
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

ICEST-2K24 [International Conference on Engineering, Science and Technology]

In Association with

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

782

Analysis on Big Data Indexing
Sonali Vidhate1, Dr.Pankaj Dashore2

1Research Scholar, Sandip University Nashik, Maharashtra, India
2Professor, Sandip University, Nashik, Maharashtra, India

ABSTRACT

Social media is becoming the primary means of communication for practically all activities, including

business, information, and personal updates. As a result, a significant amount of data about various activities is

generated. As a result, social media has integrated itself into our daily lives. But sorting through all of this

data for analysis is a difficult and time-consuming operation. There are numerous ways to solve this issue.

Sorting, indexing, and data reduction may be the answers. Additionally, which will be applied to

recommendation, visualization, etc. Indexing strategies for extremely repetitive data sets are now a topic of

discussion. Queries with value and dimension subsetting conditions can be expedited with these strategies.

With regard to the compatibility of data type, size, dimension, representation, storage, etc., there are several

indexing techniques. Because the majority of electronic text collections are huge and diverse, indexing is

absolutely necessary. Because text search is used to locate files on computers right out of the help services

incorporated into operating systems, the motto is to find an improved way to text search. Various indexing

techniques, such as tree-based indexing, multidimensional indexing, hashing, and others, are employed based

on the data structures and big data analysis (BDA). It is necessary for indexing to address search speed. To

avoid a delay in the outcome, the index's size must be a percentage of the original data and must be

constructed at the rate at which the data is generated. Here, a few search structures and indexing strategies

are covered in relation to data structures, frameworks, space requirements, applications, and simpler

implementations.

Keywords: Large-scale Data; Indexation; Search; Retrieving Information

I. INTRODUCTION

Information retrieval now faces challenges due to the proliferation of sophisticated data collections and data

expansion [1]. Creating indexes on data sets is one way to solve this. Indexes are typically lists of tags, names,

subjects, and other information about a set of things that indicate the locations of the items. In light of this, a

list of tags, names, subjects, and other information from a dataset that indicates where data can be located can

be considered a big data index. The creation of an index, or an access mechanism to a searched object, is known

as an indexing technique. Additionally, it explains the arrangement of data in a storage system to aid in the

retrieval of information. Partitioning datasets based on criteria that will be often utilized in queries is the

concept behind big data indexing[2]. Each fragment in the index has a value that satisfies a set of query

predicates. The goal of this is to store the data more systematically so that it may be retrieved more easily.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 782-785

783

Metadata that describes the contents of complex data are collected alongside them. These datasets can be

queried by utilizing the contents metadata. scanning the relevant group(s) related to the query is a more

efficient method than scanning the entire database, which might take a lot of time. Since the search procedure

only takes into account the content of a particular group(s), this reduces the amount of time it takes to retrieve

information. To make knowledge retrieval easier, an appropriate aid in the retrieval of information.

Partitioning datasets based on criteria that will be often utilized in queries is the concept behind big data

indexing[4]. Each fragment in the index has a value that satisfies a set of query predicates. The goal of this is to

store the data more systematically so that it may be retrieved more easily. Metadata that describes the contents

of complex data are collected alongside them. These datasets can be queried by utilizing the contents metadata.

scanning the relevant group(s) related to the query is a more efficient method than scanning the entire database,

which might take a lot of time. Since the search procedure only takes into account the content of a particular

group(s), this reduces the amount of time it takes to retrieve information. To make knowledge retrieval easier,

an appropriate The datasets must be processed using an indexing approach. The benefit of having an orderly

storage system to facilitate information retrieval and search is also included in this. A system that makes use of

a massively parallel computer or machine that connects numerous RAM, CPUs, and disk units is necessary for

big data indexing. High data processing capacity, shorter query response times, data replication for improved

availability and dependability, and structural scalability are the advantages of this. The kind of queries that will

be run on the dataset, such as range queries, point queries, similarity searches (nearest neighbor search), and so

on, will determine the design of an access technique or the kind of indexing strategy to be utilized in processing

a particular dataset.query, ad hoc query, and keyword query. As a result, the kind of data to be indexed (such as

emails, logs, audio, video, photos, etc.) and the kind of query that will be run on the indexes must be known to

the designer. Indexing strategies fall into two categories, according to non-artificial intelligence (NAI) approach

and artificial intelligence (AI) approach.

II. LITERATURE REVIEW

Information system engineers' implementation of "Privacy by Design" is the main topic of Fei Bua's paper. It

probably goes over methods and approaches for incorporating privacy concerns into information system

development and design. Techniques like encryption, access control, and data anonymization may fall under

this category. It appears to be a useful addition to the information management area, especially in view of

growing worries about data privacy[1].

An "ad hoc" crawler is introduced by Baldassarre et al. in their article on the MIoT (Massive Internet of Things)

paradigm. This research presumably examines the features and difficulties of overseeing large-scale Internet of

Things systems and suggests a remedy in the shape of a customized crawler. The MIoT paradigm most likely

alludes to the particular difficulties presented by the vastness and diversity of IoT data and devices. The

creation of a customized crawler offers a workable solution to these problems[2].

Mukherjee and colleagues explore the subject of security and privacy in fog computing, emphasizing the

difficulties that come with this dispersed computing model. By bringing cloud computing to the network's edge,

fog computing raises additional security and privacy issues. This document probably gives a summary of these

issues and talks about possible fixes or tactics for mitigating them. Fog computing is becoming more and more

popular in a variety of applications[3],

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 782-785

784

An effective indexing method for edge computing environments' unstructured data sharing systems is

presented by Xie et al. Edge computing refers to the processing of data nearer its source. cutting down on

bandwidth and delay. Most likely, the approach put out in this research will help edge computing systems

optimize performance and scalability by providing an effective means of arranging and gaining access to

unstructured data. To fully utilize edge computing in a variety of applications, these kinds of procedures must

be developed[4].

