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ABSTRACT 

This study investigates the effects of axial inhomogeneity on the 

ponderomotive force within a plasma subject to intense laser fields. The 

nonlinearity in the dielectric constant arises because the self-focusing problem 

of nonlinear interaction of intense laser beams has been analysed considering 

the entire spatial characteristics of the laser beam without any paraxial ray 

approximation and Taylor series expansion of the dielectric constant—the 

effect of the axial inhomogeneity on the ponderomotive force for an arbitrary 

magnitude of intensity. The propagation characteristics of laser beams have 

been discussed. An appropriate expression for the nonlinear dielectric constant 

has been used considering the entire spatial characteristic of plasma in the 

analysis of laser-beam propagation in the non-paraxial approximation for a 

circularly polarised wave. Various types of inhomogeneity are discussed for 

plasma. The variations of the beam width parameter with the propagation 

distance, the self-trapping condition and the critical power have been 

evaluated. The saturating nature of the nonlinearity for the critical power for 

beam self-focusing. It is seen that the laser beam width tends to attain a 

constant value depending on the plasma inhomogeneity and the initial laser 

intensity. Numerical estimates are made for typical values of the laser-plasma 

interaction applicable for under-dense and over-dense plasmas, and the results 

are compared with the paraxial ray approximation method. 

Keywords : Laser-Matter Interaction, Axial Inhomogeneity Self-Focusing, Self-

Trapping. 
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I. INTRODUCTION 

 

1. Introduction 

Wave propagation in nonlinear medium has been a subject of intensive theoretical and experimental research 

[1–10]. The self-generated lens effect of the intense laser beam in a nonlinear medium such as plasma has been 

a prominent subject of many numerical, theoretical as well as experimental investigations [1,3to7]  

Direct and indirect experimental evidence reveals that the smooth-looking laser beams have strong intensity 

spikes. The growth of nonuniform, radially symmetrical ripple superimposed on a Gaussian beam propagating 

in plasma has been studied [8 to 15]. 

 Most of the studies are limited to various approximations, such as paraxial ray approximation. Due to this 

reason, the results of these analyses are far from the observed experimental results [18]. 

An alternate method (i.e. non-paraxial technique), developed by the author, has been used in the present study, 

where the entire spatial propagation characteristics of the laser beam are considered in place of the paraxial 

region. Here, analysis is done for homogeneous and inhomogeneous plasmas as a nonlinear medium. A detailed 

study of different types of inhomogeneities in plasma has been carried out. Thus, the results obtained by the 

new non-paraxial approach developed by the author are compared with the work of other researchers based on 

the paraxial method and the available experimental observations. 

The motion of particles in plasma develops local concentrations of positively and negatively charged particles. 

These charge concentrations create long-range coulombic fields, and the charged particles in plasma move 

along a path in the field. 

Plasma physics is one of the advanced disciplines of physics. In the present study, the self-generated lens effect 

in plasma, which can be used in the thermonuclear fusion mechanism, has been discussed. 

The self-generated lens effect mechanism in a medium show that an intense electromagnetic beam creates a 

refractive index gradient across its own intensity distribution profile. [14 -17]The refractive index gradient 

depends on many factors, such as the wave profile of the electromagnetic beam, the nature of nonlinearity, the 

power level of the propagating beam, charge distribution in the medium, etc. The efficiency of the processes 

occurring in plasma and their reaction rates are, in general, directly dependent on the density distribution of 

the charged particles. 

2. Ponderomotive Nonlinearity 

Ponderomotive nonlinearity is a concept used in nonlinear optics to describe the effects of the ponderomotive 

force on the motion of electrons in the presence of an oscillating electromagnetic field. This force is 

particularly relevant when dealing with high-intensity laser fields. 

Origin of  pondermotive nonlinearity 

When an intense laser beam interacts with a nonlinear medium, the oscillating electric field exerts a force on 

the electrons in the medium. This force can be divided into two components: one oscillating at the laser 

frequency and a slower, time-averaged component known as the ponderomotive force. The latter is responsible 

for pushing electrons away from regions of high intensity to lower intensity regions, effectively creating a 

modification in the local refractive index of the medium. 
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The ponderomotive force  

The ponderomotive force is a nonlinear force that acts on charged particles in an oscillating electromagnetic 

field, such as a laser beam. This force tends to push the particles away from regions of high-field intensity. 

