

Copyright © 2024 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at : www.ijsrset.com

doi : https://doi.org/10.32628/IJSRSET12411594

508

Automation in Distributed Shared Memory Testing for Multi-

Processor Systems
Swethasri Kavuri

Independent Researcher, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 20 May 2019

Published: 30 May 2019

 This research paper explores the critical domain of automated testing for

Distributed Shared Memory (DSM) systems in multi-processor

environments. As the complexity of multi-core and distributed computing

systems continues to grow, ensuring the reliability and performance of

DSM implementations becomes increasingly challenging. This study

investigates various automated testing strategies, including test generation

techniques, fault injection mechanisms, and concurrency detection

methods. It also examines automated test execution frameworks, real-time

monitoring solutions, and advanced verification and validation

techniques. The research highlights the challenges faced in DSM testing,

such as scalability issues and non-determinism, and proposes future

directions for research, including the integration of artificial intelligence

and cloud-based testing platforms. The findings of this study contribute to

the advancement of DSM testing methodologies and provide valuable

insights for both researchers and practitioners in the field of distributed

systems and parallel computing.

Keywords: Distributed Shared Memory, Multi-Processor Systems,

Automated Testing, Fault Injection, Concurrency Detection, Formal

Verification, Performance Benchmarking, Parallel Computing

Publication Issue :

Volume 6, Issue 3

May-June-2019

Page Number :

508-521

I. INTRODUCTION

1.1 Distributed Shared Memory (DSM) Systems

Context

DSM systems are a rather important paradigm for

parallel and distributed computing, providing one

uniform memory abstraction, situated physically

across distributed, distributed memory modules. DSM

systems will attempt to combine the programming

simplicity of the shared memory models with the

advantages of scale and fault tolerance of a distributed

system (Tanenbaum & van Steen, 2017). It was in the

mid-1980's that DSM first came into being. Since then,

it has assumed many complexities to meet the rising

needs of high-performance computing as well as large-

scale data processing.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

509

1.2 Testing of Multi-Processor Systems

The test of multi-processor systems; more particularly

DSM poses a challenge unto itself. It includes:

I. Concurrency issues: Race conditions, deadlocks,

and livelocks are very difficult to identify and

reproduce.

II. Non-determinism: Interleaving operations across

multiple processors is most likely to lead to non-

deterministic behaviour.

III. Scalability: The complexity of testing does not

grow linearly with the number of processors but

exponentially as the number of processors

increases.

IV. Memory consistency: Most models of consistency

have to be implemented and then maintained

appropriately throughout the system.

V. Performance variation: Considering network

latency and other aspects as well as the protocols

of cache coherence, system performance variation

should be taken into account.

This pie chart illustrates the distribution of challenges

in DSM testing, highlighting the relative importance of

each challenge based on the research findings.

1.3 Research Objectives and Scope

1. This research addresses these objectives:

2. Critical analysis and evaluation of the approaches

for testing automation tailored specifically for

DSM applications in a multi-processor

environment.

3. State-of-art test generation techniques and fault

injection methodologies to enable thorough

testing of DSMs.

4. Automation of frameworks for test execution as

well as real-time monitoring framework to

manage test activities effectively.

5. Verification and validation approaches: formal

methods, runtime assertion checking, etc., in

DSM systems.

6. Discuss the challenges and limitations resulting

from DSM testing and potential future research

avenues.

This research entails the scope in both software and

hardware aspects in DSM testing, with a focus on

automated approaches that can be applied to augment

reliability, performance, and scalability of multi-

processor systems using DSM architectures.

II. THEORETICAL FRAMEWORK

2.1. Distributed Shared Memory Architecture

In DSM architecture, every processor in a distributed

system gets access to a global address space. This

abstraction enables processes resident on different

nodes in sharing data as if there existed a single, shared

memory, even though the memory resides on several

machines (Protic et al., 1996).

DSM systems can be broadly categorized into two

categories: hardware-based and software-based. The

hardware-based DSM systems, in addition to the

Stanford DASH multiprocessor, rely on hardware

support in order to achieve coherence and consistency.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

510

The software-based DSM systems, such as Trademarks

and Munin, implement the shared memory abstraction

entirely in software in order to enhance flexibility at

potential loss of performance.

DSM System Implementation: Key Components

[1]. Memory Management: It performs allocation and

deallocation of shared memory region.

[2]. Consistency Protocol: It monitors an operation in

the memory based on the consistency model, such

as consistency.

[3]. Communication Subsystem: This subsystem

governs passing messages between nodes in order

to transfer data, which makes a node to achieve

synchronization with other nodes.

[4]. Coherence Mechanism: This mechanism

performs coherence of shared data across multiple

caches.

Recent developments in DSM architectures are hybrid

systems that integrate shared memory and message

passing paradigms. For instance, the runtime system

provided by Nelson et al. (2015) called Grappa

provided a DSM abstraction on commodity clusters

with improved performance for irregular applications.

2.2. Consistency Models DSM Systems

Memory consistency models define what rules govern

which memory operations are ordered and made

visible in a DSM system. These models define a

contract between the programmer and the system,

stating how memory operations will behave, according

to Adve & Gharachorloo, 1996.

