

Copyright © 2024 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at : www.ijsrset.com

doi : https://doi.org/10.32628/IJSRSET2310631

359

Improving Performance of Data Extracts Using Window-Based

Refresh Strategies
Swethasri Kavuri, Suman Narne

Independent Researcher, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 09 Oct 2021

Published: 20 Oct 2021

 This research paper investigates the application of window-based refresh

strategies to enhance the performance of data extracts in large-scale data

management systems. Traditional extract, transform, load (ETL) processes

often struggle with the increasing volume and velocity of data in modern

environments. Window-based refresh strategies offer a promising solution

by focusing on specific subsets of data during each refresh cycle. This study

examines various window-based techniques, including time-based, size-

based, and hybrid approaches, and evaluates their effectiveness in

improving extract performance. Through extensive analysis and empirical

testing, we demonstrate that window-based strategies can significantly

reduce processing time and resource utilization while maintaining data

consistency and integrity. The paper also explores optimization

techniques, challenges, and future research directions in this field.

Keywords: Data extracts, Window-based refresh, ETL optimization, Data

warehousing, Big data, Performance tuning, Incremental updates

Publication Issue :

Volume 8, Issue 5

September-October-2021

Page Number :

359-377

I. INTRODUCTION

1.1 Background

With the very big data advent or concept,

organizations continue to face the challenge of

managing and analyzing large-scale information on

time. The success of data warehouses and business

intelligence systems relies heavily on timely and

accurate extraction of data from different sources. It is

for this reason that the ETL process represents an

indispensable part of these systems responsible for

collecting data from various sources, cleaning up the

data, and integrating it in a single format suitable for

analysis and reporting.

As the volume of data explodes, keeping up the

accelerating demand for real-time or near-real-time

access to data is challenging with traditional ETL. Full

data extracts, whereby entire datasets are copied in

each refresh cycle, have become economically

impractical for many organizations due to time and

resource considerations. This has created a growing

need for more efficient and scalable approaches to data

extraction and refresh strategy.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

360

1.2 Problem Statement

In fact, the critical problem with data extract

performance is the trade-off between up-to-date data

and the computational and temporal costs involved in

processing big datasets. Of course, full extracts ensure

complete data consistency, but they frequently involve

unnecessary processing of unchanged data and can

cause significant delays in data availability.

Incremental extracts focused only on changed data

may seem pretty complex to implement and would

probably miss many vital changes in data if not

properly designed.

Key problems addressed by this research

1. Reducing the time and resource utilization in data

extraction without denting data integrity

2. Minimizing extract processes' impact on source

systems and network bandwidth

3. Having assured data consistency and

completeness despite very high changes in

datasets.

4. Configurability of extract strategies concerning

the heterogeneous data change rates and trends

existing in different sources

1.3 Research Objectives

This paper shall be devoted to assessing the efficiency

of window-based refresh strategies related to the issues

described above. The primary research goals are:

• Propose a general framework with which to apply

window-based refresh strategies during the data

extract process.

• Assess the performance benefits derived from

applying different types of approaches based on

window-based forms as opposed to conventional

full and incremental extracts.

• Determining appropriate window configurations

and adaptation strategies to various data scenarios

and business requirements.

• Evaluating the scalability and reliability of

window-based refresh strategies in large-scale

data environments.

• Investigating types of optimizations besides

potential future improvement opportunities,

which might be useful to further enhance the

efficiency of data extracts

II. LITERATURE REVIEW

2.1. Fundamentals of Data Extract

Data extraction is one of the primary elements in the

ETL process that constitutes the backbone of the data

warehousing and business intelligence system.

Effective data extraction is the basis of quality data and

consistence through the pipeline, according to Kimball

and Ross (2013). It incorporates all the activities

involved in the process of extraction of data from

source systems: operational databases, external APIs,

flat files, and many others with structured or semi-

structured data.

Vassiliadis and Simitsis (2009) provide an overview

that summarizes data extraction techniques into two

broad categories: full extracts and incremental extracts.

Full extracts are essentially copies of the entire dataset

from the source system per each cycle of the refresh

phase. This kind of approach is totally complete but

highly impractical when data volumes are raised to the

sky. Vassiliadis and Simitsis notice that the full extracts

can pose a significant performance problem since they

cause higher infrequent or localized data change

scenarios.

Incremental extracts extract only the data that differs

from the previous time since extraction. For Rainardi

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

361

(2008), incremental extracts make processing much

faster and require less usage of resources. Nevertheless,

he identifies certain difficulties in implementing

reliable change tracking mechanisms for complex data

environments in case of lots of interconnected systems.

El-Sappagh et al. (2011) presented a review of ETL

processes in data warehousing, supporting an effective

data extraction strategy. There are several key factors

that influence the choice of extraction methodology:

volume, change frequency, source system capabilities,

and business requirements for data freshness.

Table 1 summarizes the key characteristics of full and

incremental extracts:

Characteristic Full Extract Incremental

Extract

Data Coverage Complete

dataset

Changed data

only

Processing Time Longer Shorter

Resource Usage Higher Lower

Implementation

Complexity

Low High

Change Tracking

Required

No Yes

Data Consistency

Guarantee

High Moderate

2.2. Classic Refresh Strategies

Refresh strategies describe when and how data is

refreshed in the target system. According to Kimball

and Ross, as mentioned earlier, there exist several

classic refresh strategies, each having pros and cons:

1. Periodic full refresh: Here, the target dataset is

replaced entirely by importing a fresh, complete

extract of the source. As this is the most effective

method for complete data consistency, its usage

turns really expensive in terms of time and

resources, and primarily with huge datasets.

Kimball and Ross state that a full refresh is applied

where data integrity is of absolute importance, or

change tracking at the source systems is

unreliable.

2. Incremental refresh: According to Golfarelli and

Rizzi (2009), the incremental refresh strategy is

applicable only in cases where data changed or

newly added is updated to the target system.

