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ABSTRACT 

The geometry of three parameter family of non-diagonal cylindrically symmetric Kaluza-Klein cosmological 

models is described by the line element (4.1). The material distribution of model is a stiff-fluid (𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑝 =

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ). The pressure and density are given by 8𝑝 =  8 = [  − (3 + 1)𝑡−2 𝑐𝑜𝑠ℎ−1(𝑚𝑟), assumed 

 > 0 𝑎𝑛𝑑  > (3 + 1) and it is interesting that the parameter m is the measure of non- diagonality of the 

metric as well as of the inhomogeneity of matter. The family of our models have a big-bang singularity at t=0. 

All the physical and kinematical parameters remain well behaved for all t>0. Our models also admit dimensional 

reduction. 

Keywords : Anomaly Detection, Cloud Computing, DDoS Attack, Feature Extraction, Feature Optimization 

 

I. INTRODUCTION 

 

The last two decades have witnessed an increase of interest in higher dimensional cosmology. According to this 

theory one assumes that the universe had a higher dimension than the usual four at a very early stage of its 

evolution. In Kaluza-Klein theory and superstring theory the dimension of the underlying space is taken to be 

greater than four. As the universe expands the extra dimensions contract, leaving behind the observable 4-

dimensional space-time (Appelquist, Chodos and Freund [1987]). Chodos and Detweiler [19801 constructed 

some 5-dimensional vacuum solutions with Kasnerian time evolution in which the extra dimension shrank, 

while the usual 3-space expanded with time t. Recently 5-dimensional inhomogeneous cosmological models 

have been studied by many investigators.(Banerjee et al [1994], Chatterjee and Bhui [1990], Chatterjee et al 

[1993, 1994a, 1994b], Chodos and Detweiler [1980], Patel and Dadhich [1994a, 1994b])  

 

Inhomogeneity in cosmological models is relevant for many reasons (Krasinski [1997]), but principally to have 

general generic initial conditions and to facilitate the formation of large scale structures in the universe. In 

higher dimensions, several Kaluza-Klein (KK) extensions of Friedman -Robertson- Walker model have been 

discussed (Salidev [1984], Ishihara [1984], Chatterjee and Bhui [1990]). But all these extensions are big-bang 

singular. Benerjee et al [1995] have obtained the 5-dimensional analogues of the non-singular 4-dimansional 

inhomogeneous models discussed by Ruiz and Senvilla [1992] and Dadhich et al [1995]. Mars and Senovilla 

[1997] have obtained a non-diagonal G2 separable perfect fluid model in 4-dimensions. The geometry of this 

inhomogeneous cosmological model is described by the line element 
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𝑑𝑠2 = cosh(2𝑐𝑥) 𝑡2𝛼𝑒𝑐2𝑡2
[𝑑𝑡2 − 𝑑𝑥2] − 𝑡2 cosh(2𝑐𝑥) 𝑑𝑦2 −

(𝑑𝑧+𝑐𝑡2𝑑𝑦)2

cosh(2𝑐𝑥)
             (1.1) 

 

where c and  are constants.  

The energy density and pressure of the perfect fluid are given by 

 8𝑝 =  8 =
𝑒𝑐2𝑡2

cosh(2𝑐𝑥)𝑡2(+1)                                                            (1.2) 

In this paper, I wish to obtain perfect fluid cosmological models in 5-dimensional KK space-time which are 

generalizations of the solution (1.1). It turns out that the stiff-fluid character of the perfect fluid is 

maintained in 5-dimensions as well. 

