 

Credit_rating Fair, excellent 

Buys Yes, no 

After implementing the above algorithm using visual 

studio 2010 & XAMPP we implemented the algorithm: 

 

 
Figure 8.  Snapshot of the implemented algorithm 

 

7)  Extending Decision Tree Induction Algorithm to 

real-valued data: 

Decision tree induction algorithm is quite efficient in 

dealing with the target function that has discrete output 

values. It can easily deal with instance which is assigned 

to a Boolean decision, such as 'true' and 'false', 'yes 

(positive)' and 'no (negative)'. It is possible to extend 

target to real-valued outputs. When we compute 

information gain in our CODE, we tried to make is as 
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much dynamic as possible. So we can calculate both 

discrete values and continuous values by our program. 

You will see the result as below: 

 

Figure 9. Real Valued Dataset 

 

From figure 9, we first calculate the total entropy: 

               (
  

  
)     

  

  
   (

 

  
)     

 

  
 

        

Now calculating information gain for each of the 

attributes: 

 Age 

 Parents 

 Poverty 

 Health 

 Lives 

 Age: 

 

o E = 0.985 

o S = (12+,9-) 

                      
 

  
           

 

  
         

   
 

  
                

 Parents: 

 

o E = 0.985 

o S = (12+, 9-) 

 

                          (
  

  
)         (

  

  
)        

        

 

Similarly computing the gain of poverty, health & lives 

we have: 

 Gain(S, Poverty) = 0.223 

Gain(S, Health) = 0.075 

                         Gain(S, Lives) = 0.157 

 

Now, we select attribute with the maximum information 

gain, which is 'age' for splitting. 

 

 

Figure 10.  Final Decision Tree of Real Valued Dataset 

 

 
 

Figure 11. Decision Tree Generated from the Dataset After 

Implementation. 

B. Predictive Algorithm-2 (Naïve Bayesian 

Classification Algorithm) 

 

It is based on the Bayesian theorem it is particularly 

suited when the dimensionality of the inputs is high. 

Parameter estimation for naive Bayes models uses the 

method of maximum likelihood. In spite over-simplified 
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assumptions, it often performs better in many complex 

real-world situations. 

 

The naive Bayesian classifier, or simple Bayesian 

classifier, works as follows:  

  

1. Let D be a training set of tuples and their associated 

class labels. As usual, each tuple is represented by an n-

dimensional attribute vector, X =               

depicting n measurements made on the tuple from n 

attributes, respectively,            

 

2. Suppose that there are m classes,            . 

Given a tuple, X, the classifier will predict that X 

belongs to the class having the highest posterior 

probability, conditioned on X. That is, the naive 

Bayesian classifier predicts that tuple X belongs to the 

class  ; if and only if  

 

    |    (  | ) for 1 ≤ j ≤ m, j ≠ i. 

 

Thus we maximize    |   . The class Ci for which 

    |  is maximized is called the maximum posteriori 

hypothesis. By Bayes' theorem, 

 

    |    
   |        

    
 

 

3. As P(X) is constant for all classes, only    |         

need be maximized. If the class prior probabilities are 

not known, then it is commonly assumed that the classes 

are equally likely, that is,                    , 

and we would therefore maximize   |   . Otherwise, 

we maximize   |        . Note that the class prior 

probabilities maybe estimated by       |    | | | 

where |    | is the number of training tuples of class 

  in .  

 

4. Given data sets with many attributes, it would be 

extremely computationally expensive to compute 

    |   .In order to reduce computation in 

evaluating     |    , the naive assumption of class 

conditional independence is made. This presumes that 

the values of the attributes are conditionally independent 

of one another, given the class label of the tuple (i.e., 

that there are no dependence relationships among the 

attributes). Thus,  

 

   |    ∏     |   
 

   
 

     |        |          |    

 

We can easily estimate the probabilities      |    

    |          |    from the training tuples. Recall 

that here    refers to the value of attribute    for tuple X. 

For each attribute, we look at whether the attribute is 

categorical or continuous-valued. For instance, to 

compute     |    we consider the following:  

 

(a) If   is categorical, then      |   is the number of 

tuples of class    in D having the value    for   , 

divided by|    |, the number of tuples of class    in D.  