Again, they emphasized the efficiency benefits of

the strategy but underlined the requirements of

powerful change tracking mechanisms. In

general, incremental refreshes rely mostly on

timestamps, version numbers, or CDC techniques

that identify modified records.

3. Slowly Changing Dimensions (SCD): The

approach of this technique specially fits the

dimensional data warehouse for handling changes

which are introduced in attributes over time.

According to Kimball and Ross (2013), SCD has

been divided into various categories. Each

category of SCD maintains history differently:

[1] Type 1 - This type removes the old value

completely and replaces it with the new

value while losing history.

[2] Type 2 - Add a new record each time, which

maintains history.

[3] Type 3: Add new columns for historical

values that accept a maximum number of

changes.

[4] Type 4: Store current values in the main

dimension table and historical values in an

additional history table.

In 2009, Jörg and Dessloch addressed an in-depth

analysis of incremental strategies for data warehouse

maintenance. They proposed a refresh approach,

classifying and evaluating different approaches in

terms of deciding factors relating to data freshness,

query performance, and maintenance overhead.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

362

This chart compares full refresh, incremental refresh,

and window-based refresh strategies across three

metrics: processing time, resource usage, and data

freshness.

The chosen refresh strategy for the data warehouse has

vital implications for performance and functionality.

Such trade-offs between the level of freshness in data

and query processing capabilities are discussed by Jarke

et al. (2003), which state how a higher refresh

frequency provides higher currency in data with

adverse implications on the complex analytical query

processing.

2.3. Window-Based Techniques in Data Management

The window-based approach has been recognized to

bring real power for managing and processing large-

scale datasets, especially in scenarios where one has to

process continuous data streams or frequent updates.

These techniques have their roots in stream processing

systems but have since been adapted to various data

management contexts, including data warehousing

and ETL processes.

Babcock et al. (2002) invented the concept of a sliding

window approach to handling continuous queries over

data streams. It leads to the extension of ideas and

concepts regarding windows to batch-processing

contexts. The authors discussed several window

models: time-based and tuple-based windows, and

demonstrated how these can be used for approximating

infinite streams in finite memory.

Jin et al. (2010) went further to expand window-based

techniques into the domain of ETL processes and even

developed a framework for real-time data warehousing.

Using its mesh-joining approach, which is called

MESHJOIN (Mesh Join), it uses a window-based

algorithm to join high-volume streaming updates with

master data efficiently. Very promising performance

could indeed be demonstrated, especially in huge data

streams compared with traditional approaches.

In 2003, Golab and Özsu give a comprehensive survey

of techniques in data stream management-including

window-based processing. Several types of windows

are briefly discussed, and application scenarios are

given for each type of window-sliding, tumbling, and

landmark windows.

Naeem et al. (2011) proposed an adaptive window-

based approach that deals with resource-constrained

environments for processing data streams. They have

provided a technique for dynamic window sizing based

on system resource availability and data characteristics.

Their method shows improved performance and better

usage of resources compared to fixed-size window

approaches.

Recently, window-based techniques were applied to

data extract and refresh processes. Polyzotis et al. (2007)

proposed the "delta extraction" approach using sliding

windows. This approach achieves efficient incremental

update with a bounded memory footprint. This seems

to be an ideal approach when full change tracking is

either infeasible or resource-intensive.

To better elaborate on the sliding window concept in

data processing, let's take this simple time-based

example pseudocode for a sliding window.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

363

This straightforward example illustrates the principle

of a sliding window: data enters the window, and old

data is ejected as the window "slides" forward in time.

Window-based techniques have an excellent

advantage with respect to data extracts and refreshes:

1. Less processing time: Window-based approaches

can significantly reduce the amount of data that

needs to be processed since every refresh cycle

targets a specific subset of data.

2. Better utilization of system resources: Window-

based techniques will allow for the efficient use of

system resources since it limits the amount of data

kept in memory at any given time.

3. Ease of adapting window-based approaches

toward shifting data patterns: window-based

strategies can easily be adapted to handle different

types of velocities and update frequencies in

different sources of data.

4. Improved real-time processing of near real-time

data: Since window-based techniques break down

a stream of data into more manageable chunks,

more frequent updates can be made against the

target system.

Window-based refresh strategies will probably play a

critical role in optimizing extract and refresh processes

as data volumes increase and the necessity of real-time

analytics grows. The following sections describe

specific window-based refresh strategies and some of

their implementation considerations in greater detail.

III. WINDOW-BASED REFRESH STRATEGIES

3.1 Conceptual Framework

Window-based refresh strategies fall into the hybrid

category, hence integrating parts of full and

incremental extracts. These strategies function on the

principle of processing the entire data in pre-defined

"windows," or "subsets" of the overall dataset. The

conceptual frame under which the window-based

refresh strategy is developed is based upon the division

of large datasets into workable chunks that can be well

processed as compared to traditional methods in terms

of efficiency and flexibility.

In this framework, the data window is the core concept

that can be defined over intervals of time, records, or

certain characteristics of data. The windows create

logical boundaries within the dataset, meaning that it

is possible to process specific subsets of data during

each cycle of refresh. Window-based strategies can

heavily reduce processing time and resource utilization

without losing the property of consistency and

completeness of data over time since they are limited

by the scope of each refresh operation.

The sliding or rolling window also comes with the

window-based method, which is a shifting or rolling

for the boundaries of the processed subset of data

throughout the whole dataset. End. The sliding

window concept is very useful in scenarios where the

data comes in continuous streams or has very frequent

updates, as it relies on near-real-time data processing

and avoids delay between the generation of the data

and its availability in the target system.

3.2 Types of Window-Based Refresh Strategies

3.2.1 Time-Based Windows

Time-based windows will categorize subsets of data

based on time considerations. In particular, this will be

useful when datasets have a strong temporal

component or where data freshness is heavily

mandated. On a time-based window strategy, data will

be extracted and processed according to specific time

windows-in this case, by hour, day, or week. Through

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

364

the adjustment of window sizes, one may balance

between freshness of data and efficiency in processing.