II. THE METRIC AND THE FIELD EQUATION 

Consider the 5-dimensional cylindrically symmetric non-diagonal space time given by the line element   

                               𝑑𝑠2 = 𝐴2[𝑑𝑡2 − 𝑑𝑟2] − 𝐵2(𝑑𝑧 + 𝐻𝑑)2 − 𝑐2𝑑2 − 𝐸2𝑑2                                           (2.1) 

where A, B, C, E and H are functions of r and t. One can easily see that the 4-dimensional metric (1.1) is a 

particular case of the metric (2.1), Introducing the pentad   

1 = 𝐴𝑑𝑟, 2 = 𝐵(𝑑𝑧 + 𝐻𝑑),  3 = 𝑐𝑑,  4 = 𝐸𝑑 , 5 = 𝐴𝑑𝑡                       (2.2) 

and hence we can express the metric (2.1) in the simple from 

 𝑑𝑠2 = (5)2 − (1)2 − (2)2 − (3)2 − (4)2 = 𝑔(𝑎𝑏)𝜃𝑎𝜃𝑏                                

                          (2.3) 

Here and in what follows the bracketed indices denote pentad components. Using the exterior calculus of 

differential forms and Cartan's equations of structure, one can easily find the pentad components 𝑅(𝑎𝑏)  of 

the Ricci tensor for the metric (2.1) and the pentad (2.2).  The non-zero 𝑅(𝑎𝑏) are listed below for ready 

reference              

            2𝐴2𝐵−1𝐶𝑅(23) = [𝐻′′ +
3𝐻′𝐵′

𝐵
−

𝐻′𝐶′

𝐶
+

𝐻′𝐸′

𝐸
] − [�̈� +

�̇��̇�

𝐵
−

�̇��̇�

𝐶
+

�̇��̇�

𝐸
]                                         (2.4) 

𝐴2𝑅(15) =
𝐵′̇

𝐵
−

𝐶′̇

𝐶
+

𝐸′̇

𝐸
−

�̇�

𝐴
[

𝐵′

𝐵
+

𝐶′

𝐶
+

𝐸′

𝐸
] −

𝐴′

𝐴
[

�̇�

𝐵
+

�̇�

𝐶
+

�̇�

𝐸
] +

𝐵2�̇�𝐻′

2𝐶2                                       (2.5) 

 𝐴2𝑅(11) =
𝐴"

𝐴
+

𝐵"

𝐵
+

𝐶"

𝐶
+

𝐸"

𝐸
−

𝐴′

𝐴
[

𝐴′

𝐴
+

𝐵′

𝐵
+

𝐶′

𝐶
+

𝐸′

𝐸
] −

�̇�

𝐴
[

�̇�

𝐵
+

�̇�

𝐶
+

�̇�

𝐸
−

�̇�

𝐴
] −

�̈�

𝐴
+

𝐵2𝐻′2

2𝐶2           (2.6) 

𝐴2𝑅(22) =
𝐵"

𝐵
+

𝐵′

𝐵
[

𝐶"

𝐶
+

𝐸"

𝐸
] −

𝐵2𝐻′2

2𝐶2 +
𝐵2𝐻2̇

2𝐶2 −
�̈�

𝐵
−

�̇�

𝐵
[

�̇�

𝐶
+

�̇�

𝐸
]                                                  (2.7) 

𝐴2𝑅(33) =
𝐶"

𝐶
+

𝐶′

𝐶
[

𝐵′

𝐵
+

𝐸′

𝐸
] −

𝐵2𝐻′2

2𝐶2 +
𝐵2𝐻2̇

2𝐶2 −
�̈�

𝐶
−

�̇�

𝐶
[

�̇�

𝐵
+

�̇�

𝐸
]                                                  (2.8) 

𝐴2𝑅(44) =
𝐸"

𝐸
+

𝐸′

𝐸
[

𝐵′

𝐵
+

𝐶′

𝐶
] −

�̈�

𝐸
−

�̇�

𝐸
[

�̇�

𝐵
+

�̇�

𝐶
]                                                                        (2.9) 

