
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0)

ICEST-2K24 [International Conference on Engineering, Science and Technology]

In Association with

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

1156

A Review Paper for Accuracy of Requirement Traceability

Links in Software Development
Mr. Vinayak M. Sale1, Ms. Samruddhi Pramod Kaldhone2, Ms. Pranjali Jagannath Dekhane2

1Assistant Professor Department of Artificial Intelligence & Data Science, FTC COER, Sangola, Maharashtra,

India
2B.Tech Students Department of Artificial Intelligence & Data Science, FTC COER, Sangola, Maharashtra,

India

ABSTRACT

Requirement satisfaction is a vital aspect in the execution of software. The requirements are identified by the

different stakeholders should be fulfilled with each point of the development of the software. Software

development is a correlated organizational work to automate continuous liberate of new software

development while assurance their accuracy and consistency. For tracing the requirement from its starting

point to its completion,

requirement traceability supports software engineers to trace. During software improvement process,

traceability supports in a different of ways, like change management, software maintenance, and prevention

of confusion. But, many of the challenges can be reduce through organizational policy, quality requirements

traceability tool support remains the open problem. During software updating and maintenance; the

traceability links become out-of-date since the developers can modify or remove some features of the source

code.

Keywords: requirements, traceability, management, requirement traceability approach (RTA), IR Technique

(IRT)

I. INTRODUCTION

Essentially, for any developing any software a developer must identify the project background, in particular,

the system architecture, design, working, and the relations between the several components using any

available documentation[1] [6]. Program idea occurs in a bottom-up method, a top-down method or some

combination of both.

The traceability is the most essential factor for development of any software project, and if we use it, it could

be valuable from different perspectives for the software development. While developing any software, we

develop source code which can be traced and become identical with the requirement and analysis because we

develop a source code as per the requirements. [2] [3] A traceability is an association between the source code

and requirement.

Requirement traceability supports software engineers to trace the requirement from its development to its

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1157

fulfillment [2] [7]. Traceability may not help us to know how different components of systems are inserted and

dependent on each other in the same system. We may also fail to find the impact of change on the software

and system [4]. An important objective of traceability is a linkage of, in the lack of original requirements and

other artifacts traceability links [3]. Therefore, we should look at traceability from all the aspects of traceability

regarding scope and coverage.

While modernizing the software, the developers can add, remove, or modify features as per the users' request.

While software maintenance and development, requirement traceability links become fringe because any

developer can’t devote effort to update it. Conversely, for recovering traceability links later is a very painful

and tedious task also it is costly for developers too [6]. A developer usually does not update requirement-

traceability links with source code.

Requirements and source codes are different from each other, which decrease the textual similarity [2] [4].

II. REASONS FOR REQUIREMENTS TRACEABILITY

It is most important to confirm that the requirements are properly fulfilled in the design. This is done with

requirements traceability which is usually referred to as [5] [6] [7] [18] “the ability to validate and go after the

life of a requirement, in both forward and the back direction.” [23] Requirements traceability confines the

relationships between the requirements and source code. The traceability is one of the needs of different

stakeholders – project sponsors, project managers, analysts, designers, maintainers, and end-users, because of

their need, priority, and goal [1][3] [6].

During design phase requirements traceability supports to keep track of when the changes are implemented

before a system is redesigned. Traceability can also give information about the validation, significant-

conclusion, and postulation behind requirements [2] [18].

After the delivery of the system, [1] modifications occur due to various reasons (e.g. to a changing

environment). The traceability helps us complete, more accurate cost and schedule of change(s) can be

resolute, instead of depending on the engineer or programmer who is expert [18].

Traceability information allows answering:

1. What is the outcome, when the requirements are changed?

2. Where is a requirement useful?

3. Are all requirements assigned?

4. Which require is deal with by a requirement? 5. Is this requirement essential?

5. What design decisions affect the implementation of a requirement?

6. What are the benefits of this technique and what were the further options?

7. Is the implementation compliant with the requirements?

8. Is this design element necessary?

9. How do I interpret this requirement?

Benefits of traceability

1. Stops losing of knowledge

2. Supports for the verification process

3. Change control

4. Process monitoring

5. Better software quality

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1158

6. Reengineering

7. Reusability

8. Decrease of Risk

III. BASIC TRACEABILITY LINKS

Traceability links depend on the traceability information, the linking of maybe

1. One-to-one -one design element to one code module

2. One-to-many - one functional requirement verified by multiple test cases

3. Many-to-many - a use case may lead to multiple functional requirements, and a functional requirement

may be common to several use cases

Fig 1 Example of traceability links

IV. BACKGROUND AND RELATED WORK

This section presents an environment on the IR technique and a review of the related work. Traceability

approach can be separated into three main categories, i.e., dynamic, static, and hybrid.