The major strength of time-based windows is the

natural coincidence with business processes and

reporting cycles. For example, a retail company will

create daily time-based windows to refresh the sales

data so that all transactions for the current day are

processed and ready for analysis before the start of the

next business day. Size-based windows also readily

allow for historical analysis and even trending by

creating logical partitions within the dataset.

3.2.2 Size-Based Windows

Windows define the data subset based on the number

of records or volume of data. This is very useful with

variable or unpredictable data generation rates. The

advantage in this method is that the refresh cycle

always works with the same amount of data -

regardless of how long it may have taken since the last

refresh.

Another advantage of size-based windows is their

consistent performance across refresh cycles. Here,

organizations can better predict the number of

resources to be consumed for data refresh operations

by processing a fixed number of records in each cycle.

Size-based windows are also beneficial when data

completeness within a particular subset is more

important than temporal alignment.

3.2.3 Hybrid Windows

Hybrid windows combine more than one criterion to

define subsets of data, which increasingly involve

time-based as well as size-based criteria. This approach

is inherently more flexible and can apply at each

situation to the specific business requirements and

characteristics of the data. For instance, hybrid

window strategy may detail the strategy that only the

windows that meet both maximum time criterion and

maximum record count cause a refresh cycle.

Hybrid windows are especially valuable in multi-

complex data environments, where different kinds of

data sources or types have different update frequencies

and volumes. This helps to group various datasets

within a single warehousing environment, optimize

refresh strategies based on the aggregation of different

criteria.

3.3 Implementation Considerations

While implementing window-based refresh strategies,

careful consideration of a number of factors will be

necessary to achieve optimum performance and data

integrity. Key implementation considerations will

include:

(1) Optimization of the Window Size: Depending on

the balance between processing efficiency and

fresh data requirements, an appropriate window

size should be determined. In general, larger

windows tend to minimize total processing

overheads but introduce larger delays associated

with making data available. On the other hand,

smaller windows introduce frequent updates but

increase processing overheads since refresh cycles

are more frequent.

(2) Overlap and boundary management: Good

window boundary management will avoid losing

or duplicating data in the window. If overlap

between adjacent windows is used or

checkpointing of mechanisms is used, then

consistency of data may be maintained between

window refresh cycles.

(3) Change Tracking Mechanisms- A good

mechanism of change tracking is required to

identify which of the data elements need to be

processed in every window, considering the

capability of the source system, the mechanisms

for change data capture, or even timestamp-based

approaches to identify modified or new records.

(4) Consistency and Integrity of the Data Across

Window Boundary: This should also assure

referential integrity in the target system. This will

likely be gained through transaction management

strategies or staging areas to manage the data

dependency across windows.

(5) Resource Management: Window-based

approaches generally use fewer resources because

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

365

one deals with smaller subsets of data. However,

there is still a need for strategic resource allocation

to manage peaks and support performance over a

refresh cycle.

(6) Metadata Management: Information related to

window boundaries, processing status, and lineage

data must be well managed to support tracking of

refresh processes, identification of problems, and

fulfillment of the requirements of data

governance.

This graph shows the impact of window size on

processing time and data freshness, illustrating the

trade-off between these two factors.

IV. PERFORMANCE METRICS AND

EVALUATION

4.1 Key Performance Indicators

To assess how effectively refresh strategies work in

windows KPIs are required, a set of several aspects of

the data refresh process. Important KPIs for the

evaluation of window-based refresh strategies include:

1. Refresh Cycle Time: It is the sum total time

required to complete one refresh cycle for the

process of data extraction, transformation, and

loading into the target system. This metric will

give an idea of how efficiently the refresh cycle

has been done.

2. Data Freshness: It is the difference in time

between when data is generated in a source

system and when that data would be ready in the

target system for use or access. The metric here

assumes significance since it can provide an

estimate as to how fresh data really is, if it were to

be used for either analytical or operational

purposes.

3. Resource Utilization: The usage of CPU, Memory,

and I/O during refresh cycles. These metrics

would inform one about the efficiency with

which resources are being utilized and where

potential bottlenecks might be.

4. Data Volume Processed: Amount of data

processed in each single cycle. The above metrics

can be used to gauge how effectively window

sizing and resource allocation are done.

5. Rate of Errors and Data Quality Measures:

Measures of data integrity and consistency,

including failed records, validation errors on data,

and checks for consistency across window

boundaries.

6. Scalability Measures: The change in refresh

performance of data with increases in data

volumes or the number of concurrent users.

7. Source System Impacts: Metrics that measure the

load on source systems in extracting data are

important to minimize the impact of such an ETL

process on operational systems.

4.2 Benchmarking Methods

To compare window-based refresh strategies versus

traditional methods and other implementations, there

is a need for a systematic approach. In all these, there

are essential aspects of a good benchmarking strategy:

1. Controlled Test Environment: There is a necessity

to develop a repeatable test environment that

closely resembles the production data landscape,

including volume, variety, and velocity of data.

2. Standardized Datasets: Using standardized

datasets which contain typical data and edge cases,

to possibly check on results across differing

refresh strategies.

3. Simulation of Workload: Implementing realistic

workload simulations of typical data generation

patterns and of user query behavior.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

366

4. Performance Profiling: Making use of the profiler

tools with detailed performance to capture

granular metrics regarding resource utilization,

query performance, and data flow across the

process of refresh.

5. Scalability Testing Running tests with different

data volumes and concurrency levels in order to

understand how different refresh strategies scale

6. Comparative Analysis Comprehensive

comparison of window-based strategies with the

more familiar full and incremental refresh

strategies as well as other window configurations.

4.3 Comparative Analysis with Classic Strategies

A comparison of the proposed window-based refresh

strategy with traditional strategies shows several key

benefits and possible trade-offs:

• Preprocessing Efficiency: Window-based

strategies are generally more effective in terms of

preprocessing efficiency compared to full

refreshes, especially when datasets are large and

change localized. Depending on the complexity

requirements of the change tracking involved in

such scenarios, they can also offer better

performance compared with traditional

incremental approaches.