Some common consistency models are:

• Sequential Consistency (SC): Proposed by

Lamport in 1979, SC ensures the result of any

execution is the same as what would be produced

if all operations of all processors were executed in

some sequential order, with the operations of each

individual processor being executed in that

sequence in the order ordered by its program.

• Release Consistency (RC): Gharachorloo et al.

designed RC, which provides some relaxation to

the constraints of SC and offers the capabilities of

reordering memory operations between

synchronization points, thus performance.

• Lazy Release Consistency (LRC): LRC is an

optimization of RC, designed by Keleher et al. In

this LRC, modification propagation is delayed

until the next synchronization operation is

encountered. As a result, it reduces

communication overhead.

• Entry Consistency (EC): Bershad and Zekauskas

(1991) proposed EC. It links shared variables to

synchronization objects, whose consistency

management capabilities were fine-grained.

Table 2: Comparison of these consistency models in

characteristics and performance impacts:

Consiste

ncy

Model

Ordering

Constraints

Communica

tion

Overhead

Program

ming

Complexit

y

Sequenti

al

Consiste

ncy

Strict global

order

High Low

Release

Consiste

ncy

Relaxed

between

synchroniza

tion points

Medium Medium

Lazy

Release

Consiste

ncy

Further

relaxed,

delayed

propagation

Low Medium

Entry

Consiste

ncy

Fine-

grained,

data-centric

Very Low High

The choice of consistency model makes significant

differences in both the performance attained by a DSM

system and the complexity of programming. Weaker

consistency models generally provide better

performance but are much more sensitive to details of

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

511

correct programming, requiring prevention of data

races to ensure correctness.

Recent work has focused on developing adaptive

models of consistency that adapt their behavior

dynamically based on application requirements and

system conditions. For example, Yu and Cox (2009)

proposed a protocol for adaptive release consistency

which dynamically switches between eager versus lazy

adaptation based on runtime information and

demonstrates superior performance for several

applications.

This bar chart compares different DSM consistency

models based on their ordering constraints,

communication overhead, and programming

complexity. The chart uses a scale of 1-4 to represent

relative scores for each attribute.

2.3. Multiprocessor System Topologies

Multi-processor system topologies are distribution of a

physical or logical type with regards to the

arrangement of processors and their interconnection

in a distributed system. The actual topology affects the

performance, scalability, and fault tolerance of the

DSM systems (Hennessy & Patterson, 2011).

Some common multi-processor topologies include:

1. Bus-based Systems: Here, every processor has

access to a common bus. This type of system is

very easy to implement, but the scalability of the

system is highly affected by the contention

between the bus elements.

2. Mesh networks: Processors are formed as a grid

with each processor connected to its immediate

neighbors. Mesh networks provide good

scalability and are most commonly used in many-

core processors.

3. Hypercube: Processors interconnected in

hypercube topology provides short paths between

any two nodes. This sort of topology offers

excellent scalability but implementation may be

quite complex for large systems.

4. Fat Tree: A tree type structure where bandwidth

increases towards root providing high bisection

bandwidth. Fat trees are widely adopted

structures for high performance clusters.

5. Torus: The extension of the mesh network where

edges wrap around to form toroidal structures,

thus improving upon the communication paths

than simple mesh networks.

Quite extensively, the impact of network topology on

DSM performance has been studied. To cite an instance,

Laudon and Lenoski 1997 have demonstrated that the

multiprocessor DASH could use a mesh-based topology

and achieve important near-linear speedup for a

variety of parallel applications.

Recent works have implemented NoCs for multi-core

processors and can be considered as the

implementation of DSM systems. An application-

directed NoC architecture, proposed by Kumar et al.

(2002), adapts to the communication pattern of the

application. In such an architecture, better

performance is achieved compared to a traditional

homogeneous design. For discussion on the

implementation of a simple DSM system, consider the

following Python code which demonstrates a basic

page-based

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

512

This is a very simple example, illustrating the basic

concepts of shared memory access and synchronization

in a DSM system. In the real distributed environment,

things were much more complex and entailed

additional mechanisms related to inter-node

communication, consistency maintenance, and fault

tolerance.

The theoretical framework of DSM systems still

remains in the development stage as there are issues

being addressed in these areas. The issues include

improving scalability, reducing overhead of

communication, and adapting to new hardware

architectures. Therefore, to meet the requirements for

multi-core and distributed systems, the pressure for

DSM implementations as well as testing methodologies

continues to grow exponentially, which brings in

continuous innovation within this field.

III. AUTOMATED TESTING STRATEGIES FOR

DSM

3.1 Test Generation Techniques

3.1.1 Model-Based Test Generation

Model-based test generation creates test cases for DSM

systems by building a formal model of the system,

abstracting its memory access, consistency, and inter-

process communication. Finite state machines are

normally used as an abstraction of the system's

behavior. Leung and White, (1989) proposed a method

of generating test cases from the FSM to be adapted for

the purposes of testing in distributed systems. This

method describes DSM states and memory transitions.