The dynamic approach gathers and examines execution traces [11] to recognize the technique that a software

link has been carrying out in the particular scenario. However, it couldn't help to differ in overlapping

circumstances, because there are some limitations to a single method. [6] The legacy system may not be

applicable, due to bugs and/or some other issues. Thus, to collect execution traces is not possible.

Static traceability approaches [10], [17] use source code structure and/or textual information for recovering

traceability associations among high-level and low-level software artifacts. The combination of static and

dynamic information is hybrid traceability. The study shows that a combination of dynamic and static

information can perform better than the single IR technique [7].

INFORMATION RETRIEVAL TECHNIQUE (IRT)

Information Retrieval (IR) refers to a method that would calculate textual similarities of different documents.

The textual similarity is calculated using the terms that occurred in the documents. If two documents have a

number of general terms, those documents are measured to be similar. The analysis of different IR methods

can be in three steps [14]. First, after pre-processing such as stop word removal and stemming, a corpus is made

from the documents.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1159

Second, each document is represented as access in an index. The term-by-document matrix is a common index,

where the document as rows and each term as a column. The incidence of the term arising in the document is

the values in the matrix. Third, by using a cosine similarity formula, the similarity among the index entries is

calculated [24]. The presentation of the key entries and the formula for calculating the similarity varies

depends on the IR method. We use the VSM IR method in this paper and briefly describe it in the following

paragraph.

In the Vector Space Model (VSM) [14] the vector of terms is represented by each document. In the term-by-

document matrix, each row can be measured as one document’s vector in the space of terms that occur in all

documents. The calculation of similarity of two documents is based on the cosine angle between vectors of

each document. In general, the cosine angle between vectors of the two documents will reduce as the different

documents share more terms. Hence, the higher similarity of the documents will occur.

V. SYSTEM ARCHITECTURE

1. DESIGN OF SYSTEM

For any software evolution, the essential task is, a developer must understand the project background [5] [6],

in particular, the system planning, propose, how to implement, and the relations among the different artifacts

using any available documentation. Program understanding occurs in a bottom-up way, a top-down way, or

some mixture thereof. Different types of data, ranging from domain-specific

knowledge to general programming knowledge can be used throughout program conception [2]. Traceability

links between source code and part of the documentation, e.g., requirements, abet both top-down and bottom-

up conception.

Requirement traceability is defined as, “the capability to demonstrate and go after the life of a requirement, in

both onward and toward the back direction” [23]. Traceability links are also necessary to make sure that source

code is reliable with its requirements and that all and only the specified requirements have been implemented

by developers.

Traceability links are useful in decreasing understanding effort between the requirements of a system and its

source code [3] [4] [7]. The traceability information is also useful for software maintenance and development

tasks. For instance, once a developer has traceability links, a user can easily trace what software artifacts must

be changed for the development of a new requirement.

Even with the importance of traceability links, in software maintenance and development, as developer update

features, requirement traceability links become outdated because developers do not dedicate effort to update

them later [4] [5] [6]. This lacking traceability information is one of the main issues, that contribute to project

failure, and difficult to sustain. Unsatisfactory traceability information results in the need for costly and

painstaking tasks of manual recovery and maintenance of traceability links. [23] These manual tasks may be

frequently required depending on how normally software systems evolve or are maintained.

As a result, the literature proposed methods, techniques, and tools to improve automatically traceability links.

[5] [6] [22] [23] Researchers used information retrieval (IR); techniques, to recover traceability links between

high-level documents, e.g., requirements, instruction booklet pages, and plan documents, and low-level

documents, e.g., source code and UML diagrams. IR techniques compute the textual similarity between each

two software artifacts, e.g., the source code of a class and a requirement. [2] [3] [5] [6] [7] A high textual

similarity means that the two artifacts most likely share numerous concepts and that; therefore, they are likely

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1160

linked to one another.

2. SYSTEM BLOCK DIAGRAM

The proposed work is based on the IR-based RTAs process is typically divided into three main steps. Figure 1

shows the IR-based RT links revival process.

First, every the textual information with the requirements and source code is taken out and preprocessed by

splitting terms, [2] [3] [7] removing stop words and remaining words are then stemmed to its grammatical

origin. Second, all the stemmed terms are weighted using a term weighting system. Last, an IR technique

calculates the similarity between

requirements and source code documents. [4] Lastly, it creates a ranked list of probable traceability links. An

elevated comparison between two documents shows a probable semantic connection between them.