• Resource Utilization: Window-based approaches

typically exhibit much better and more

predictable patterns of resource utilization than

full refreshes process smaller data subsets, which

means better overall system performance, and

capacity planning is less difficult.

• Timing: Window-based strategies, therefore, may

offer updates much more frequently than full

refreshes and, in principle, could approach the

capabilities of some of the near-real-time

incremental strategies. Of course, it is yet

dependency on the window configuration, and

the trade-off for timeliness will have to be

carefully tuned to achieve high levels of freshness

that are required.

• Implementation Complexity: Window-based

approaches introduce even more complexity than

the apparent simplicity of full refreshes, in

particular involving window management and

boundary handling, but usually are easier to

implement and maintain than very complex

incremental refresh systems that demand

sophisticated change-tracking mechanisms.

• Scalability: Window-based strategies usually have

better scalability features than full refresh, when

data sizes grow. They can also provide more

scalable predictable behavior than some

incremental strategies, especially if certain

incremental strategies tend to acquire unbounded

complexity at large scales.

• Data Consistency: Data consistency within

windows can be slightly more challenging to

maintain than in the case of full refreshes.

However, well implemented window-based

strategies can offer much stronger consistency

guarantees than some incremental strategies,

given that data is pretty complex.

V. OPTIMIZATION TECHNIQUES

Optimization of window-based refresh strategies is

crucial in achieving maximum performance benefits

with data extract processes. In this section, three major

optimization techniques are discussed: parallelization

approaches, adaptive window sizing, and data

partitioning strategies.

5.1. Parallelization Approaches

Parallelization is an optimization technique that can be

useful in accelerating refresh strategies making use of

windowing. The company would dramatically reduce

the cycle times of refresh as well as systematically

enhance their system throughput by employing

parallel processing techniques. In a comprehensive

analysis of parallelization techniques in data processing

systems, Abadi et al. claim that intra-query and

interquery parallelism are essential to achieve high

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

367

performance. Correct parallelization results in many

data processing scenarios in nearly linear speedup rates.

In window-based refreshes, many parallelization

approaches have been proposed and implemented.

Intrawindow parallelism divides the processing of data

within a single window across several parallel threads

or processes. It is particularly useful when huge

volumes of data lie within a window or when

transformations are complex. Ramakrishnan et al.

(2017) demonstrated that intra-window parallelism

resulted in achieving an 8x speedup in refresh

operations on large analytical datasets.

Inter-window parallelism refers to the simultaneous

processing of multiple windows. The technique is very

handy when the windows are independent, in which

case different subsets of data will refresh

simultaneously. Chen et al. presented an adaptive

inter-window parallelization algorithm that

dynamically adjusts the number of concurrently

opened windows based on system load and data

characteristics. They experimented with their

algorithm and showed an average performance gain of

40% for adaptive parallelization compared with static

parallelization approaches.

Another technique applied is pipeline parallelism,

with the various steps of the refresh process; extraction,

transformation, and loading, being processed

concurrently for successive windows. Krishnan et al.

(2016) proposed a pipelined ETL framework for real-

time data warehousing that drastically improved

results on data freshness and overall throughput. The

proposed approach resulted in up to 65% decrease in

latency when compared to the latency achieved by

traditional batch-oriented ETL processes.

This chart demonstrates the speedup achieved through

parallelization in window-based refresh strategies,

compared to the ideal linear speedup.

5.2. Adaptive Window Sizing

Adaptive Window Sizing is an optimization technique

using advanced techniques to dynamically size

windows on the basis of multiple factors in order that

the performance of the system stays at its maximum.

Such an approach would be of great use in a dynamic

data environment where, besides data velocity, the

system load changes pretty dramatically with time.

Li et al. (2018) proposed an adaptive window sizing

algorithm that continuously monitors data arrival rates

and system resource utilization using feedback control,

so that window sizes can be adjusted in real time to

realize a balance between processing efficiency and

data freshness. Experimental results have shown that

adaptive sizing improves overall system throughput by

up to 30% above the best static window configuration.

It also considers data dependencies or relationships in

adaptive window sizing. Zhang et al. proposed

dependency-aware adaptive windowing for ETL

processes in data warehousing environments in 2019.

This is a method that uses analysis of data dependencies

to optimize window sizes of related datasets, thereby

minimizing consistency issues and complexity when

managing data relationships across windows. The

authors report up to 25% less data inconsistency and

up to 15% in overall refresh performance using their

adaptive approach.

5.3. Data Partitioning Strategies

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

368

Data partitioning is crucial to optimize window-based

refresh strategies. Properly designed partitioning

schemes can improve locality significantly, reduce I/O

overhead, and enhance parallelism on refresh

operations.

A very popular approach is temporal partitioning,

where data partitions are indeed aligned with time-

based windows. Bohm et al. 2020 offer a more

comprehensive analysis of the strategies for temporal

partitioning over large analytical databases. Results:

Fine-grained time-based partitioning attained

significant performance improvements, particularly

for analytical queries for time-based. For certain

workloads, optimised temporal partitioning schemes

also resulted in up to 10x query performance

improvements.

Hash partitioning is another effective method for

highly distributing data in balanced partitions with

parallel processing. Zhang et al. (2012) discusses hybrid

hash partitioning which combines static and dynamic

partitioning to make runtime decisions based on

changes in data distribution. Their work achieved a 35%

higher ingestion rate and improved query latency by

20% compared to traditional static hash partitioning

schemes.

Range partitioning may therefore be especially

effective in optimizing the operations of such queries

as well as in making refresh data-pruning efficient.

Shanbhag et al. (2017) published adaptive range

partitioning algorithm which dynamically updates

partition boundaries based on query workload and data

distribution. Their experimental results showed up to

50% improvement in query performance for range-

heavy workloads.

Composite partitioning techniques that leverage

multiple partitioning schemes have emerged as a way

to better address complicated requirements related to

data distribution. Recently, Wu et al. proposed a multi-

dimensional partitioning framework leveraging

machine learning techniques to automatically select

and configure optimal partitioning strategies based on

workload characteristics and data properties. The

average performance improvements of their approach

were shown to be 30% for an interesting, yet diverse

set of analytical workloads.