𝐴2𝑅(55) =
�̈�

𝐴
+

�̈�

𝐵
+

�̈�

𝐶
+

�̈�

𝐸
−

𝐴′

𝐴
[

𝐵′

𝐵
+

𝐶′

𝐶
+

𝐸′

𝐸
−

𝐴′

𝐴
] −

�̇�

𝐴
[

�̇�

𝐵
+

�̇�

𝐶
+

�̇�

𝐸
+

�̇�

𝐴
] −

𝐴"

𝐴
+

𝐵2�̇�2

2𝐶2                 (2.10) 

Here and in what follows an overhead dash and a dot indicate differentiation with respect to r and t 

respectively. Here  is taken in the form of a Kaluza-Klein parameter such that  <  < 2R5, where R5 is 

the radius of KK circle 

Assume that the space-time filled with a perfect fluid distribution given by energy momentum tensor 

𝑇𝑖𝑘 = (𝑝 + 𝜌)𝑣𝑖𝑣𝑘 − 𝑝𝑔𝑖𝑘  ;  𝑣𝑖𝑣𝑖 = 1                                                      (2.11) 
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where 𝜌, 𝑝 and 𝑣𝑖 denote matter density, fluid pressure and the unit timelike flow vector respectively The 

Einstein field equations are  

 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 = −8𝜋𝑇𝑖𝑘                                                                (2.12)  

where 𝑇𝑖𝑘 is given by (2.11). We have chosen the units such that G = 1, c = l . The filed equations (2.12) can 

be expressed in the pentad form as  

𝑅(𝑎𝑏) = −8𝜋 [(𝑝 + 𝜌)𝑣(𝑎)𝑣(𝑏) −
1

3
(𝜌 − 𝑝)𝑔(𝑎𝑏)  ]                                   (2.13) 

where 𝑣(𝑎) are pentad components of 𝑣𝑖   

We are using comoving co-ordinates. Consequently we have 𝑣(𝑎) = (0,0,0,0,1)                                        (2.14) 

In view of (2.14) the filed equations (2.13) give rise to the following relations. 

𝑅(23) = 0, 𝑅(15) = 0,  𝑅(11) =  𝑅(22) =  𝑅(33) =  𝑅(44)                                     (2.15) 

8𝜋𝜌 = −
1

2
[𝑅(55) + 4𝑅(22)] ,  8𝜋𝑝 = −

1

2
[2𝑅(22) − 𝑅(55)]                                (2.16) 

where 𝑅(𝑎𝑏) are given by (2.4 - 2.10) 

III. THE STIFF-FLUID MODELS 

Following Mars and Senovilla [1997] we assume the separability of metric potentials as 

 𝐴 = 𝑐𝑜𝑠ℎ𝑎(𝑚𝑟)𝑇(𝑡),   𝐵 =  𝑐𝑜𝑠ℎ𝑏(𝑚𝑟)𝑡𝛽  𝐶 = 𝑐𝑜𝑠ℎ𝑐(𝑚𝑟)𝑡𝛾,   𝐸 =  𝑐𝑜𝑠ℎ𝑒(𝑚𝑟)𝑡𝛿           (3.1) 

where  𝑎, 𝑏, 𝑐, 𝑒, 𝛽, 𝛾, 𝑎𝑛𝑑 𝑚 are real constants. The choice of hyperbolic cosine function ensure that there 

will not by any spatial singularity in the models.  

By using (3.1) in the equations (2.4) to (2.15) we get, 

 𝐻 ̇ = 𝐾𝑡𝛾−𝛿−3𝛽                                                                              (3.2) 

where K is the constant of integration. On simplification the equation (2.16)  gives us 

�̇�

𝑇
(𝑏 + 𝑐 + 𝑒) =

1

𝑡
[𝑏𝛽 + 𝑐𝛾 + 𝑒𝛿 − 𝛼(𝛽 + 𝛾 + 𝛿)]                                 (3.3) 