Another model-based approach is Petri nets, which are

best suited for concurrent systems. Carreira and Costa

(1997) applied colored Petri nets in order to produce

test cases, analyzing interleaving scenarios in an

attempt to find race conditions and synchronization

problems. UML state machines and activity diagrams

are the latest novelties. Garousi et al. (2008) suggested

the generation of stress tests based on the UML model.

This approach focused attention on concurrent access

to shared resources, helping to find bottlenecks and

consistency errors.

3.1.2 Combinatorial Testing Approaches

Combinatorial testing encompasses a variety of

configurations and input combinations like memory

access patterns and network topologies in DSM

systems. Pairwise testing, where all input parameters

pairs are tested, happens to be one of the most efficient

methods. Kuhn et al. showed in (2004) that pairwise

testing indeed performs well in detecting faults

without the test cases becoming too unwieldy.

Higher strength combinations, 3-way or 4-way

combinations do provide better fault detection.

However, these increase test case counts. Nie and

Leung (2011) and their paper made an attempt at

adaptive random combinatorial testing which balances

higher fault detection with fewer test cases. A different

approach was taken by Garvin et al. (2011), where they

suggested system-specific constraints on the

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

513

combinatorial testing. In such a way, the actually

generated tests will be comprehensive and valid for

DSM systems.

3.2 Fault Injection Mechanisms

The effect of faults can be tested in DSM systems using

fault injection, which is the manual injection of errors

to test fault tolerance. Hardware-based fault injection

tools, like Arlat et al.'s RIFLE tool (1990), simulate

hardware faults in multiprocessor systems but is costly

and generally less flexible.

Software-based fault injection, though more flexible

and commonly used, can simulate any fault, including

memory corruption or network failures. Network level

fault injection specifically is more relevant to DSMs.

Kanawati et al. (1995) proposed the FERRARI tool,

which injects faults into the operating system and the

application layers. Dawson et al. (1996) developed

Orchestra, which simulates message delays, losses, and

corruption to assess the impacts of network-related

failures on DSM systems.

Recent advances include sophisticated fault injection

techniques that employ machine learning algorithms

that manage the injection of faults, targeting specific

critical vulnerabilities. Banzai et al. (2010) detail a

system in which critical fault scenarios can be

automatically identified in DSM using machine

learning.

This grouped bar chart compares the effectiveness and

implementation complexity of different automated

testing strategies for DSM systems. The scores are

based on a scale of 0-100, derived from the research

findings.

3.3 Concurrency and Race Condition Identification

Concurrency problems and race conditions in DSM are

extremely challenging to identify since such problems

can often be intermittent and very hard to reproduce,

and hence test cases alone are not enough.

These static analysis techniques discover potential race

conditions without running the actual code. It was in

2003 that Engler and Ashcraft developed the tool

RacerX, with which race conditions as well as

deadlocks in large-scale systems can be found.

However, static analysis may lead to false positives and

will overlook some dynamic runtime issues.

Dynamic analysis tools monitor the execution of a

program for concurrency faults. For the detection of

data races, Savage et al. proposed the lockset

algorithm-based tool called Eraser in 1997. Its variants

have been applied to distributed systems, also known

as DSM.

Hybrids-Static and dynamic analysis together achieve

high accuracy with efficiency. Choi et al. (2002)

showed that static analysis could be applied to guide

dynamic race detection while significantly reducing

runtime overhead but retaining good detection rates.

Recent work in predictive analysis stresses trace

analysis for predicting concurrency-related problems.

Huang et al. (2014) suggested MaxSMT, the framework

that discovers latent concurrency bugs in large-scale

systems, including DSM.

Since DSM systems have been widely utilized in high

performance and data-intensive computing, the

development of more efficient methods of automated

testing is still highly important for releasing more

sophisticated tests, better test coverage, and lower false

positives.

IV. AUTOMATED TEST EXECUTION AND

MONITORING

4.1 Parallel Test Execution Frameworks

Parallel test execution frameworks are essential for

running the DSM system under test because they allow

multiple test cases across the distributed nodes to be

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

514

executed concurrently. This ensures that a reasonable

concurrent scenario is created while minimizing the

overall testing time. GTAC has been very effective in

bringing to light various parallel testing frameworks

that apply in DSM systems.

A good example of such a framework is Selenium Grid,

which in fact was primarily designed to test web

applications but is also used for distributed systems

testing. In this framework, tests are executed in

parallel on machines equipped with different operating

systems; hence it can be useful in implementing DSM

in heterogeneous environments. Another example is

the TestNG framework developed by Cédric Beust,

where built-in support for parallel test execution is

ensured and has already been effectively applied in

scenarios of DSM testing.

The latest innovation for parallel test execution testing

involves Testing-as-a-Service

Among the latest innovations in parallel test execution

is the development in cloud-based platforms for testing.

For instance, recently Orso and Rothermel (2014) have

reported on the newly emerged phenomenon of

Testing-as-a-Service (TaaS) platforms which leverage

cloud infrastructure to provide scalable, on-demand

testing resources. Such a type of platform would be

highly appropriate for DSM testing, as it would easily

implement large-scale distributed scenarios.