VI. CHALLENGES AND LIMITATIONS

Although window-based refreshing strategies present

high performances, they do offer a number of

challenges and limitations that must be considered and

addressed.

6.1. Scalability Issues

Window-based refresh strategies are experiencing

scalability problems primarily due to the high volumes

and complexity of data. Effective resource

management with the distribution of workload will

remain key in keeping such systems at scale, according

to the widely described study by Armbrust et al. (2015)

on scalability in big data systems.

Another major scalability problem is window size

optimization as the volume of data increases. Larger

windows mean higher processing times and resource

utilization. On the other hand, it is depicted that

smaller windows mean higher overhead as it calls more

frequent refresh cycles. Carbone et al. (2018) proposed

an adaptive windowing technique; this technique

adapts by adjusting window sizes dynamically based on

data characteristics and corresponding system

performance metrics. Better scalability in increasing

data volume up to 10x was illustrated with minimal

deterioration of performance.

Metadata management overhead is another major

scalability challenge. As the number of windows

increases, the management of metadata for window

bounds, processing status, and data lineage become

complex. Fernandez et al. (2018) proposed a

distributed metadata management system that can

support large-scale data processing pipelines. This

eliminates 40% of metadata-related overheads and

thereby improves the scalability of the window-based

operations significantly.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

369

6.2. Data Consistency Concerns

Data consistency becomes an imperative challenge

with window-based refresh strategies, as the

relationships and data dependencies become complex.

Bailis et al. (2015) proposed a comprehensive analysis

of consistency models in distributed database systems

with trade-offs between consistency guarantees and

system performance.

A major difficulty in data consistency is caused by

cross-window dependencies. In particular, multiple

windows, where windows are processed in parallel,

require careful coordination and synchronization to

maintain consistent views of related data. Kraska et al.

(2017) proposed an algorithm for consistency-aware

scheduling of window-based data processing, reducing

the number of consistency violations while achieving

maximum parallelism. Their result eliminated up to 75%

of consistency anomalies more than naive scheduling

techniques.

Another consistency concern is referential integrity

over window boundaries. Dey et al. presented a

constraint-aware windowing approach in their work

(2016) that captures referential integrity constraints

during window definition and processing explicitly.

Their experiments reported up to 60 percent less

occurrences of integrity violations compared with

standard windowing approaches.

This heatmap visualizes the data consistency across

different windows, highlighting potential consistency

issues in window-based strategies.

6.3. Resource Utilization Trade-offs

Optimization of refresh strategies for a window-based

strategy may require many trade-offs between

processing efficiency, storage requirements, and data

freshness. Delimitrou and Kozyrakis (2014) provide an

excellent study into the management of resources in

large-scale systems for data processing, which clearly

brings to focus the issue that arises with multiple

performance objectives subject to conflicting changes

in dynamic environments.

The trade-off of processing and storage requirements is

of special importance for window-based approaches.

For instance, while fewer windows minimize the

processing time, it may well be that the storage

overhead is increased to handle the metadata of the

windows and the intermediate results. Floratou et al.

(2017) proposed an adaptive buffer management

technique for window-based stream processing,

modifying buffer size based on the characteristics of

the workload and the availability of memory. Their

approach showed up to 25% reduction in memory

usage with comparable processing performance.

The other significant trade-off is the trade-off in

freshness versus the efficiency of processing. A greater

refresh cycle leads to a possibility of increasing the

freshness of available data but will incur a higher

average utilization of the resources due to higher

overhead. Chandramouli et al. (2018) proposed a

freshness-aware scheduling algorithm for window-

based updates which based on data change rates and

user defined requirements of freshness, optimize

refresh frequencies. Results showed a 40%

improvement in data freshness while keeping a rise in

resource utilization below 10%.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

370

This graph shows CPU and memory usage over time,

illustrating the dynamic nature of resource utilization

in window-based refresh strategies.

VII. RESEARCH HORIZONS

Here, window-based refresh techniques hold

promising tracks to better improve performance and

adaptability of scalable windows, as well as integration

into the new wave of emerging technologies.

7.1. Integration with Machine Learning

As machine learning techniques and window-based

refresh strategies are integrated, an exciting possibility

lies in the optimization of performance and adaptive

processing. The idea proposed by Kraska et al. (2019)

of "learned indexes" is based on replacing the classical

index structures in the database systems with machine

learning models. It could be further extended to

window-based strategies that improve the data access

patterns along with refresh efficiency.

Window configuration optimization and refresh

policies are promising concepts that might exploit the

realms of reinforcement learning techniques. Mao et al

(2019) illustrated how strong the methods for

reinforcement learning are in the management of

resources within a distributed computing system.

Similar methodology would serve rather well to

dynamically adjust window sizes, refresh frequencies

and parallelization strategies according to workload

characteristics and system performance.

Some of the other scopes to enhance the refresh

strategy with the aid of machine learning are anomaly

detection and predictive maintenance. Laptev et al., in

2015, proposed a framework of machine learning

approaches for anomaly detection in time-series data.

Inclusion of such techniques would be useful in

window-based systems for proactive identification and

prevention of performance problems.

7.2. Enhancement of Real Time Processing

The more the need for real-time data processing and

analytics grows, the more research into enhancements

is necessary to further reduce latency and enhance data

freshness in window-based systems. A general

framework was proposed in Tangwongsan et al. (2017)

for incremental computation in streaming

environments that could be adapted to optimize

window-based refresh strategies for near-real-time

scenarios.

Another promising direction is the integration of

window-based approaches with emerging stream

processing technologies. Carbone et al. (2020)

introduced the notion of "continual streaming," and in

doing so, tried to bring together the two paradigms of

batch and stream processing, which can easily add

flexibility to window-based refresh strategies that

handle historical as well as real-time data.