(b) If    is continuous-valued, then we need to do a bit 

more work, but the calculation is pretty straightforward. 

A continuous-valued attribute is typically assumed to 

have a Gaussian distribution with a mean µ and standard 

deviation σ, defined by  

 

          
 

√   
 
       

    

 

So that,  

    |                  

 

These equations may appear daunting, but hold on! We 

need to compute   and     which are the mean (i.e., 

average) and standard deviation, respectively, of the 

values of attribute    for training tuples of class Ci . We 

then plug these two quantities into Equation, together 

with   , in order to estimate      |   for example, let X 

= (35, $40,000), where and  are the attributes age 

and income, respectively. Let the class label attribute be 

buys -computer. The associated class label for X is yes 

(i.e., buys_computer = yes). Let's suppose that age has 

not been discredited and therefore exists as a 

continuous-valued attribute. Suppose that from the 

training set, we find that customers in D who buy a 

computer are 38 ± 12 years of age. In other words, for 

attribute age and this class, we have µ = 38 years and σ 

= 12. We can plug these quantities, along with   = 35 

for our tuple X into Equation in order to estimate P (age 

= 35|buys_computer = yes).  

 

5. In order to predict the class label of X,    |         

is evaluated for each class   . The classifier predicts that 

the class label of tuple X is the class C, if and only if  
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    |        >  ( |  )      for 1≤ j ≤ m, j ≠ i. 

 

In other words, the predicted class label is the class C, 

for which     |         is the maximum.  

1)  Applying Bayesian Classification on the Data Set-

Algorithm 

1. Select any tuple ‗X‘ from the dataset. 

2. Find the number of P‘s and N‘s from the class 

label where P=Positive Answer and N=Negative 

Answer. 

3. Calculate the probability of P and N where P(P) 

= P/(P+N) and P(N) = N/(P+N) 

4. Find the probability of all the attributes from the 

tuple ‗X‘ for P and N where  

5. P (attribute | class label = P); 

6. P (attribute | class label = N); 

7. Multiply all the   P (attribute | class label = P)‘s 

as X1 and multiply all the P (attribute | class 

label = N)‘s as X2. 

8. Calculate R = P (P) * X1 and S = P (N) * X2. 

9. If R>S then answer is P (Positive Answer). 

10. Otherwise answer is N (Negative Answer). 

2)  Implementation of Naïve Bayesian Classification 

 

Begin 

 

Load training datasets first. Calculate the probability of 

class labels containing the positive answer and the 

negative answer. Take the values of the attributes from 

the user as input; we assume that is Tuple X. 

Calculate the probability of all the attributes from the 

tuple X- 

 

Probability of (attribute | class label = Positive Class 

Label); 

Probability of (attribute | class label = Negative Class 

Label); 

Multiply the probability of all the positive answer and 

negative answer. 

If Probability of (Positive Class Label) >Probability 

of (Negative Class Label); 

Then the answer is Positive Answer. Otherwise the 

answer is Negative Answer. 

3)  Description of Implementation 

The implementation of the proposed algorithm can be 

depicted as follows: 

 

 

Figure 12. Training dataset 

 

Figure 13. Interface of the program implementing naïve 

Bayesian algorithm 

 

Our Real Valued Dataset: 

The real valued dataset for this paper is constructed as 

follows in the figure. 

 

Figure 14. Real valued dataset 
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The Results of our Real Valued Dataset: 

 

Figure 15. Program running with real valued data 

 

4)  Bayesian Networks 

 Bayesian belief network allows a subset of the 

variables conditionally independent 

 A graphical model of causal relationships 

 Represents dependency among the 

variables  

 Gives a specification of joint probability 

distribution 

 
 

 Nodes: random variables 

 Links: dependency 

 X,Y are the parents of Z, and Y is the parent of 

P 

 No dependency between Z and P 

 Has no loops or cycles 

 

5)  Bayesian Belief Network: An Example 

 

 

Figure 16. Bayesian Belief Networks 

 

TABLE 2. THE CONDITIONAL PROBABILITY TABLE FOR THE 

VARIABLE LUNG CANCER 

 

 

 