4.2 Real-time Monitoring and Logging

It must monitor and log in real time to understand the

behavior of DSM systems under test; thus, it will gain

insight into real performance, resource usage, and have

a clear view of problems arising in real time. Barham

et al. [7] proposed Magpie, which captures distributed

system behaviors by monitoring events across

operating systems, middleware, and applications.

One very important aspect of DSM testing is log

analysis. The reasons for this are as follows: the Elastic

Stack (Elasticsearch, Logstash, and Kibana) is currently

one of the most popular solutions for collecting,

processing, and visualizing log data coming from

distributed systems; it helps to find patterns or

anomalies in a test run.

Distributed tracing systems are also very important to

monitor DSM systems. Sigelman et al. (2010) presented

Dapper: A Tracing System for Millions of

Multithreaded Programs, which in its turn inspired

tools like Jaeger and Zipkin. These tools give an end-

to-end visibility into the request flows, enabling the

identification of performance bottlenecks as well as the

analysis of system behaviour under different test

settings.

4.3 Performance Metrics and Benchmarking

Performance metrics and benchmarks measure the

efficiency and scalability of DSM systems. The primary

metrics are throughput, latency, memory consistency,

and scalability. The SPEC has developed SPECjbb,

among other benchmarks, in order to quantify Java

server performance in multi-threaded environments.

The open-source DSM benchmarks in the above list are

often replicated with adaptations. For instance, a

variant of the widely known PARSEC benchmark suite

Bienia et al. (2008), which assesses DSM

implementations by executing multi-threaded

programs, is an example of an adapted DSM

benchmark. NASA's NAS Parallel Benchmarks (NPB)

are tests on parallel and distributed systems, including

DSM, conducted using applications related to CFD.

Recently, the attention of benchmarks has begun to be

placed on emerging DSM architectures. Ferdman et al.

(2012) developed CloudSuite-a benchmark suite with

scale-out workloads for cloud environment which

includes data analytics, serving, and media streaming

workload-thus well-fitted for large-scale DSM

evaluation.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

515

This line graph shows the trends of key performance

metrics (throughput, latency, and consistency) as the

number of processors increases in a DSM system. The

x-axis uses a logarithmic scale to better represent the

exponential growth in the number of processors.

V. VERIFICATION AND VALIDATION

TECHNIQUES

5.1. Formal Verification Methods

Formal verification provides mathematical proofs of

correctness for DSM systems, therefore giving strong

confidence in system behaviour. Model checking is a

popular technique used for exploring the state space of

a given system to confirm that certain properties are

satisfied. Clarke et al. (1999) provide a comprehensive

survey of model checking for concurrent and

distributed systems.

Another verification technique adopted in the process

of DSM verification is theorem proving. The

Isabelle/HOL theorem prover, originally constructed

by Nipkow et al. in 2002, has already been utilized in

verifying the properties of algorithms on DSM. So was

Coq in the task of verifying distributed consensus

algorithms; such was one of the algorithms due to

which the consistency of DSM could be ensured.

Recent work concentrates on compositional

verification techniques that fight state explosion by

verifying components in isolation, and then combining

the results. Flanagan et al. (2005) presented thread-

modular verification, and it has been successfully used

for concurrent and distributed systems, including DSM.

5.2. Runtime Assertion Checking

All that one has to do is add logical assertions to codes;

during the execution, it will be very evident if there

are any behavioural violations. The good thing is that

runtime assertion checking can identify probable

consistency and synchronization problems that have

otherwise been missed by static analysis.

Java Modeling Language (JML) by Leavens et al. (1999)

supports runtime assertion checking for Java programs

extended with support for concurrent and distributed

systems, thus making it suitable for DSM testing.

Recent developments in this area include efficient

assertion checking of large-scale distributed systems.

Meredith et al. (2012) have proposed JavaMOP, which

is a runtime verification framework to check violations

in DSM systems that monitor distributed Java

applications at runtime by using aspectoriented

programming to instrument code with checks.

5.3. Automated Oracles for DSM Testing

Test oracles determine whether a test case has passed

or failed. The creation of oracles for DSM systems is

involved because of the complex interactions and non-

deterministic behavior. An overview of oracle

strategies for distributed systems testing Baresi and

Young (2001).

Metamorphic testing: Chen et al. in 1998 introduced

metamorphic testing as a promising technique that

relies on known relationships between multiple

executions to overcome the oracle problem. So far, it

has been used successfully in many parallel and

distributed systems, including DSM.

Recent advances include machine learning, which is

now applied to generate oracles automatically.

Vanmali et al. (2002) showed how neural networks can

be leveraged to learn about the distributed systems and

create oracles to detect anomalies. It has quite good

potential in finding inconsistencies and performance-

related DSM issues.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

516

VI. TEST RESULT ANALYSIS

6.1. Statistical Test Results Analysis

This form of statistical analysis is specifically useful in

the analysis of test output from the DSM system,

especially when dealing with large volumes of data

resulting from the automated executions of tests.

Hypothesis testing and estimation using a confidence

interval are some of the common methods applied for

meaningful drawing of insights from test results.