The relation 𝑅(22) = 𝑅(33)  of (2.15) implies    2𝛽 + 𝛿 = 0, 𝑏 − 𝑐 = −1, 𝑚2 = 𝐾2                 

(𝛽 − 𝛾)(𝛽 + 𝛾 + 𝛿 − 1) = 0, 𝑏 + 𝑐 + 𝑒 = 0                                         (3.4) 

Let us now consider the relation  𝑅(22) = 𝑅(44) , this leads to 

(𝛽 − 𝛿)(𝛽 + 𝛾 + 𝛿 − 1) = 0, 𝑏 +
1

2
= 𝑒                                                       (3.5) 

From (3.4) and (3.5) one can calculate that 

𝑎 =
1

2
, 𝑏 = −

1

2
, 𝑐 =

1

2
 , 𝑒 = 0, 𝛾 = 𝛽 + 1, 𝛿 = −2𝛽                                  (3.6) 

With the help of (3.6) it is easy to see that the relation (3.3) is satisfied without any restriction on the 

function T(t). It now remains to solve the equation 𝑅(22) = 𝑅(11) and hence the equation determines the 

function T(t)  as  

  𝑇(𝑡) = 𝑡𝑎𝑒
𝑚2𝑡2

8                                                                                 (3.7)  
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where a is a constant of integration. And also e = 0 implies,  𝑅(44) = 0 and consequently, we have 𝑝 = 𝜌.  

So in the above set-up, only the inhomogeneous stiff- fluid models are possible. The pressure and density 

can be obtained from (2.16). They are given by 

 8𝜋𝜌 = 8𝜋𝑝 = [𝛼 − 𝛽(1 + 3𝛽)]𝑡−2𝛼𝑐𝑜𝑠ℎ−1(𝑚𝑟)                                      (3.8) 

For p > 0 we must have 𝛼 > 𝛽(1 + 3𝛽). 

Again by using (3.6) in (10.3.2) the metric potential H can be obtained as   𝐻 =
1

2
𝑡2.                                    

If 𝛼 > 𝛽(1 + 3𝛽) , 𝜌  is positive and consequently the following strong energy condition is satisfied.                 

𝑅𝑖𝑘𝑣𝑖𝑣𝑘 =
−16𝜋

3
(𝜌 + 2𝑝)                                                                                                                           

IV. DISCUSSION 

The explicit form of the line element of our solution is 

𝑑𝑠2 = 𝑡2𝛼𝑒
𝑚2𝑡2

4 cosh(𝑚𝑟) [𝑑𝑡2 − 𝑑𝑟2] − 𝑡2(1+𝛽) cosh(𝑚𝑟) 𝑑∅2   

   −𝑡2𝛽 cosℎ−1(𝑚𝑟) (𝑑𝑧 +
𝑚

2
𝑡2𝑑∅)2 − 𝑡4𝛽d𝜑2                                                (4.1) 

Here m,  and  are three arbitrary parameters. Therefore have a three parameter family of stiff-fluid 

models in KK space-time. If choose  > 0, the coefficient of d𝜑2 in (4.1) tends to zero as t tends to infinity. 

Thus the dimensional reduction is always possible for our models. If  = 0 and 𝜑 =constant, the metric (4.1) 

reduces to the metric (1.1) discussed by Mars and Senovilla [1997] in connection with 4-dimensional G2 

separable stiff-fluid models. 

If 𝛼 = 𝛽(1 + 3𝛽) the density 𝜌 vanishes. Thus the matter free limit of our family of solution in the 5-

dimensional non flat inhomogeneous empty space-time described by the line element 

𝑑𝑠2 = 𝑡2𝛽(1+3𝛽)𝑒
𝑚2𝑡2

4 cosh(𝑚𝑟) [𝑑𝑡2 − 𝑑𝑟2] − 𝑡2(1+𝛽) cosh(𝑚𝑟) 𝑑∅2   

   −𝑡2𝛽 cosℎ−1(𝑚𝑟) (𝑑𝑧 +
𝑚

2
𝑡2𝑑∅)2 − 𝑡4𝛽d𝜑2                                                (4.2) 