A survey is conducted by Sunhare et al. regarding data mining applications within the Internet of Things (IoT).

Data mining techniques can extract significant insights from the massive amounts of data generated by the

Internet of Things. The various applications of data mining to IoT data, including anomaly detection, predictive

maintenance, and customized services, are probably covered in this survey. Comprehending these uses can

direct upcoming IoT research and development initiatives and direct upcoming IoT and data mining research

and development initiatives[5].

Interval-based queries over lossyIoT event streams are the main focus of Busany et al. Real-time decision-

making requires effectively searching and interpreting the constant streams of events generated by IoT devices.

In order to ensure the correctness and dependability of query results, it is likely that this study suggests

methods for managing interval-based queries in the event of data loss or network disruptions. By addressing a

real-world problem in IoT data management, our work helps to increase the resilience and usability of

IoTsystems[6].These articles address significant issues and offer creative answers on a variety of subjects

pertaining to data mining, edge computing, information management, and the Internet of Things.

III. ALGORITHM

1) The B Tree : Similar to a Binary tree search, but more complicated, is how the B-tree operates. Nodes in

the B-tree have more branches than nodes in the Binary tree, which results in a more complex structure .

B-tree indexes use comparison operators (\, \=, =, >, >=) to provide range and similarity queries, such as

Nearest Neighbor Search (NNS). Keys and records normally live on leaves of a B-tree, while duplicate

keys are kept in internal nodes, Pointers to next nodes may be present in leaves, which facilitates item

retrieval. Studies suggest that this approach could not always produce fast results for Big Data queries and

could waste store capacity because of partial node occupancy . Although B-trees scale linearly, they can

only be accessed in one dimension, in contrast to other tree-based Among the B-tree's variations are the

B+tree , B*tree, and KDB-tree [1][2][3].

2) R-tree : An indexing technique for spatial or range queries is the R-tree. With each item having X and Y

coordinates with minimum and maximum values, it is mostly used in geospatial systems . An R-tree has

the advantage over a B-tree in that the former can satisfy range or multi-dimensional queries, while the

latter cannot. Using the R-tree, one can quickly retrieve responses to questions given a query range.

Finding every hostel on a particular campus or every hotel within a specific distance from a given place

are two examples. Assigning minimum and maximum boundaries to data elements based on their

distance from one another is the idea. At the leaf node, every record specifies a single item (with values at

the minimum and maximum).

3) Inverted Indexing Design : The Strategy of Inverted Indexing Designing inverted indexes that are utilized

for full-text searches, such as those found on Google and other search engines, is made possible by the

inverted indexing method. A list of every unique term that appears in a document plus a list of the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 782-785

785

documents that contain each word make up an inverted index. Multiple documents may share the same

key as the index when the index is inverted. Additionally, a document can be indexed using more than

one key. A blog post, for instance, may have several tags (as key), and each tag may have references to

several blog posts. It is important to remember that not all inverted indexing techniques use B-trees or

can have rows filled in them.B-trees form the basis of inverted indexes. A B-tree differs from an inverted

index in that it makes use of row-structured data, while inverted indexes do not. The process of

implementing inverse indexing involves indexing or storing a set of keypost list pairs, where the post list

is a group of documents containing the key and the key is the searched index. Two or more words (keys)

may be distinct terms, but they will appear to the user as one term when using inverted indexes, which is

an issue. Furthermore, during query search, synonyms (of the keys) might not be identified or retrieved

.Reviewing the potentials of the various indexing systems and how they are applied to Big Data

management problems is the goal. The Big Data indexing problem has been addressed by addressing a

number of indexing methodologies. The paper's conclusion can be used as a basis for developing more

effective indexing systems or as a guide for selecting the method most appropriate for resolving a

particular issue.

IV. CONCLUSION

This document compiles widely used data indexing strategies for handling and analyzing large amounts of data.

Reviewing the potentials of the various indexing systems and how they are applied to Big Data management

problems is the goal. The Big Data indexing problem has been addressed by addressing a number of indexing

methodologies. The paper's conclusion can be used as a basis for developing more effective indexing systems or

as a guide for selecting the method most appropriate for resolving a particular issue.

V. REFERENCES

[1]. Fei Bua, N.W.B.J.H.L. “Privacy by Design” implementation: Information system engineers’ perspective.

Int. J. Inf. Manag. 2020, 53, 102124. [Google Scholar]

[2]. Baldassarre, G.; Giudice, P.L.; Musarella, L.; Ursino, D. The MIoT paradigm: Main features and an “ad

hoc” crawler. Future Gener. Comput. Syst. 2019, 92, 29–42. [Google Scholar] [CrossRef]

[3]. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M.A.; Choudhury, N.; Kumar, V. Security and

privacy in fog computing: Challenges. IEEE Access 2017, 5, 19293–19304. [Google Scholar] [CrossRef]

[4]. Xie, J.; Qian, C.; Guo, D.; Wang, M.; Shi, S.; Chen, H. Efficient indexing mechanism for unstructured

data sharing systems in edge computing. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference

on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 820–828. [Google Scholar]

[5]. Sunhare, P.; Chowdhary, R.R.; Chattopadhyay, M.K. Internet of things and data mining: An application

oriented survey. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]

[6]. Busany, N.; van der Aa, H.; Senderovich, A.; Gal, A.; Weidlich, M. Interval-Based Queries over

LossyIoT Event Streams. ACM Trans. Data Sci. 2020, 1, 1–27. [Google Scholar] [CrossRef]