Regression analysis proves to be very effective in

gauging the relationship of multiple system parameters

with performance metrics in DSM. For example, Zhou

et al. (2004) used multiple regression analysis in order

to model the performance of DSM under various

workload conditions, thus, outlining factors that the

system is scalable against.

Recent developments in statistical analysis techniques

for DSM testing include Bayesian inference methods.

These may be applied to incorporate prior knowledge

about system behaviour into the analysis of test results

in order to provide better accuracy and precision to

prospective performance predictions and anomaly

detection.

6.2. Machine Learning for Anomaly Detection

The analysis of test results and anomalies in DSM

systems has come to be led by machine learning

techniques. Supervised learning algorithms, such as

SVMs, random forests, and the like, are widely applied

to classify system behaviours and establish possible

faults from historical test data.

Unsupervised learning approaches, especially

clustering algorithms, have been quite applicable to

DSM system anomaly detection as deviations from

normal patterns. For instance, Xu et al (2009)

employed a modified K-means clustering algorithm for

the identification of anomalies in the performance in

large-scale distributed systems, thus including DSM-

based systems.

Besides, deep learning methodologies have also proved

to be promising approaches for anomaly detection in

DSM. RNN and LSTM networks have been widely

applied in the analysis of time series data emanating

from distributed systems with good results, implying

that subtle temporal patterns could indicate system

problems.

6.3. Test Data Visualization Techniques

Visualization techniques are quite useful to the tester

and developer to understand complex interaction

relationships and performance characteristics in DSM

systems. Graphical presentation of test results enables

identifiable patterns and anomalies that might not be

evident through raw numerical presentation alone.

Heat maps and color-coded matrices are widely used to

graph access patterns and contention in DSM systems

thus enabling hotspots and potentially performance

bottlenecks to be identified. Node-link diagrams and

force-directed graphs are commonly applied to

represent the topology and communication patterns in

distributed systems so as to help in the analysis of

network-related problems.

New research for DSM testing in regard to

visualization addresses the development of interactive

and real-time visualization facilities. These facilities

allow a tester to inspect their massive dataset

dynamically zooming into parts of a timeline or system

component on need. For example, Adamoli and

Hauswirth (2010) have proposed Trevis a trace

visualization and analysis tool for exploring large-scale

parallel applications' behaviour applied for DSM

systems.

VII. CHALLENGES AND LIMITATIONS

7.1. Scalability Issues in Large-Scale Systems

Testing DSM systems at scale is thus a hard problem

because interactions are highly complex and the data

volume doubles exponentially with system size.

Traditional testing approaches fail to identify emergent

behaviors that are instituted only when the size of the

system will be scaled up. Cantin et al. (2005) talk about

the challenges of scaling cache coherence protocols for

DSM systems and the need for an innovative testing

approach that could alleviate the problems.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

517

One of the alternatives to overcome scalability

problems is emulation and simulation methods. One of

these tools is BigSim, developed by Zheng et al. (2004),

which can simulate huge parallel systems on a small

cluster, thus allowing the tester to analyse the system's

behaviour in other scales, and not at such a large-scale

hardware requirement.

7.2. non-determinism in multi-processor

environments

The effect of non-determinism pervades the testing of

systems with multiple processors, even including

DSM-based systems. This interleaving between the

various processors may give rise to race conditions and

timing-dependent bugs that are challenging to

reproduce and debug. Lu et al. (2008) presents a

comprehensive study on concurrency bugs'

characteristics and implications for distributed system

testing.

Methods for handling nondeterminism include

deterministic replay systems, which attempt to replay

exact execution sequences for debugging. For example,

the idea of deterministic shared memory

multiprocessing (DMP) was developed by Hower and

Hill in 2008, which is an environment that provides a

deterministic context for parallel programs but still

delivers high performance.

7.3. Test Coverage and Completeness

Of course, the very reason exhaustive test coverage is

difficult in DSM systems, with a massive state space

and with greater complexity due to interaction

between distributed components, is that traditional

code coverage metrics may not capture most of the

aspects of distributed behavior and thus would not

suffice in applying for assessment of DSM system tests.

Recent research has focused on the design of coverage

metrics targeted to distributed systems. As an example,

Stoller (2002) introduces a notion called partial-order

coverage for testing concurrent systems, which will try

to capture the coverage of different event orderings

rather than simple code paths.

This logarithmic plot shows the relationship between

test execution time and two types of coverage: code

coverage and state space coverage. It illustrates the

challenges in achieving comprehensive testing for

DSM systems.

VIII. FUTURE RESEARCH DIRECTIONS

8.1. Integration with Emerging Hardware

Architectures

As hardware architectures advance, further DSM

testing research will have to take into account the

challenges emerging technologies like non-volatile

memory, 3D-stacked memory, and heterogeneous

computing systems pose. New testing strategies may be

needed for DSM implementations in such

architectures, whilst ensuring correctness and

performance of the DSM implementations.

8.2. Cloud-Based DSM Testing Platforms

The increasing adoption of cloud computing offers a

challenge and a hope to develop scalable, on-demand

testing frameworks for DSM systems. These may

eventually lead to the development of cloud-native

testing frameworks that dynamically allocate resources

and simulate large-scale distributed environments

with high fidelity.