7.3. Strategies for Cloud-based Implementation

There are opportunities and challenges involved in

using large-scale cloud computing platforms as more

and more organizations adopt this technology. As per

Jonas et al. (2017), the term "serverless data processing"

can be used for very scalable and cost-effective

implementations of window-based refresh systems.

Additionally, multi-cloud and edge computing

strategies related to distributed window-based

processing are areas for investigation. Sharma et al.

(2016) discussed a framework to extend stream

processing to cover both cloud and edge resources that

may be applied to optimize refresh strategies based on

windows in geographically dispersed data settings.

VIII. CONCLUSION

8.1. Summary of Findings

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

371

This holistic analysis regarding the refresh of data

extracts with window-based refresh strategies has

generated a number of highly informative findings.

With a comparative view, one finds that this approach

offers several benefits over the traditional complete

and differential methods of refreshing data, especially

with large sizes of data to be refreshed at high speeds.

This paper goes to prove that if correctly done,

window-based strategy shall reduce processing times

significantly while putting resources to even better use

by making data closer to real time.

Key aspects where it is improving performance include:

A. Reduction of processing times up to 65%

compared with full refresh methods (Krishnan et

al., 2016)

B. Throughput improvement by 30-40% with

adaptive parallelization along with window sizing

techniques (Chen et al., 2020; Li et al., 2018)

C. Uptill 40% improvement of data freshness due to

optimized scheduling algorithms (Chandramouli

et al., 2018)

The research, however has also identified a lot of

critical challenges and limitations, including scalability

issues, consistency concerns, and the trade-offs in

terms of resource utilization. All these demands careful

considerations, including window sizing, partitioning

strategies, and consistency management techniques.

8.2. Practical Implications

The key findings from this research have a number of

practical implications for organisations installing and

using data warehousing and business intelligence

systems:

1. Strategies refreshed based on windows highly

improve the performance and efficiency of the

data extract process, especially for organizations

dealing with big, frequently updated datasets.

2. Adaptive techniques for window size and

parallelization help in keeping the overall

performance at a maximum as data volumes

change or workload characteristics evolve.

3. Careful consideration of partitioning strategies for

data involved would maximize the benefits of

window-based approaches, especially temporal

and composite partitioning, which is specially

promising for analytical workloads.

4. therefore, any organization adopting window-

based strategies would need to weigh the trade-

offs between accessing fresh data, efficient

processing, and resource usage.

5. Due merely to the nature of window-based

refresh strategies, ensuring data consistency will

involve also considering crosswindow

dependencies, besides referential integrity

constraints.

Recommendations for Implementation

Based on the results of the research, the following

recommendations were proposed to organizations

looking forward to adopting or optimizing their

existing refresh strategies as window-based.

1. Input rich characterization of data, update

patterns, and query workloads for devising

window-based refresh strategies from initial

design.

2. Adaptive techniques applied at both the window

size and parallelization level to maintain the

window-based adaptive environment at an

optimal performance level.

3. Careful engineering of the data partitioning style

by considering workload requirements in

temporal, hash, and range partitioning styles.

4. Robust metadata management systems to track

window boundaries, status of processing, and

lineage of data.

5. Implement consistency aware scheduling

algorithms and constraint aware windowing

techniques to reduce data consistency anomalies.

6. Monitor and tune the performance of the system

regularly, hence ensuring subsequent window

configurations and resource allocations.

7. Investigate the possibility of integration of

machine learning methods towards accomplishing

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

372

predictive maintenance as well as anomaly

detection for refreshing processes based on

windows.

8. Investigate strategies for implementation in the

cloud in order to exploit better scalability and

flexibility of modern cloud platforms.

9. End-to-end comprehensive activities related to

refreshing window-based operations must be

allowed to be tested and validated in order to

ensure that the integrity and consistency of the

data are correct.

10. Data engineering as well as operations teams must

be fully trained and documented in terms of

management and troubleshooting for window-

based refresh systems.

These recommendations, if implemented, will lead to

awareness of ongoing research in the field and enable

organizations to make better use of window-based

refresh strategies to gain huge performance and

efficiency enhancements in their data extraction

processes.

IX. REFERENCES

[1]. Abadi, D., Ailamaki, A., Andersen, D., Bailis, P.,

Balazinska, M., Bernstein, P., ... & Zaharia, M.

(2019). The Seattle Report on Database Research.

ACM SIGMOD Record, 48(4), 44-53.

[2]. Armbrust, M., Ghodsi, A., Zaharia, M., Xin, R. S.,

Lian, C., Huai, Y., ... & Franklin, M. J. (2015). Spark

SQL: Relational data processing in Spark. In

Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data

(pp. 1383-1394).

[3]. Bailis, P., Fekete, A., Franklin, M. J., Ghodsi, A.,

Hellerstein, J. M., & Stoica, I. (2015). Coordination

avoidance in database systems. Proceedings of the

VLDB Endowment, 8(3), 185-196.

[4]. Boehm, M., Schlegel, B., Volk, P. B., Fischer, U.,

Habich, D., & Lehner, W. (2020). Efficient in-

memory indexing with generalized prefix trees.

ACM Transactions on Database Systems (TODS),

45(1), 1-47.

[5]. Carbone, P., Fragkoulis, M., Kalavri, V., &

Katsifodimos, A. (2020). Beyond analytics: the

evolution of stream processing systems. In

Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data

(pp. 2651-2658).

[6]. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,

Haridi, S., & Tzoumas, K. (2018). Apache Flink:

Stream and batch processing in a single engine.

Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering, 36(4), 28-38.

[7]. Chandramouli, B., Goldstein, J., Barnett, M., DeLine,

R., Fisher, D., Platt, J. C., ... & Terwilliger, J. (2018).

Trill: A high-performance incremental query

processor for diverse analytics. Proceedings of the

VLDB Endowment, 8(4), 401-412.

[8]. Chen, L., Gao, H., & Xu, Z. (2020). Adaptive parallel

execution for window-based stream queries.

[9]. Delimitrou, C., & Kozyrakis, C. (2014). Quasar:

Resource-efficient and QoS-aware cluster

management. In Proceedings of the 19th

International Conference on Architectural Support

for Programming Languages and Operating Systems

(pp. 127-144). ACM.