The table shows the conditional probability for each 

possible combination of its parents: 

 

 

 

 

III. PREDICTION AND ACCURACY 

A. Prediction 

Regression analysis is a good choice when all of the 

predictor variables are continuous valued as well. Many 

problems can be solved by linear regression, and even 

more can be tackled by applying transformations to the 

variables so that a nonlinear problem can be converted 

to a linear one. For reasons of space, we cannot give a 

fully detailed treatment of regression. Several software 

packages exist to solve regression problems. Examples 

include SAS(www.sas.com), SPSS (www.spss.com), and 

S-Plus (www.insightful.com). Another useful resource is 

the book Numerical Recipes in C, by Press, Flannery, 

Teukolsky, and Vetterling, and its associated source 

code. 

B. Accuracy and error measures 

Now that a classifier or predictor has been trained, there 

may be several questions. For example, suppose one 

used data from previous sales to train a classifier to 

predict customer purchasing behaviour. Then an 

estimate of how accurately the classifier can predict the 

purchasing behaviour of future customers, that is, future 

customer data on which the classifier has not been 

trained can be done. One may even have tried different 

methods to build more than one classifier (or predictor) 

and now wish to compare their accuracy. There are 

various strategies to estimate and increase the accuracy 

of a learned model. These issues are addressed next. 
TABLE 3. CONFUSION MATRIX FOR THE EXAMPLE OF ALL 

ELECTRONICS 

 





n

i

ZParents iziPznzP

1

))(|(),...,1(
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C. Classifier Accuracy Measures 

Using training data to derive a classifier or predictor and 

then to estimate the accuracy of the resulting learned 

model can result in misleading overoptimistic estimates 

due to overspecialization of the learning algorithm to the 

data. Instead, accuracy is better measured on a test set 

consisting of class-labelled tuples that were not used to 

train the model. The accuracy of a classifier on a given 

test set is the percentage of test set tuples that are 

correctly classified by the classifier. In the pattern 

recognition literature, this is also referred to as the 

overall recognition rate of the classifier, that is, it 

reflects how well the classifier recognizes tuples of the 

various classes. We can also speak of the error rate or 

misclassification rate of a classifier, M, which is simply 

Acc(M), where Acc(M) is the accuracy of M. If we were 

to use the training set to estimate the error rate of a 

model, this quantity is known as the re substitution error. 

This error estimate is optimistic of the true error rate 

(and similarly, the corresponding accuracy estimate is 

optimistic) because the model is not tested on any 

samples that it has not already seen. 

 

The confusion matrix is a useful tool for analyzing how 

well your classifier can recognize tuples of different 

classes. A confusion matrix for two classes is shown in 

Table 3. Given m classes, a confusion matrix is a table 

of at least size m by m. An entry, CMi, j in the first m 

rows and m columns indicates the number of tuples of 

class i that were labelled by the classifier as class j. For a 

classifier to have good accuracy, ideally most of the 

tuples would be represented along the diagonal of the 

confusion matrix, from entry CM1, 1 to entry CMm, m, 

with the rest of the entries being close to zero. The table 

may have additional rows or columns to provide totals 

or recognition rates per class. Given two classes, we can 

talk in terms of positive tuples (tuples of the main class 

of interest, e.g., buys computer = yes) versus negative 

tuples (e.g., buys computer = no). True positives refer to 

the positive tuples that were correctly labelled by the 

classifier, while true negatives are the negative tuples 

that were correctly labelled by the classifier. False 

positives are the negative tuples that were incorrectly 

labelled (e.g., tuples of class buys computer = no for 

which the classifier predicted buys computer = yes).  

 

 

 

 

TABLE 4. A CONFUSION MATRIX FOR POSITIVE AND NEGATIVE 
TUPLES 

Predicted class 

 

Actual Class 

 

 

 

Similarly, false negatives are the positive tuples that 

were incorrectly labelled (e.g., tuples of class buys 

computer = yes for which the classifier predicted buys 

computer = no). These terms are useful when analyzing 

a classifier‘s ability. “Are there alternatives to the 

accuracy measure?” Suppose that you have trained a 

classifier to classify medical data tuples as either 

“cancer” or “not cancer.” An accuracy rate of, 90% 

may make the classifier seem quite accurate, but what if 

only, say, 3–4% of the training tuples are actually 

“cancer”? Clearly, an accuracy rate of 90% may not be 

acceptable—the classifier could be correctly labelling 

only the “not cancer” tuples, for instance. Instead, we 

would like to be able to access how well the classifier 

can recognize “cancer” tuples (the positive tuples) and 

how well it can recognize “not cancer” tuples (the 

negative tuples). The sensitivity and specificity 

measures can be used, respectively, for this purpose. 