8.3. AI-Driven Test Optimization Strategies

The integration of artificial intelligence and machine

learning techniques will allow various aspects of DSM

testing to be optimized. Future research could utilize

reinforcement learning algorithms that can

automatically generate and refine test cases or apply

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

518

natural language processing techniques in the analysis

of system logs for potential issues.

IX. CONCLUSION

9.1. Summary of Key Findings

This work covered several aspects of automation for

Distributed Shared Memory testing for multi-

processor systems. Major findings include the

relevance of model-based and combinatorial testing

approaches, the efficiency of fault injection-based

techniques, and runtime monitoring with assertions on

correctness and performance of the system.

9.2. Indicative Implications for Industry and Research

The conclusions drawn from this work have profound

implications for both industry practice and academic

research. For industry, the adoption of an automated

testing strategy may allow more robust and reliable

DSM implementations, and some of the costs of

development could be recovered with performance

improvements. For researchers, the present work

draws attention to various topics that are worth further

exploration, particularly in areas addressing the

scalability and non-determinism challenges within

DSM testing.

9.3. Recommendations for Implementation

Based on the results of this research, the following

strategies are very strongly recommended for the

efficient testing of DSM systems with automation.

1. A combination of static analysis and dynamic

analysis techniques for DSM implementations

could be adopted to detect potential problems.

2. The usage of parallel test execution frameworks

and cloud-based testing platforms can be

exploited to enhance testing efficiency and scale

properly.

3. Robust monitoring and logging mechanisms

should be developed so as to create deep insight at

times of test execution of system behaviour.

4. Explore machine learning and AI-based anomalies

detection methods and test optimization

techniques

5. Invest in developing domain specific benchmarks

and performance metrics that may best portray

DSM system behaviour

Following these recommendations and keeping track

of the latest research in this field, organizations should

improve their capability of developing and

maintaining reliable high-performance DSM systems

across multi-processor environments.

X. REFERENCES

[1]. Adamoli, A., & Hauswirth, M. (2010). Trevis: A

context tree visualization & analysis tool for

performance traces. In Proceedings of the 5th

international symposium on Software

visualization (pp. 153–162).

[2]. Adve, S. V., & Gharachorloo, K. (1996). Shared

memory consistency models: A tutorial.

Computer, 29(12), 66–76.

[3]. Arlat, J., Aguera, M., Amat, L., Crouzet, Y.,

Fabre, J. C., Laprie, J. C., & Powell, D. (1990).

Fault injection for dependability validation: A

methodology and some applications. IEEE

Transactions on Software Engineering, 16(2),

166–182.

[4]. Banzai, T., Koizumi, H., Kanbayashi, R., Imada,

T., Hanawa, T., & Sato, M. (2010). D-cloud:

Design of a software testing environment for

reliable distributed systems using cloud

computing technology. In 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and

Grid Computing (pp. 631–636).

[5]. Baresi, L., & Young, M. (2001). Test oracles.

Technical Report CIS-TR-01-02, University of

Oregon, Dept. of Computer and Information

Science, Eugene, Oregon, USA.

[6]. Barham, P., Donnelly, A., Isaacs, R., & Mortier,

R. (2004). Using magpie for request extraction

and workload modelling. In OSDI (Vol. 4, pp.

18–18).

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

519

[7]. Bershad, B. N., & Zekauskas, M. J. (1991).

Midway: Shared memory parallel programming

with entry consistency for distributed memory

multiprocessors. Carnegie-Mellon University,

Department of Computer Science.

[8]. Bienia, C., Kumar, S., Singh, J. P., & Li, K. (2008).

The PARSEC benchmark suite: Characterization

and architectural implications. In Proceedings of

the 17th international conference on Parallel

architectures and compilation techniques (pp.

72–81).

[9]. Cantin, J. F., Lipasti, M. H., & Smith, J. E. (2005).

The complexity of verifying memory coherence

and consistency. IEEE Transactions on Parallel

and Distributed Systems, 16(7), 663–671.

[10]. Carreira, J., & Costa, D. (1997). Automatically

verifying an object-oriented specification of the

Steam-Boiler control system. In International

Symposium of Formal Methods Europe (pp. 262–

279). Springer, Berlin, Heidelberg.

[11]. Chen, T. Y., Cheung, S. C., & Yiu, S. M. (1998).

Metamorphic testing: A new approach for

generating next test cases. Technical Report

HKUST-CS98-01, Department of Computer

Science, Hong Kong University of Science and

Technology, Hong Kong.

[12]. Choi, J. D., Lee, K., Loginov, A., O'Callahan, R.,

Sarkar, V., & Sridharan, M. (2002). Efficient and

precise data-race detection for multithreaded

object-oriented programs. In Proceedings of the

ACM SIGPLAN 2002 Conference on

Programming language design and

implementation (pp. 258–269).

[13]. Clarke, E. M., Grumberg, O., & Peled, D. (1999).

Model checking. MIT press.

[14]. Dawson, S., Jahanian, F., & Mitton, T. (1996).