The ponderomotive force Fp experienced by a charged particle in an electromagnetic field is given by: 

𝐹𝑝 = −∇𝑈𝑝 = −∇ (
𝑒2𝐸2

4𝑚ω2)                            (1) 

In the context of a laser beam, this force depends on the spatial gradient of the laser intensity. The 

ponderomotive nonlinearity arises due to the interaction of the drift velocity with the magnetic field 

of the wave and the motion of electrons in a uniform field. 

The nonlinearity is due to ponderomotive force dominated in plasma, where the duration of the 

electromagnetic beam is much smaller than the energy relaxation time (t <Ʈ ) of the electrons; such 

situations occur when the fast pulse of the laser beam interacts with strongly ionised collision less 

plasma. 

For such type of collision with less plasma, the drift velocity of electrons can be obtained by the 

Ginzburg equation of motion [10], which is written as 

m (
𝑑𝑣

𝑑𝑡
+ ( v. ∇) v ) = −𝑒((V ∗ B/c) − 𝑒𝐸 −

∇𝑃𝑒

𝑁𝑒
              (2) 

Where v is the drift velocity of electrons, B represents the magnetic field of the interacting 

electromagnetic beam, and E is the total electric field in plasma, which is equal to the sum of space 

charge electric field and wave field. N and e denote the electronic concentration and velocity of light, 

respectively. P represents the force on electrons due to the gradient in 

the partial pressure of electrons. 

In the above equation, the first two terms on R.H.S. represent the force on electrons due to magnetic 

and electric fields, respectively, and the third term indicates the force on electrons due to the gradient 

of the partial pressure. The equation (2) can be rewritten as  

𝑚 (
𝑑𝑣

𝑑𝑡
 ) =  Fp − 𝑒𝐸  −

∇𝑃𝑒

𝑁𝑒
                            (3) 

Where 

Fp=−𝑚(( v. ∇) v ) − 𝑒((𝑉 ∗ 𝐵/c)          (4) 

It is usually termed as the ponderomotive force.  
 

3. Nonlinear Dielectric Constant 

The Ponderomotive force is a fundamental characteristic of plasma. This is responsible for the redistribution of 

electronic concentration in plasma. This effect makes the dielectric constant of the plasma vary nonlinearly and 

causes a self-generated lens effect. 

 But the equation for the effective dielectric constant of the plasma in such a case can be written as 
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ε =  εL  +  εNL˂(EE∗) >  (5) 

Hence, the nonlinear part of the dielectric constant which arises due to laser beam-plasma interaction  

ε𝑁𝐿  =
𝜔𝑝

2

𝜔2 [1 − exp [−
3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2} ]]     (6) 

In the absence of the propagating beam, the medium behaves like a linear medium, and the corresponding 

dielectric constant is given as 

ε𝐿  = 1 −
𝜔𝑝

2

𝜔2                                         (7) 

These equations (5 to 7) represent that the nonlinearity arises due to ponderomotive force and depends on 

plasma frequency, beam frequency and intensity of the beam interacting with plasma.  

 

The nonlinear part of the dielectric constant (ε𝑁𝐿) of plasma for ponderomotive nonlinearity for different 

values of beam intensity (β𝐸0
2)  are calculated and tabulated as follows 

Table 1 

Intensity parameter β𝐸0
2 Nonlinear part of the dielectric constant 

ε𝑁𝐿*10-2 

1 3.95 

2 5.50 

3 5.94 

4 6.14 

5 6.21 

6 6.23 

7 6.25 

8 6.25 

9 6.25 

10 6.25 

 

Here, ωp =2.5 x 1013 rad/sec, ω= 1 x 1014rad/sec, N0 = 9.5 x 10 cm³ and r0= 30 µm. 

The equation (6) represents that the nonlinearity arises due to ponderomotive force and depends on plasma 

frequency, frequency of beam and intensity of the beam interacting with plasma.  

4. Equation For Self-Generated Lens Effect For  Homogeneous Ponderomotive Nonlinearity In Plasma 

 

For the ponderomotive nonlinearity in plasma, the equations for the self-generated lens effect (i.e. self-

focusing)corresponding to a new technique of the non-paraxial approach[19] can be obtained by substituting 

the expression for dielectric constant from equation(6)  
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𝑑2𝑓(𝑧)

𝑑𝑧2 =
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
4𝑓3(𝑧)

  −
𝑓(𝑧)

𝑟2𝜖𝐿
 
𝜔𝑝

2

𝜔2  [1 − exp [−
3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2}]]  (8) 

 

Where 
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
𝐴𝑓3(𝑧)

 These terms represent diffraction term which depends on several factors: 

Characteristic scales related to the wave number and initial beam width or curvature.r2 denotes a 

radial coordinate or some measure related to beam radius. f(z) in the denominator suggests that this 

effect weakens as f(z) increases. 