Fig 1. System Block Diagram

2.1 PRE-PROCESSING

To generate traceability links, we remove all the identifiers from source code and terms from requirements. In

this, IR techniques are used as an engine to create links between requirements and source code. IR techniques

imagine that all documents are in the textual format [5] [9]. To remove source code identifiers, a source code

parser is used. The parser throw-outs extra information, e.g., primary data types and keywords, from the

source code and gives only identifier names. The removal of the identifiers and terms is followed by filtering,

stopper, and stemmer process [11] [12].

The primary step is term splitting. [2] [3] [6] A text normalization step renovates all upper-case letters into

lower-case letters. This step eliminates non-textual, i.e., some numbers, mathematical symbols, brackets, etc.,

information and extra white spaces, from the documents. Some identifiers/terms could be united with some

special characters, e.g., underscore, and/or Camel Case naming reunion. Therefore, divide all the united terms

to make them separate. For example, Hello India and hello india are split into the terms “hello india” [6].

The following step is the stop word removal. [5] [6] The input for this step is the normalized text that could

include some general words, e.g., articles, punctuation, etc. These general words are measured as noise in the

text because it does not be a symbol of the semantics of a document. Hence, in this step, a stop word list is used

to eliminate all the stop words.

The next step is stemming. An English stemmer, for example, would recognize the terms “excel,” “excellence,”

and/or “excellent” as based on the root “excel” [6] [7]. An IR technique calculates the similarity between two

documents based on similar terms in both documents. Still, due to different postfix, IR techniques would judge

them, e.g., add and addition are like two different documents, and the result would be a low similarity

between two documents. Thus, it becomes important to perform the morphological investigation to exchange

plural into the singular and to take back infected forms to their morphemes [2].

Following two main factors are considered important [6]:

Term frequency (TF): TF is often called home frequency. If a term appears several times in a document, then it

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1161

would be allocated higher TF than the others.

Global frequency (GF): If a term appears in various documents then the term is considered global. It is also

known as inverse document frequency (IDF).

2.2 TERM WEIGHTING / ASSIGN WEIGHTS

An IR technique (IRT) changes all the documents into vectors to calculate the similarities along with them.

[16] [17] To change documents terms into vectors, each term is allocated a weight. A variety of schemes for

weighting terms have been proposed in the literature. Widely used weighting schemes are differentiated as

probabilistic. In the following, the term identifiers to refer all source code entities, i.e., class name, method

name, variable name, and comments [7].

If a term comes out multiple times in a single or multiple documents, then IRT would propose that document

as a relevant document to a query [5] [7] [10]. However, multiple amounts of a term do not show that it is an

important term.

2.3 IR TECHNIQUES

To create sets of traceability links, various IR techniques are used, to identify concepts in the source code,

carry out experiments using different IR techniques to recover traceability links [4] [5].

PROPOSED ALGORITHMS

1. DATA PREPROCESSING

The data preprocessing is prepared to eliminate needless content from the text and to find out the origin form

of the words. [2] [7] The preprocessing of the data is completed by a valid method such as Stop word removal

and Stemming to the data composed of the customer.

2. STOP WORD REMOVAL:

For work out, stop words are words that are filtered out preceding to, or following, processing of text. [2] [3]

Stop words are ordinary words that take less significant meaning than keyword. These stop words are a few of

the most common, short function words, such as the, a, an, is, at, which, that, and on, etc.

Stop-word elimination is the method of eliminating these words. To find out the words from a text all needless

content must be removed, so it is needed to remove the stop words from the text put into an array [7] [17].

Algorithm:

1. The following is an algorithm for stop word removal 1.Acquire the input

2. Establish the glossary of stop words

3. Divide factors into words

4. Assign new word list to store words

5. Collect outcome in the String Builder

6. Loop during the entire terms

7. Come again string with words detached

8. STEMMING

Words get from the input of the data are create to be too sparse to be useful as features for categorization as

they do not simplify well. The presence of a large number of inflections of the same word, this is the common

reason for stemming. Hence, the origin form of the word is to be taking out as a feature [2] [6] [7].

Stemming is the method, for decreasing derived words to their origin form. Stemming program is commonly

known as stemming algorithms or stemmers [2].

Even as writing the sentence for a grammatical basis, it contains various forms of a word, for example, collect,

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1162

collection, collecting and/or collected. In many circumstances, it would be helpful for a finding for one of

these words to revisit the word in the set to take away the required content from a given sentence [2] [7] [8].