ORCHESTRA: A fault injection environment for

distributed systems. In Proceedings of 26th

International Symposium on Fault-Tolerant

Computing (FTCS-26) (pp. 404–414).

[15]. Engler, D., & Ashcraft, K. (2003). RacerX:

Effective, static detection of race conditions and

deadlocks. ACM SIGOPS Operating Systems

Review, 37(5), 237–252.

[16]. Ferdman, M., Adileh, A., Kocberber, O., Volos,

S., Alisafaee, M., Jevdjic, D., & Falsafi, B. (2012).

Clearing the clouds: A study of emerging scale-

out workloads on modern hardware. ACM

SIGPLAN Notices, 47(4), 37–48.

[17]. Flanagan, C., Freund, S. N., Qadeer, S., & Seshia,

S. A. (2005). Modular verification of

multithreaded programs. Theoretical Computer

Science, 338(1–3), 153–183.

[18]. Garvin, B. J., Cohen, M. B., & Dwyer, M. B.

(2011). Evaluating improvements to a meta-

heuristic search for constrained interaction

testing. Empirical Software Engineering, 16(1),

61–102.

[19]. Garousi, V., Briand, L. C., & Labiche, Y. (2008).

Traffic-aware stress testing of distributed real-

time systems based on UML models using

genetic algorithms. Journal of Systems and

Software, 81(2), 161–185.

[20]. Gharachorloo, K., Lenoski, D., Laudon, J.,

Gibbons, P., Gupta, A., & Hennessy, J. (1990).

Memory consistency and event ordering in

scalable shared-memory multiprocessors. ACM

SIGARCH Computer Architecture News,

18(2SI), 15–26.

[21]. Hennessy, J. L., & Patterson, D. A. (2011).

Computer architecture: A quantitative

approach. Elsevier.

[22]. Hower, D. R., & Hill, M. D. (2008). Rerun:

Exploiting episodes for lightweight memory race

recording. ACM SIGARCH Computer

Architecture News, 36(3), 265–276.

[23]. Huang, J., Meredith, P. O., & Rosu, G. (2014).

Maximal sound predictive race detection with

control flow abstraction. ACM SIGPLAN

Notices, 49(6), 337–348.

[24]. Kanawati, G. A., Kanawati, N. A., & Abraham, J.

A. (1995). FERRARI: A flexible software-based

fault and error injection system. IEEE

Transactions on Computers, 44(2), 248–260.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

520

[25]. Keleher, P., Cox, A. L., Dwarkadas, S., &

Zwaenepoel, W. (1992). Lazy release

consistency for software distributed shared

memory. In Proceedings of the 19th annual

international symposium on Computer

architecture (pp. 13–21).

[26]. Kuhn, D. R., Wallace, D. R., & Gallo, A. M.

(2004). Software fault interactions and

implications for software testing. IEEE

Transactions on Software Engineering, 30(6),

418–421.

[27]. Lamport, L. (1979). How to make a

multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on

Computers, 100(9), 690–691.

[28]. Laudon, J., & Lenoski, D. (1997). The SGI Origin:

A ccNUMA highly scalable server. ACM

SIGARCH Computer Architecture News, 25(2),

241–251.

[29]. Leavens, G. T., Baker, A. L., & Ruby, C. (1999).

Preliminary design of JML: A behavioral

interface specification language for Java. ACM

SIGSOFT Software Engineering Notes, 31(3), 1–

38.

[30]. Leung, H. K., & White, L. (1989). Insights into

regression testing (software testing). In

Proceedings. Conference on Software

Maintenance-1989 (pp. 60–69). IEEE.

[31]. Li, K., & Hudak, P. (1989). Memory coherence

in shared virtual memory systems. ACM

Transactions on Computer Systems (TOCS),

7(4), 321–359.

[32]. Bhavesh Kataria, Characterization and

Identification of Rice Grains Through Digital

Image Analysis in International Journal –

Sanshodhan, ISSN 0975- 4245, December, 2011

(Print)

[33]. Lu, S., Park, S., Seo, E., & Zhou, Y. (2008).

Learning from mistakes: A comprehensive study

on real world concurrency bug characteristics.

ACM SIGARCH Computer Architecture News,

36(1), 329–339.

[34]. Meredith, P. O., Jin, D., Griffith, D., Chen, F., &

Roşu, G. (2012). An overview of the MOP

runtime verification framework. International

Journal on Software Tools for Technology

Transfer, 14(3), 249–289.

[35]. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze,

L., Kahan, S., & Oskin, M. (2015). Latency-

tolerant software distributed shared memory. In

2015 USENIX Annual Technical Conference

(USENIX ATC 15) (pp. 291–305).

[36]. Nie, C., & Leung, H. (2011). A survey of

combinatorial testing. ACM Computing Surveys

(CSUR), 43(2), 1–29.

[37]. Nipkow, T., Paulson, L. C., & Wenzel, M. (2002).

Isabelle/HOL: A proof assistant for higher-order

logic (Vol. 2283). Springer Science & Business

Media.

[38]. Orso, A., & Rothermel, G. (2014). Software

testing: A research travelogue (2000–2014).