𝑓(𝑧)

𝑟2𝜖𝐿
 
𝜔𝑝

2

𝜔2
[1 − exp [−

3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2}]] This represents a nonlinear effect related to a self-focusing or 

defocusing process, such as a pondermotive relativistic. Where 𝜔𝑝
2  is square of\ plasma\ frequency, ω 

frequency of incident beam and 𝐸0
2 related to the intensity of the incident laser beam 

The nonlinearity term depends on types of nonlinearity as well as on charge distribution within 

plasma. 

5. Classification of Plasma Based On Homogeneity 

 

The nature of plasma can be classified according to the charge distribution within the plasma, such as uniform 

or nonuniform distribution[1 to 3]. 

(i) Homogeneous Plasma 

If the charge distribution in plasma is uniform throughout, then plasma is termed as homogeneous plasma. In 

such a type of plasma, the charge density (N) has the same value at any time and space within the plasma. 

N(x, y, z, t) = N0(x, y, z, t)                                            (9) 

Here N0 represents the density of plasma at x = 0, y = 0,z= 0 and t = 0 

(ii) Inhomogeneous Plasma 

Inhomogeneous plasma is in which the charge density distribution is nonuniform in space, where laser-plasma 

interaction is considered. 

In real life, this variation in the charge density within plasma is quite complex. It depends upon the nature of 

the plasma, man-made or natural (ionospheric, etc.). For the study of the lens effect of the laser beam in 

plasma, some simple models for variation of the charge density are considered for the present non-paraxial 

approach [19]. 

The charge density of the plasma at any time and space can be represented by a mathematical function as  

N(x, y, z, t) = N0 * G(x, y, z, t)                                            (10) 

Here, N0 represents plasma density at x = 0, y = 0, Z=0 and t = 0, and G(x,y,z,t) is the charge density profile 

function and has different shapes for different types of inhomogeneity variation in space. 
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The G(x,y,z,t) charge density profile function is responsible for the change in plasma frequency. The expression 

for the frequency with inhomogeneity is written as 

𝜔𝑝
2 =

4𝜋𝑁0𝑒2

𝑚
𝐺(𝑧) 

or 

𝜔𝑝
2 = 𝜔𝑝0

2 𝐺(𝑧)                (11) 

Where  𝜔𝑝0
2 =

4𝜋𝑁0𝑒2

𝑚
 Is the homogeneous plasma frequency  

The effective dielectric constant of the medium which depends on the plasma frequency of plasma and it can 

be linearly as well as nonlinearly dependent on the electric field. This nonlinear part of the dielectric constant 

is usually a measure of nonlinearity in the medium. Different mechanisms are responsible for the nonlinearity, 

which depends on the type of medium as well as the nature of the interacting field. 

 

(iii) Inhomogeneous Plasma Models 

In the present analysis, it is assumed that the wave is propagating in the z-direction. For axially inhomogeneous 

plasma, the electron charge density varies along the z direction only, i.e. the charge distribution is nonuniform 

only along the direction of propagation. However, along the x-axis and y-axis, the charge density is supposed to 

be uniform in axially inhomogeneous plasma. For a steady state system, plasma inhomogeneity in the axially 

inhomogeneous plasma can be rewritten using equation (10) as  

N(z) =  N0*G(z) .       (12) 

Where G(z) is the density profile function. It is only a function of the z coordinate. Variations of charge density 

in axial direction can be different for different systems. Function G(z) have different forms for different types 

of axially inhomogeneous plasma. In the present study, a few variations for axially inhomogeneous plasma have 

been considered, which are found to be of practical importance and are discussed below 

(iv) Linearly Increasing Axially Inhomogeneous 

Plasma, where charge density increases linearly with the propagation distance, is termed linearly increasing 

axially inhomogeneous plasma. For such type of axially inhomogeneous plasma, the charge density profile 

function is given as 

G(z) = 1+ 
𝑍

𝐿
                                     (13) 

where L. is the characteristic scale length on inhomogeneity. It is clear from the function that when L >> z, the 

inhomogeneous plasma tends to be homogeneous [see Figure 1]. 
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(v) Linearly Decreasing Axially Inhomogeneous 

The charge density profile function for such type of plasma is given as 

G(z) = 1- 
𝑍

𝐿
        (14) 

The charge density profile function G(z), for linearly increasing as well as linearly decreasing axially 

inhomogeneous plasmas at different axial distances of propagation, using equations (12) and (13), have been 

calculated for two values of characteristic scale length(L) depends on inhomogeneity and plotted in Figure 1. 

