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ABSTRACT 

 

Nighttime surveillance presents significant challenges due to low visibility, varying lighting conditions, and 

interference from artificial light sources. Hence, this study proposed an effective object detection framework 

using the YOLOv3 model to enhance real-time monitoring in night surveillance applications, specifically within 

communication and security systems. YOLOv3's architecture, with its multi-scale detection and use of predefined 

anchor boxes, enables robust detection of objects under low-light environments and amidst light interference 

from vehicles and streetlights. The proposed system is tested on a night surveillance dataset, where it 

demonstrates high precision and speed in identifying objects, making it suitable for real-time applications. With 

Mean Average Precision (mAP) 87.9%, YOLOv3 effectively balances detection accuracy with inference time, 

ensuring minimal latency in live surveillance feeds. The results indicate that YOLOv3 outperforms traditional 

models such as Faster RCNN, particularly in detecting small objects under poor illumination. This approach offers 

a reliable solution for enhancing communication and security systems in nighttime surveillance scenarios. 
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I. INTRODUCTION 

 

With the continuous advancement of computational 

power, Deep Learning (DL) models have become 

increasingly prominent in the field of object detection 

[1-3]. These methods have gradually emerged as the 

mainstream approach for detecting objects in images. 

DL models mimic the human brain's visual perception 

system by extracting features directly from raw images 

and processing them through multiple layers to 

capture high-dimensional information[4-7]. 

Currently, there are two primary categories of DL 

models for object detection. The first category involves 

a two-stage process, separating object detection into a 

candidate box selection stage and an object 

classification stage like R-CNN series and its 

derivatives [8-11]. The second category consists of 

single stage models that treat classification and 

bounding box regression as a unified task. Examples of 

these include Single Shot Detector (SSD) and You Only 

Look Once (YOLO). 

However, both types of algorithms face challenges 

when it comes to detecting small objects. Under the 

standard definition, a small object is one that occupies 

0.12% or less of a 256x256 pixel image. Detecting such 

objects can be difficult because the features extracted 

by the network from small objects are significantly 

fewer compared to larger objects, leading to 

suboptimal model performance [12-14]. 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 11 | Issue 5 

Published in Volume 11, Issue 8, May-June-2024 Page No : 219-225 

 

 

 

 
220 

Hence, this work focuses on improving the detection 

of small objects by enhancing the YOLOv3 network. 

First, feature enhancement is applied in the feature 

extraction module, using Darknet 53 in the backbone 

network. Additionally, a combination of loss function 

is utilization which is known for its strong 

generalization ability. These improvements 

collectively aim to increase the accuracy of small 

object detection. 

 

II. REVIEW OF LITERATURE 

 

Deep learning has its roots in traditional Artificial 

Neural Networks (ANNs) [7]. Object detection is a 

fundamental application of deep learning with 

widespread utility in areas such as autonomous driving 

and safety systems. It has achieved significant success 

in many fields, largely due to the availability of large 

datasets and the effectiveness of Convolutional Neural 

Networks (CNNs). Object detection algorithms can 

generally be divided into two categories: 

1. Two-stage algorithms, which first generate 

candidate bounding boxes based on the input 

image and then classify the objects in these boxes 

using CNNs. Examples include Fast R-CNN and 

Faster R-CNN. 

2. Single-stage algorithms, which treat detection as a 

regression problem and eliminate the need for 

generating candidate boxes. Examples of these 

algorithms include YOLO [4] and SSD [3]. 

YOLO, a single-stage detection algorithm, processes 

the entire image through the network, using CNNs to 

extract features from the whole image. It then 

performs regression to detect objects in a single step. 

Although Faster R-CNN [10] reduces the 

computational cost associated with sliding windows, it 

is still constrained by the use of fixed-size windows. In 

contrast, YOLO divides the image into non-

overlapping grid cells, avoiding the need for numerous 

sliding windows and thus significantly increasing 

detection speed. 

The YOLO network undergoes preliminary training 

on ImageNet before the main training phase. This is 

followed by four randomly initialized convolutional 

layers and two fully connected layers. The pre-trained 

model consists of 20 convolutional layers, an average 

pooling layer, and a fully connected layer. YOLO 

predicts an S × S × B bounding box grid, which is far 

fewer than the thousands of sliding windows used in 

two-stage detection algorithms. This greatly improves 

detection speed, although it results in a slight decrease 

in detection accuracy [11]. 