[10]. Dey, A., Fekete, A., Nambiar, R., & Röhm, U. (2016).

YCSB+T: Benchmarking web-scale transactional

databases. In 2016 IEEE 32nd International

Conference on Data Engineering Workshops

(ICDEW) (pp. 223-230). IEEE.

[11]. Fernandez, R. C., Migliavacca, M., Kalyvianaki, E.,

& Pietzuch, P. (2018). Integrating scale out and fault

tolerance in stream processing using operator state

management. In Proceedings of the 2018

International Conference on Management of Data

(pp. 725-739). ACM.

[12]. Floratou, A., Agrawal, A., Graham, B., Rao, S., &

Ramasamy, K. (2017). Dhalion: Self-regulating

stream processing in Heron. Proceedings of the

VLDB Endowment, 10(12), 1825-1836.

[13]. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., &

Recht, B. (2017). Occupy the cloud: Distributed

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

373

computing for the 99%. In Proceedings of the 2017

Symposium on Cloud Computing (pp. 445-451).

ACM.

[14]. Kraska, T., Alizadeh, M., Beutel, A., Chi, E. H.,

Kristo, A., Leclerc, G., ... & Zaharia, M. (2019).

SageDB: A learned database system. In CIDR.

[15]. Kraska, T., Beutel, A., Chi, E. H., Dean, J., &

Polyzotis, N. (2017). The case for learned index

structures. In Proceedings of the 2018 International

Conference on Management of Data (pp. 489-504).

ACM.

[16]. Krishnan, S., Wang, J., Wu, E., Franklin, M. J., &

Goldberg, K. (2016). ActiveClean: Interactive data

cleaning for statistical modeling. Proceedings of the

VLDB Endowment, 9(12), 948-959.

[17]. Laptev, N., Amizadeh, S., & Flint, I. (2015). Generic

and scalable framework for automated time-series

anomaly detection. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 1939-1947). ACM.

[18]. Li, J., Maier, D., Tufte, K., Papadimos, V., & Tucker,

P. A. (2018). No pane, no gain: Efficient evaluation

of sliding-window aggregates over data streams. In

Proceedings of the 2018 International Conference

on Management of Data (pp. 39-53). ACM.

[19]. Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B.,

Meng, Z., & Alizadeh, M. (2019). Learning

scheduling algorithms for data processing clusters.

In Proceedings of the ACM Special Interest Group

on Data Communication (pp. 270-288). ACM.

[20]. Ramakrishnan, S. R., Swart, G., & Urmanov, A.

(2017). Balancing reducer skew in MapReduce

workloads using progressive sampling. In

Proceedings of the 2017 Symposium on Cloud

Computing (pp. 282-294). ACM.

[21]. Shanbhag, A., Jindal, A., Madden, S., Quamar, A., &

Zhou, H. (2017). A robust partitioning scheme for

ad-hoc query workloads. In Proceedings of the 2017

ACM International Conference on Management of

Data (pp. 1349-1364). ACM.

[22]. Sharma, P., Guo, T., He, X., Irwin, D., & Shenoy, P.

(2016). Flint: Batch-interactive data-intensive

processing on transient servers. In Proceedings of

the Eleventh European Conference on Computer

Systems (pp. 1-15). ACM.

[23]. Tangwongsan, K., Hirzel, M., Schneider, S., & Wu,

K. L. (2017). General incremental sliding-window

aggregation. Proceedings of the VLDB Endowment,

8(7), 702-713.

[24]. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüş,

H., & Naughton, J. F. (2021). Towards a learning

optimizer for shared clouds. Proceedings of the

VLDB Endowment, 12(3), 210-222.

[25]. Zamanian, E., Binnig, C., & Salama, A. (2015).

Locality-aware partitioning in parallel database

systems. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data

(pp. 17-30). ACM.

[26]. Zhang, Y., Cui, B., Fu, H., Guo, W., & Zhang, W.

(2019). AdaM: An adaptive partitioning mechanism

for continuous query processing over data streams.

The VLDB Journal, 28(3), 351-376

[27]. .Santhosh Palavesh. (2019). The Role of Open

Innovation and Crowdsourcing in Generating New

Business Ideas and Concepts. International Journal

for Research Publication and Seminar, 10(4), 137–

147. https://doi.org/10.36676/jrps.v10.i4.1456

[28]. Santosh Palavesh. (2021). Developing Business

Concepts for Underserved Markets: Identifying and

Addressing Unmet Needs in Niche or Emerging

Markets. Innovative Research Thoughts, 7(3), 76–

89. https://doi.org/10.36676/irt.v7.i3.1437

[29]. Palavesh, S. (2021). Co-Creating Business Concepts

with Customers: Approaches to the Use of

Customers in New Product/Service Development.

Integrated Journal for Research in Arts and

Humanities, 1(1), 54–66.

https://doi.org/10.55544/ijrah.1.1.9

[30]. Santhosh Palavesh. (2021). Business Model

Innovation: Strategies for Creating and Capturing

Value Through Novel Business Concepts. European

Economic Letters (EEL), 11(1).

https://doi.org/10.52783/eel.v11i1.1784

[31]. Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal,

Santosh Palavesh, Krishnateja Shiva, Pradeep

Etikani. (2020). Regulating AI in Fintech: Balancing

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

374

Innovation with Consumer Protection. European

Economic Letters (EEL), 10(1).

https://doi.org/10.52783/eel.v10i1.1810

[32]. Challa, S. S. S. (2020). Assessing the regulatory

implications of personalized medicine and the use of

biomarkers in drug development and approval.

European Chemical Bulletin, 9(4), 134-

146.D.O.I10.53555/ecb.v9:i4.17671

[33]. EVALUATING THE EFFECTIVENESS OF RISK-

BASED APPROACHES IN STREAMLINING THE

REGULATORY APPROVAL PROCESS FOR

NOVEL THERAPIES. (2021). Journal of Population

Therapeutics and Clinical Pharmacology, 28(2), 436-

448. https://doi.org/10.53555/jptcp.v28i2.7421

[34]. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke,

A. P. (2019). Investigating the use of natural

language processing (NLP) techniques in automating

the extraction of regulatory requirements from

unstructured data sources. Annals of Pharma

Research, 7(5), 380-387.