 

Figure 1 

Variation of the charge density profile function G(z) for axially inhomogeneous plasma with propagation 

distance (z) for two values of characteristic scale length of inhomogeneity(L). 

 

First two Curves: linearly increasing inhomogeneous plasma with L = 0.2 and 0.5, respectively,  

The last two curves are linearly decreasing inhomogeneous plasma with L=0.2 and 0.5, respectively.  

Exciting results are obtained, i.e. For a given value of L=0.2 and 0.5, the inhomogeneity of the plasma increases 

as the beam propagates in linearly increasing inhomogeneous plasma, and it decreases for linearly decreasing 

inhomogeneous plasma.  
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For inhomogeneous plasma, G (z) has a positive value up to z = L, after which it has a negative value. This 

change in the density profile function is responsible for the behaviour of the inhomogeneous plasma. 

It is also observed that for both types of inhomogeneity, the plasma acts like a homogeneous medium for higher 

values of L. 

It is also observed that for both types of inhomogeneity, the plasma acts like a homogeneous medium for higher 

values of L. 

6. Equation For Self-Generated Lens Effect For Ponderomotive Nonlinearity In Inhomogeneous Plasma 

For the ponderomotive nonlinearity in the equations for the self-generated lens effect (i.e. self-focusing) 

corresponding to the new technique of the non-paraxial approach can be obtained by substituting the 

expression for dielectric constant for axial  increasing inhomogeneous plasma  from equation (6) into (8), one 

gets  

𝑑2𝑓(𝑧)

𝑑𝑧2 =
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
4𝑓3(𝑧)

−
𝑓(𝑧)

𝑟2𝜖𝐿
(1 +

𝑍

𝐿
) 

𝜔𝑝
2

𝜔2 [1 − exp [−
3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2}]]          (15)                   

For axial decreasing inhomogeneous plasma, the equation is converted as follows. 

𝑑2𝑓(𝑧)

𝑑𝑧2 =
2

𝜅2𝑟0
2𝑟2𝑓(𝑧)

−
1

𝜅2𝑟0
4𝑓3(𝑧)

−
𝑓(𝑧)

𝑟2𝜖𝐿
(1 −

𝑍

𝐿
)

𝜔𝑝
2

𝜔2 [1 − 𝑒xp [−
3𝑚

4𝑀
𝛼𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2}]]        (16)      

It is a second-order differential equation for the dimensionless beam width parameter (i.e. normalised self-

focusing parameter), a function of both r and z. This equation obtains the entire spatial propagation 

characteristics of the laser beam in the plasma due to ponderomotive nonlinearity. 

It is not easy to solve this equation analytically. Hence, it is solved numerically [12] using Runge-Kutta method. 

For this purpose, typical sample plasma with the following parameters is considered in the present analysis  

 

• 𝜔𝑝(Frequency of incident beam) = 1 *1014 rad/sec,  

• ω (Plasma frequency) = 2.5 * 1013 rad/sec, 

• T0 (Temperature of plasma) = 105  k 

• r0 (Initial size of the laser beam) = 30 µ𝑚. 

• N0 Electron number density) = 9.5 * 1019 

• β E02 (Initial intensity parameter) = ((3m)/(4M) * α * E02 = 0.55 

The results for homogeneous and Inhomogeneous plasma considering self-focusing due to ponderomotive 

nonlinearity have been calculated and plotted in Figure (2). 
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Figure (2) 

The graph between self-focusing parameter f(z) and axial distance(z) 

The variations of focusing parameter f with axial distance z demonstrate oscillatory behaviour, indicating that 

during propagation, the laser beam aperture in plasma first decreases, attains a minimum value, and then 

increases. This process repeats again and again, providing oscillatory behaviour. The self-focusing equations for 

homogeneous (8) and inhomogeneous plasma (9 and 10) represent the beam behaviour in plasma. One 

concludes that only nonlinear term changes due to inhomogeneity. This indicates that due to nonlinear terms, 

the entire shape of the beam in plasma may change.  

These results are also presented in Figure (2) for comparison; careful observation of these results indicates that 

for linearly axially increasing inhomogeneous plasma, the minimum value of the normalised self-focusing 

parameter  (fmin) for the second and higher orders decreases continuously, while it remains constant in the 

homogeneous plasma. This is because when electron charge density increases, nonlinearity increases. Hence, 

refraction dominates over the diffraction effects, which yields less value for fmin.  