 

III. METHODOLOGY 

 

The methodology adopted in this work is highlighted 

in Figure 1 

 
Figure 1. Block diagram - Proposed Topology 

 

3.1. YoloV3 

YOLOv3 treats object detection as a regression task, 

where it directly predicts class probabilities and 

bounding box offsets from the entire image in a single 

forward pass through a convolutional neural network. 

Unlike traditional methods, it entirely eliminates the 

need for region proposal generation and feature 

resampling, consolidating all detection stages within a 

single network. This design enables YOLOv3 to 

function as a true end-to-end detection system. Thus, 

the architecture of the yolo v3 is depicted in figure 2.  
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Figure 2. Architecture of the yolo v3 

 

Thus, an overview of the architecture of YOLOv3 is as 

follows 

 

3.2. Backbone: Darknet-53 

YOLOv3 uses a feature extractor called Darknet-53 as 

its backbone network. It is deeper and more powerful 

than the Darknet-19 used in YOLOv2. Darknet-53 

features 53 convolutional layers, making it deeper and 

more powerful. This increased depth enhances the 

network's ability to capture complex features, boosting 

its detection performance. 

The architecture shown in figure 3 adopts a modular 

design, where each module contains a series of 

convolutional layers coupled with shortcut 

connections.  
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Figure 3. Architecture – Darkness 53 

 

Features of Darknet-53: 

• 53 Convolutional Layers: The backbone is 

composed of 53 convolutional layers. It uses only 

3x3 and 1x1 filters, which are efficient and 

suitable for feature extraction. 

• Residual Connections: Similar to ResNet, 

Darknet-53 utilizes residual connections to ease 

the training of deeper networks and improve 

gradient flow. This allows the model to avoid 

vanishing gradient issues while keeping 

computational complexity relatively low. 

• No Fully Connected Layers: Like its predecessors, 

YOLOv3 does not use fully connected layers, 

making it more computationally efficient. 

• Conv-BatchNorm-Leaky ReLU blocks: Repeated 

sequences of convolutional layers followed by 

batch normalization and leaky ReLU activation. 

• Downsampling: Achieved through convolutional 

layers with a stride of 2, reducing the spatial 

dimensions while increasing depth. 

 

 

 

3.3. Detection Head 

YOLOv3 performs detection at three different scales, 

allowing it to better detect both large and small objects. 

This is one of the major improvements over YOLOv2, 

where only a single scale was used. 

Multiscale Detection: 

• YOLOv3 extracts features at three different scales 

from the Darknet-53 backbone, corresponding to 

three different levels of abstraction. 

• These feature maps are taken from different 

depths within the network: 

o First scale: A detection is made on a 13x13 

grid (downsampled by a factor of 32). 

o Second scale: A detection is made on a 26x26 

grid (downsampled by a factor of 16). 

o Third scale: A detection is made on a 52x52 

grid (downsampled by a factor of 8). 

Each scale can detect objects at different sizes, with the 

13x13 grid better suited for large objects, the 26x26 

grid for medium objects, and the 52x52 grid for small 

objects and is depicted in figure 4. 
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Figure 4. Feature maps 

 

3.4. Bounding Box Prediction 

For each grid cell in the three detection heads, 

YOLOv3 predicts: 

• Bounding boxes: YOLOv3 uses anchor boxes for 

bounding box prediction, where it predicts 4 

coordinates: x,y,w,hx, y, w, hx,y,w,h (center 

coordinates, width, and height of the bounding 

box). 

• Objectness score: This score tells how likely it is 

that an object exists within the bounding box. It is 

essentially a binary classification (object/no-

object). 

• Class probabilities: For each bounding box, 

YOLOv3 predicts the probability distribution 

over all possible classes. YOLOv3 can handle 

multiple classes in the same image. 

Each grid cell predicts 3 bounding boxes using 

predefined anchor boxes, so at each scale, the network 

predicts a total of 3 bounding boxes. 