If m = 0 then the metric (4.1) becomes 

               𝑑𝑠2 = 𝑡2[𝑑𝑡2 − 𝑑𝑟2] − 𝑡2(1+𝛽)𝑑∅2 − 𝑡2𝛽𝑑𝑧2 − 𝑡4𝛽d𝜑2                                       (4.3) 

The inhomogeneous Bianchi-I metric (4.3) describes a stiff-fluid model whose density 𝜌 is given by 

8𝜋𝜌 = 8𝜋𝑝 = [𝛼 − 𝛽(1 + 3𝛽)]𝑡−2𝛼                                                       (4.4) 

It is interesting to note that the parameter m occurring in our models is the measure of non-diagonality of 

the metric as well as of the inhomogeneity of matter. 

When  𝛽 = 0 , we get the metric (4.1) becomes                   

𝑑𝑠2 = 𝑡2𝛼𝑒
𝑚2𝑡2

4 cosh(𝑚𝑟) [𝑑𝑡2 − 𝑑𝑟2] − 𝑡2 cosh(𝑚𝑟) 𝑑∅2 − cosℎ−1(𝑚𝑟) (𝑑𝑧 +
𝑚

2
𝑡2𝑑∅)2 − d𝜑2             (4.5) 

The metric (4.5) is an obvious 5-dimensional generalization of the stiff-fluid solution given by Mars and 

Senovilla [1997) with density given by 

 8𝜋𝜌 = 8𝜋𝑝 = 𝑡−2𝛼𝑐𝑜𝑠ℎ−1(𝑚𝑟)                                                       (4.6) 
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The expansion, the acceleration f, and the shear  for the velocity field v' in five dimensions are defined 

by                                           𝜃 = 𝑣𝑖𝑣𝑘,𝑖,     𝑓𝑖 = 𝑣𝑖,𝑘𝑣𝑖,      𝜎2 = 𝜎𝑎𝑏𝜎𝑎𝑏              (4.7)  

where                             𝜎𝑎𝑏 =
1

2
[𝑣𝑖,𝑘 + 𝑣𝑘,𝑖] −

1

2
[𝑣𝑖𝑓𝑘 + 𝑣𝑘𝑓𝑖] −

1

4
𝜃[𝑔𝑖,𝑘 − 𝑣𝑖𝑣𝑘]                                 (4.8) 

Here the semicolon indicates covariant differentiation. For our family of solutions   and f, are given by  

𝜃 =
1

𝐴𝑡
 [𝛼 + 1 +

𝑚2𝑡2

4
]   ,    𝑓 = (−

1

2
𝑚𝑡𝑎𝑛ℎ(𝑚𝑟), 0,0,0,0)                                        (4.9)                                

The expression for 𝜎2 is quite lengthy and complicated, therefore it is not given here. 

If we choose 𝛼 > 𝛽(1 + 3𝛽) and positive, then t = 0 is an initial big-bang singularity at which density 𝜌 and 

kinematical parameters diverge. We have verified that the fluid flow is irrotational.  

When t tends to infinity, density 𝜌 and the kinematical parameters tend to zero. When r tends to infinity, 

then also these quantities tend to zero. Here density 𝜌 is a decreasing function of r and t. Thus the physical 

and kinematical parameters remain well behaved for all t > 0  

The models with separability assumption other than (3.1) are at present under investigation. 

V. CONCLUDING REMARKS  

Here we have considered a non-diagonal cylindrically symmetric metric. We have proved that only the 

stiff-fluid (𝑝 = ) models are possible in our set up. A three parameter family of stiff fluid cosmological 

models is obtained which admit the dimensional reduction. The models are inhomogeneous and have non 

zero shear, expansion and acceleration. The models have an initial big-bang singularity at t=0. 
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