The goal of stemming is to decrease variation form and sometimes derivationally related forms of a word to a

common base form [5] [6] [7].

For instance: car, cars, -> car

Stemming algorithm:

The stemming algorithm consists of different steps of stemming applied sequentially. Within each stage, there

are various principles to select rules, such as choosing the rule from every rule group that applies to the longest

suffix. The algorithm of stemming works as follows:

Rules Illustrations

S → cats → cat

EED ->EE agreed →agree

(*v*) ED → plastered → plaster

(*v*) ING → cutting → cut

There are three main reasons for stemming algorithm, or stemmer, as follows.

The first reason of a stemmer is to cluster the words according to their theme. Many words are the root from

the same stem, and we can consider that they belong to the same concept (e.g., act, actor, action). [2] [3] [5]

The different forms are created by attaching affixes (prefixes, infixes, and/or suffixes) but, in English

considering only suffixes, as normally prefixes and infixes change the meaning of the word, and a bit of them

would lead to errors of bad topic resolve The next reason of a stemmer is openly associated to the [2] [3] [7]

[10] IR process, as containing the stems of the words agree to some point of the IR process to be better, among

which we can stress the ability to index the documents according to their theme, as their terms are clustered

by stems or the extension of a query to obtain to a greater extent accurate results.

The extension of the query permits it, for refining by replacing the terms, it covers the related topics, which

are also there in the collection [3] [5] [15]. This alteration can be done routinely and obviously to users, or the

system can propose one or more superior method of the query

Finally, the conflation of the words allocation the same stem leads to a decrease of the vocabulary to be taken

into the process, as the entire terms contained in the natural input collection of documents can be decreased to

a set of topics [2] [4] [7]. This directs to a decrease of the space needed to store the formation used by an IR

system and after that also lightens the computational weight of the system.

VI. HOW TO REPRESENT TRACEABILITY

Program conception occurs in a bottom-top way, a top bottom way, or a mixture of them [4] [8]. Developers

use knowledge throughout program comprehension, from domain-oriented knowledge to common

programming knowledge. Traceability linkage between source code and sections of the documentation, e.g.,

requirements, aid both top-down and bottom-up comprehension [1]. Traceability linkage between the

requirements of a system and its source code is useful in reducing comprehension effort.

Requirement traceability is defined by [6] [23], “the capability to demonstrate and go after to the life of a

requirement, in both onward and toward the back direction”. This traceability information also supports in

software maintenance and evolution tasks. For traceability links, it is essential to represent them in a form that

is suitable for its purpose [1]. The different ways (traceability matrices, graphical models, cross-references)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1163

exist to represent traceability links, which are also supported by tools.

a. Traceability matrices: Traceability links are represented in matrix form. The traceability matrix is the

association between, horizontal and vertical dimensions are the values in the matrix stand for links

between the artifacts in the matrix [21].

b. Graphical models: Entity-Relationship Model (ERM), various UML diagrams support the representation

of traceability links embedded in the different development models [21].

c. Cross references: Traceability associations between different parts are represented as links, pointers, or

annotations in the text [21].

VII. CONCLUSION

The traceability is most important factor and precious from different point of views for the development for

any software project. For development of any software, requirement traceability plays a vital role in the

maintenance of software. Creating traceability links manually is one of the costly and lengthy works.

Requirements specification for requirements traceability is formed alongside all the investigations, which

drives both their direction and focus.

VIII. REFERENCES

[1]. Prof. Santaji K. Shinde, Mr. Vinayak M. Sale, “A Survey on Accuracy of Requirement Traceability Links

During Software Development” Int’l Conf. on Innovations & Technological Developments in Computer,

Electronics and Mechanical Engineering (ICITDCEME), 2015

[2]. Divya K.S., Dr. R. Subha, Dr. S. Palaniswami “Similar Words Identification Using Naive and TF-IDF

Method” I.J. Information Technology and Computer Science, 2014, 11, 42-47 Published Online October

2014 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2014.11.06 Copyright © 2014 MECS I.J.