 

3.5. Loss Function 

YOLOv3 uses a combination of loss functions for 

object detection: 

• Localization Loss: This measures the accuracy of 

the predicted bounding box coordinates compared 

to the ground truth. 

• Confidence Loss (Objectness Loss): This penalizes 

the network if it predicts an object where there is 

none, or if it fails to predict an object that is 

present. 

• Class Prediction Loss: This penalizes incorrect 

predictions of object classes. Thus, the loss 

function of Yolov3 can be depicted as follows 

 

 
 

3.6. Feature Maps 

YOLOv3 uses predefined anchor boxes for bounding 

box prediction. These anchor boxes help the model to 

make better predictions for objects of varying shapes 

and sizes. At each detection scale, YOLOv3 predicts 3 

bounding boxes per grid cell, leading to a total of 9 

anchor boxes across the 3 scales. 

The predefined anchor box dimensions are clustered 

on the COCO dataset, and they are: 

• Small: (10x13, 16x30, 33x23) for fine-scale feature 

maps (52x52 grid). 

• Medium: (30x61, 62x45, 59x119) for mid-scale 

feature maps (26x26 grid). 

• Large: (116x90, 156x198, 373x326) for coarse-

scale feature maps (13x13 grid). 

 

3.7. Activation Function: Sigmoid 

• Sigmoid: YOLOv3 applies the sigmoid function to 

the bounding box predictions and objectness 

scores, so they are bounded between 0 and 1. 

This ensures that the bounding box predictions (center 

coordinates and width/height) are constrained within 

the bounds of the grid cell, and the objectness score is 

a probability between 0 and 1. 
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3.8. Class Predictions 

It uses independent logistic classifiers for each class. 

This means each class prediction is treated 

independently, which makes it better at handling 

overlapping classes or multilabel classification. 

 

IV. RESULTS AND DISCUSSION 

 

This section evaluates the effectiveness of the proposed 

approach. In this, the effectiveness of the proposed 

system is analysed using SSAN dataset. The YOLOv3 

classifier is utilized for both training and testing 

purposes, as shown in Figure 5. 

 
Figure 5. Segmented and classified output using 

YOLO V3 

The trained classifier can be applied to new data, 

where samples from various categories are classified 

into their respective groups. Several parameters were 

analyzed to assess the effectiveness of the approach, 

with the performance evaluated using a range of 

metrics. 

One of the key metrics used is Mean Average Precision 

(mAP), which serves as a standardized measure of the 

model's performance in object detection tasks, often 

referred to simply as AP. Finally, the results were 

compared with alternative algorithms and detection 

methods, based on key performance metrics. 

Table 1. Detection performance is expressed in %, and 

the detection speed is with ms 

 

Methods Time mAP 

Faster 

RCNN 

190.2 65.02 

YOLOv3 39.57 87.9 

 

 
Figure 6. Comparison Analysis 

 

The results indicate that, compared to contemporary 

models like Faster RCNN and YOLOv3, the proposed 

model (YOLOv3) outperforms them in terms of speed 

and accuracy in object detection, particularly in low-

light conditions and when light interference from 

vehicles is present, as demonstrated in Figure 6 and 

summarized in Table 1. 

Due to its superior performance, YOLOv3 was selected 

for nighttime object detection tasks. Despite challenges 

such as low resolution, significant noise, and limited 

information in infrared (IR) images from the SSAN 

dataset, YOLOv3 consistently achieved strong 

detection results under low illumination and light 

interference from vehicles. The architecture also 

exhibited high precision in object localization without 

compromising inference speed, making it reliable and 

efficient for detecting objects in night surveillance 

scenarios. 

 

V. SUMMARY 

 

YOLOv3 was developed and tested in street night 

surveillance scenarios, aimed at detecting and tracking 
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objects in typical low-light conditions using the SSAN 

dataset. A comparison of leading detection models, 

including Faster RCNN showed that YOLOv3 

significantly outperformed them in terms of both 

speed and accuracy. The model achieved a mean 

Average Precision (mAP) of 87.9% with a processing 

time of 39.57 ms. This superior performance, especially 

in low illumination and light interference from 

vehicles, makes YOLOv3 a promising foundation for 

further development in night object detection tasks. 
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