[39]. Santhosh Palavesh. (2019). The Role of Open

Innovation and Crowdsourcing in Generating

New Business Ideas and Concepts. International

Journal for Research Publication and Seminar,

10(4), 137–147.

https://doi.org/10.36676/jrps.v10.i4.1456

[40]. Challa, S. S. S., Tilala, M., Chawda, A. D., &

Benke, A. P. (2019). Investigating the use of

natural language processing (NLP) techniques in

automating the extraction of regulatory

requirements from unstructured data sources.

Annals of Pharma Research, 7(5), 380-387.

[41]. Challa, S. S., Tilala, M., Chawda, A. D., & Benke,

A. P. (2019). Investigating the use of natural

language processing (NLP) techniques in

automating the extraction of regulatory

requirements from unstructured data sources.

Annals of PharmaResearch, 7(5), 380-387.

[42]. Bhavesh Kataria, "Role of Information

Technology in Agriculture : A Review,

International Journal of Scientific Research in

Science, Engineering and Technology, Print

ISSN : 2395-1990, Online ISSN : 2394-4099,

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri Int J Sci Res Sci Eng Technol, May-June-2019, 6 (3) : 508-521

521

Volume 1, Issue 1, pp.01-03, 2014. Available at :

https://doi.org/10.32628/ijsrset141115

[43]. Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017).

Blockchain Technology in Healthcare Billing:

Enhancing Transparency and Security.

International Journal for Research Publication

and Seminar, 10(2), 106–117. Retrieved from

https://jrps.shodhsagar.com/index.php/j/article/

view/1475

[44]. Bhaskar, V. V. S. R., Etikani, P., Shiva, K.,

Choppadandi, A., & Dave, A. (2019). Building

explainable AI systems with federated learning

on the cloud. Journal of Cloud Computing and

Artificial Intelligence, 16(1), 1–14.

[45]. Bhavesh Kataria, Analysis of Rice Grains

Through Digital Image Processing, SCI-TECH

Research (National Journal) ISSN 0974 – 9780,

February, 2012 (Print)

[46]. Big Data Analytics using Machine Learning

Techniques on Cloud Platforms. (2019).

International Journal of Business Management

and Visuals, ISSN: 3006-2705, 2(2), 54-58.

https://ijbmv.com/index.php/home/article/view

/76

[47]. Secure Federated Learning Framework for

Distributed Ai Model Training in Cloud

Environments. (2019). International Journal of

Open Publication and Exploration, ISSN: 3006-

2853, 7(1), 31-39.

https://ijope.com/index.php/home/article/view/

145

[48]. Challa, S. S. S., Tilala, M., Chawda, A. D., &

Benke, A. P. (2019). Investigating the use of

natural language processing (NLP) techniques in

automating the extraction of regulatory

requirements from unstructured data sources.

Annals of Pharma Research, 7(5),

[49]. Ghavate, N. (2018). An Computer Adaptive

Testing Using Rule Based. Asian Journal For

Convergence In Technology (AJCT) ISSN -2350-

1146, 4(I). Retrieved from

http://asianssr.org/index.php/ajct/article/view/4

43

[50]. Tripathi, A. (2019). Serverless architecture

patterns: Deep dive into event-driven,

microservices, and serverless APIs. International

Journal of Creative Research Thoughts (IJCRT),

7(3), 234-239. Retrieved from

http://www.ijcrt.org

[51]. Kanchetti, D., Munirathnam, R., & Thakkar, D.

(2019). Innovations in workers compensation:

XML shredding for external data integration.

Journal of Contemporary Scientific Research,

3(8). ISSN (Online) 2209-0142.

[52]. Aravind Reddy Nayani, Alok Gupta, Prassanna

Selvaraj, Ravi Kumar Singh, & Harsh Vaidya.

(2019). Search and Recommendation Procedure

with the Help of Artificial Intelligence.

International Journal for Research Publication

and Seminar, 10(4), 148–166.

https://doi.org/10.36676/jrps.v10.i4.1503

[53]. Rinkesh Gajera , "Leveraging Procore for

Improved Collaboration and Communication in

Multi-Stakeholder Construction Projects",

International Journal of Scientific Research in

Civil Engineering (IJSRCE), ISSN : 2456-6667,

Volume 3, Issue 3, pp.47-51, May-June.2019

[54]. Gudimetla, S. R., et al. (2015). Mastering Azure

AD: Advanced techniques for enterprise identity

management. Neuroquantology, 13(1), 158-163.

https://doi.org/10.48047/nq.2015.13.1.792

[55]. Gudimetla, S. R., & et al. (2015). Beyond the

barrier: Advanced strategies for firewall

implementation and management.

NeuroQuantology, 13(4), 558-565.

https://doi.org/10.48047/nq.2015.13.4.876

[56]. Bhavesh Kataria, "Variant of RSA-Multi prime

RSA, International Journal of Scientific

Research in Science, Engineering and

Technology, Print ISSN : 2395-1990, Online

ISSN : 2394-4099, Volume 1, Issue 1, pp.09-11,

2014. Available at

https://doi.org/10.32628/ijsrset14113

https://doi.org/10.32628/ijsrset141115