Information Technology and Computer Science, 2014, 11, 42-47

[3]. Prashant N. Khetade, Vinod V.Nayyar “Establishing a Traceability Links Between The Source Code And

Requirement Analysis, A Survey on Traceability ” Int’l Conf on Advances in Engg & Tech – 2014 (ICAET

2014) 66 | Page (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-8727 PP 66-70

[4]. S. Muthamizharasi, J. Selvakumar, M.Rajaram “Advanced Matching Technique for Trustrace To Improve

The Accuracy Of Requirement” Int’l Journal of Innovative Research in Science, Engg and Tech -

(ICETS’14) Volume 3, Special Issue 1, February 2014

[5]. N. Ali, Y.-G. Gue´he´neuc, and G. Antoniol, “Trustrace: Mining Software Repositories to Improve the

Accuracy of Requirement Traceability Links” IEEE Trans. Software Eng., vol. 39, no. 5, pp. 725- 741, May

2013

[6]. N. Ali, Y.-G. Gue´he´neuc, and G. Antoniol, “Trust-Based Requirements Traceability”, Proc. 19th IEEE

Int’l Conf. Program Comprehension, S.E. Sim and F. Ricca, eds., pp. 111-120, June 2011.

[7]. N. Ali, Y.-G. Gue´he´neuc, and G. Antoniol, “Factors Impacting the Inputs of Traceability Recovery

Approaches”, A. Zisman, J. Cleland Huang, and O. Gotel, eds. Springer-Verlag, 2011.

[8]. Winkler, S., & Pilgrim, J. A survey of traceability in requirements engineering and model-driven

development. Software & Systems Modeling, vol. 9, issue 4, pp. 529-565 (2010)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 11, Issue 7, May-June-2024 Page No 1156-1164

1164

[9]. Schwarz, H., Ebert, J., and Winter, A. Graph-based traceability: a comprehensive approach. Software and

Systems Modeling (2009) [10] J. H. Hayes, G. Antoniol, and Y.-G. Gue´he´neuc, “PREREQIR:

Recovering Pre-Requirements via Cluster Analysis,” Proc. 15th Working Conf. Reverse Eng., pp. 165-

174, Oct. 2008.

[10]. D. Poshyvanyk, Y.-G. Gue´he´neuc, A. Marcus, G. Antoniol, and V. Rajlich, “Feature Location Using

Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval,” IEEE Trans.

Software Eng., vol. 33, no. 6, pp. 420-432, June 2007.

[11]. Heindl, Matthias, and Stefan Biffl. A Case Study on Value-Based Requirements Tracing. Proc. of the 10th

European Software Engineering Conference. Lisbon, Portugal, 2005: 60-69

[12]. Lehman, M., Ramil, J. Software Evolution – Background, Theory, Practice Information Processing

Letters, Vol. 88, Issues 1-2, October 2003, pages 33-44

[13]. A. Marcus and J. I. Maletic, “Recovering documentation-to source code traceability links using latent

semantic indexing,” in Proceedings of 25th International Conference on Software Engineering, 2003, pp.

125– 135.

[14]. von K nethen, A .Change-Oriented Requirements Traceability. Support for Evolution of Embedded

Systems Proc. of International Conference on Software Maintenance, October 2002, pages 482-485

[15]. Cleland-Huang, Jane, Carl K. Chang, and Yujia Ge. Supporting Event Based Traceability Through High-

Level Recognition of Change Events. Proc. of the 26th Annual International Computer Software and

Applications Conference on Prolonging Software Life: Development and Redevelopment. Oxford,

England, 2002: 595-602.

[16]. G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo, “Recovering Traceability Links between

Code and Documentation,” IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct. 2002.

[17]. Ramesh, B., Jarke, M. Toward Reference Models for Requirements Traceability IEEE Transactions on

Software Engineering, Vol. 27, No. 1, January 2001, pages 58-93

[18]. Clarke, Siobhán, et al. Subject Oriented Design: Towards Improved Alignment of Requirements, Design,

and Code. Proc. of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications. Dallas, TX: 325-329.

[19]. Lindvall, M., Sandahl, K. How well do experienced software developers predict software change? The

Journal of Systems and Software 43, 1998, pages 19-27

[20]. Wieringa, R. An Introduction to Requirements Traceability. Technical Report IR-389, Faculty of

Mathematics and Computer Science (1995)

[21]. Gotel, O. & Finkelstein, A. An analysis of the requirements traceability problem. In Proceedings of the

First Int’l Conf. on Requirements Engineering, pp. 94-101 (1994)

[22]. Ramesh, B., Edwards, M. Issues in the development of a requirements traceability model. In Proceedings

of the IEEE International Symposium on Requirements Engineering, pp. 256-259 (1993)

[23]. Annibale Panichella, Collin McMillan, Evan Moritz, Davide Palmieri, “When and How Using Structural

Information to Improve IR-based Traceability Recovery”

[24]. LEONARDO LEITE, CARLA ROCHA, FABIO KON, DEJAN MILOJICIC, PAULO MEIRELLES, “A

Survey of DevOps Concepts and Challenges” 18 Nov 2019