These curves also indicate that for an axial distance less than the characteristic length of inhomogeneity (i.e. z < 

L ), linearly increasing inhomogeneous plasma has a low value of f min. But at x = L, both the curves have the 

same value of f min . 

This is because for axial distance z to be less than the characteristic length L, the variation of electron charge 

density with z is more effective for linearly increasing the electron charge density profile.  

 

Mathematically, these results show that at z=0, the value of f(z) and  

df/dz= 0, i.e. the beam width has no initial divergence. With the increase in the value of z in the vicinity of z = 

0, df/dz becomes negative, f starts decreasing, and its value becomes less than unity.  

The first two terms in the R.H.S. of equation (11) decrease more rapidly than the third term. At this point, the 

axial intensity of the focused beam is considerably enhanced, and thus d2f/dz2 becomes positive.  
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Oscillatory behaviour of self-focusing beam width parameter (f) with axial distance (z) for axial inhomogeneous 

ponderomotive nonlinearity.  

 

The observed oscillatory behaviour of beam aperture during propagation of laser beam in a nonlinear plasma 

medium, in the axial direction, maybe because in the vicinity of vacuum-plasma interface, i.e. at z=0, with the 

increasing value of z. diffraction divergence decreases more rapidly than nonlinearity-based convergence or 

focusing effect, consequently decreasing beam aperture. Due to the continuous decrease in beam aperture, at a 

particular value of z, the beam's intensity is considerably enhanced and diffraction divergence starts 

dominating over the focusing convergence effect. Thus, after attaining the minimum value, the beam aperture 

increases beyond z, i.e Z> L. After propagating to a certain length in plasma, the beam aperture increases up to 

the maximum value (fmin). Then, the focusing effect starts dominating the defocusing diffraction effect, and the 

beam aperture again starts decreasing.  

Because of these two-diffraction and nonlinearity-related self-focusing effects and their dominance over one 

another during the propagation of the laser beam in the axial direction, the medium acts as an oscillatory 

waveguide. 

7. Uniform Waveguide Propagation 

From the study of the self-generated equations (8,15, and 16), one can conclude that the diffraction terms are 

responsible for divergence while refraction terms are responsible for the convergence of the beam and the 

inhomogeneity factor is combined with the refraction term. 

 

On applying the boundary conditions for the vacuum-plasma interface, i.e., at z =0; f=1, df/dz= 0; and d2f/dz2; 

hence, for uniform waveguide propagation mode from equation (8), one gets 

ω𝑝ρ

𝑐
= (2𝑟0

2 − ρ2)1/2 ρ

𝑟0
2 [1 − exp [−𝛽𝐸0

2𝑒𝑥𝑝 {−
𝑟2

𝑟0
2}]]

−1/2

     (17) 

For all types of axially inhomogeneous plasma, the self-trapping equations are the same for homogeneous; this 

is because electron charge density at the vacuum-plasma interface (i.e. z =0) equals 1. Hence, inhomogeneity 

has no effect on self-trapping conditions at the vacuum-plasma interface. 

This equation is again numerically solved considering the parameters as referred to above. 
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Fig 03 

The graph between self-trapped radius and intensity parameter 

The self-trapping behaviour of the beam is shown in Figure 3, where 
ω𝑝ρ

𝑐
  plotted with (𝛽𝐸0

2) For the present 

non-paraxial technique and compared with the results of paraxial ray approximation, it is observed that only 

one value of the self-trapped radius is observed, which matches with the practical result, but it has two values 

for any given value of the intensity of laser beam  Results of the paraxial ray methods are obtained using 

relation [9,18] 

8. Conclusion 

The results obtained by the present study of axial inhomogeneity in shaping the ponderomotive dynamics of 

laser-driven plasmas, like self-focusing and self-trapping of the laser beam in axial inhomogeneous plasma, have 

good agreements with practical results. Simulations corroborated these findings, showing that axial 

inhomogeneity enhances the ponderomotive force, leading to more efficient energy transfer from the laser to 

the plasma. The simulations revealed localised regions of increased electron density, aligning with the 

experimental observations. 

These findings using a new paraxial technique have implications for optimising laser-plasma interaction 

conditions in applications such as particle acceleration and magnetic field generation [12,19]. Future research 

will focus on exploring different inhomogeneity profiles and their effects on plasma behaviour. 
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