Sensitivity is also referred to as the true positive 

(recognition) rate (that is, the proportion of positive 

tuples that are correctly identified), while specificity is 

the true negative rate (that is, the proportion of negative 

tuples that are correctly identified). In addition, we may 

use precision to access the percentage of tuples labelled 

as “cancer” that actually are “cancer” tuples. These 

measures are defined as 

 

                          

                          

                                   

 

where t pos is the number of true positives (“cancer” 

tuples that were correctly classified as such), pos is the 

number of positive (“cancer”) tuples, t neg is the 

number of true negatives (“not cancer” tuples that were 

correctly classified as such), neg is the number of 

negative (“not cancer”) tuples, and f pos is the number 

of false positives (“not cancer” tuples that were 

incorrectly labelled as “cancer”). It can be shown that 

accuracy is a function of sensitivity and specificity: 
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The true positives, true negatives, false positives, and 

false negatives are also useful in assessing the costs and 

benefits (or risks and gains) associated with a 

classification model. The cost associated with a false 

negative (such as, incorrectly predicting that a cancerous 

patient is not cancerous) is far greater than that of a false 

positive (incorrectly yet conservatively labelling a 

noncancerous patient as cancerous). In such cases, we 

can outweigh one type of error over another by 

assigning a different cost to each. These costs may 

consider the danger to the patient, financial costs of 

resulting therapies, and other hospital costs. Similarly, 

the benefits associated with a true positive decision may 

be different than that of a true negative. Up to now, to 

compute classifier accuracy, we have assumed equal 

costs and essentially divided the sum of true positives 

and true negatives by the total number of test tuples. 

Alternatively, we can incorporate costs and benefits by 

instead computing the average cost (or benefit) per 

decision. Other applications involving cost-benefit 

analysis include loan application decisions and target 

marketing mail outs. For example, the cost of loaning to 

a defaulter greatly exceeds that of the lost business 

incurred by denying a loan to a non-defaulter. Similarly, 

in an application that tries to identify households that are 

likely to respond to mail outs of certain promotional 

material, the cost of mail outs to numerous households 

that do not respond may outweigh the cost of lost 

business from not mailing to households that would have 

responded. Other costs to consider in the overall analysis 

include the costs to collect the data and to develop the 

classification tool. 

 

―Are there other cases where accuracy may not be 

appropriate?‖ In classification problems, it is commonly 

assumed that all tuples are uniquely classifiable, that is, 

that each training tuple can belong to only one class. Yet, 

owing to the wide diversity of data in large databases, it 

is not always reasonable to assume that all tuples are 

uniquely classifiable. Rather, it is more probable to 

assume that each tuple may belong to more than one 

class. How then can the accuracy of classifiers on large 

databases be measured? The accuracy measure is not 

appropriate, because it does not take into account the 

possibility of tuples belonging to more than one class. 

Rather than returning a class label, it is useful to return a 

probability class distribution. Accuracy measures may 

then use a second guess heuristic, whereby a class 

prediction is judged as correct if it agrees with the first 

or second most probable class. Although this does take 

into consideration, to some degree, the non-unique 

classification of tuples, it is not a complete solution. 

 

 

IV. CONCLUSION 

 
This paper is representing predictive algorithms 

regarding data mining. We have implemented those 

algorithms in our software‘s. Further we used naïve 

Bayesian algorithm for prediction. Our software can 

predict successfully. Finally we worked on the accuracy 

of our implemented software. So far the accuracy level 

is moderate. In future we will compare our software with 

other predictive algorithms (such as: neural networks 

etc.) so check how well is our algorithms and code is 

working.  And we will work on increasing the accuracy 

of prediction. 
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