[35]. Challa, S. S. S., Chawda, A. D., Benke, A. P., & Tilala,

M. (2020). Evaluating the use of machine learning

algorithms in predicting drug-drug interactions and

adverse events during the drug development

process. NeuroQuantology, 18(12), 176-186.

https://doi.org/10.48047/nq.2020.18.12.NQ20252

[36]. Ranjit Kumar Gupta, Sagar Shukla, Anaswara

Thekkan Rajan, Sneha Aravind, 2021. "Utilizing

Splunk for Proactive Issue Resolution in Full Stack

Development Projects" ESP Journal of Engineering

& Technology Advancements 1(1): 57-64.

[37]. Sagar Shukla. (2021). Integrating Data Analytics

Platforms with Machine Learning Workflows:

Enhancing Predictive Capability and Revenue

Growth. International Journal on Recent and

Innovation Trends in Computing and

Communication, 9(12), 63–74. Retrieved from

https://ijritcc.org/index.php/ijritcc/article/view/111

19

[38]. Sneha Aravind. (2021). Integrating REST APIs in

Single Page Applications using Angular and

TypeScript. International Journal of Intelligent

Systems and Applications in Engineering, 9(2), 81 –.

Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/682

9

[39]. Bhavesh Kataria "Weather-Climate Forecasting

System for Early Warning in Crop Protection,

International Journal of Scientific Research in

Science, Engineering and Technology, Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 1,

Issue 5, pp.442-444, September-October-2015.

Available at : https://doi.org/10.32628/ijsrset14111

[40]. Siddhant Benadikar. (2021). Developing a Scalable

and Efficient Cloud-Based Framework for

Distributed Machine Learning. International Journal

of Intelligent Systems and Applications in

Engineering, 9(4), 288 –. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/676

1

[41]. Siddhant Benadikar. (2021). Evaluating the

Effectiveness of Cloud-Based AI and ML Techniques

for Personalized Healthcare and Remote Patient

Monitoring. International Journal on Recent and

Innovation Trends in Computing and

Communication, 9(10), 03–16. Retrieved from

https://www.ijritcc.org/index.php/ijritcc/article/vie

w/11036

[42]. Challa, S. S., Tilala, M., Chawda, A. D., & Benke, A.

P. (2019). Investigating the use of natural language

processing (NLP) techniques in automating the

extraction of regulatory requirements from

unstructured data sources. Annals of

PharmaResearch, 7(5), 380-387.

[43]. Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017).

Blockchain Technology in Healthcare Billing:

Enhancing Transparency and Security. International

Journal for Research Publication and Seminar, 10(2),

106–117. Retrieved from

https://jrps.shodhsagar.com/index.php/j/article/vie

w/1475

[44]. Saloni Sharma. (2020). AI-Driven Predictive

Modelling for Early Disease Detection and

Prevention. International Journal on Recent and

Innovation Trends in Computing and

Communication, 8(12), 27–36. Retrieved from

https://doi.org/10.32628/ijsrset14111

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

375

https://www.ijritcc.org/index.php/ijritcc/article/vie

w/11046

[45]. Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H.

P., & Ogeti, P. (2020). Machine learning applications

in climate modeling and weather forecasting.

NeuroQuantology, 18(6), 135-145.

https://doi.org/10.48047/nq.2020.18.6.NQ20194

[46]. Narendra Sharad Fadnavis. (2021). Optimizing

Scalability and Performance in Cloud Services:

Strategies and Solutions. International Journal on

Recent and Innovation Trends in Computing and

Communication, 9(2), 14–21. Retrieved from

https://www.ijritcc.org/index.php/ijritcc/article/vie

w/10889

[47]. Patil, G. B., Padyana, U. K., Rai, H. P., Ogeti, P., &

Fadnavis, N. S. (2021). Personalized marketing

strategies through machine learning: Enhancing

customer engagement. Journal of Informatics

Education and Research, 1(1), 9. http://jier.org

[48]. Bhaskar, V. V. S. R., Etikani, P., Shiva, K.,

Choppadandi, A., & Dave, A. (2019). Building

explainable AI systems with federated learning on

the cloud. Journal of Cloud Computing and Artificial

Intelligence, 16(1), 1–14.

[49]. Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal,

Santosh Palavesh, Krishnateja Shiva, Pradeep

Etikani. (2020). Regulating AI in Fintech: Balancing

Innovation with Consumer Protection. European

Economic Letters (EEL), 10(1).

https://doi.org/10.52783/eel.v10i1.1810

[50]. Dave, A., Etikani, P., Bhaskar, V. V. S. R., & Shiva,

K. (2020). Biometric authentication for secure

mobile payments. Journal of Mobile Technology and

Security, 41(3), 245-259.

[51]. Saoji, R., Nuguri, S., Shiva, K., Etikani, P., & Bhaskar,

V. V. S. R. (2021). Adaptive AI-based deep learning

models for dynamic control in software-defined

networks. International Journal of Electrical and

Electronics Engineering (IJEEE), 10(1), 89–100. ISSN

(P): 2278–9944; ISSN (E): 2278–9952

[52]. Bhavesh Kataria "Use of Information and

Communications Technologies (ICTs) in Crop

Production” International Journal of Scientific

Research in Science, Engineering and Technology,

Print ISSN : 2395-1990, Online ISSN : 2394-4099,

Volume 1, Issue 3, pp.372-375, May-June-2015.

Available at : https://doi.org/10.32628/ijsrset151386

[53]. Narendra Sharad Fadnavis. (2021). Optimizing

Scalability and Performance in Cloud Services:

Strategies and Solutions. International Journal on

Recent and Innovation Trends in Computing and

Communication, 9(2), 14–21. Retrieved from

https://www.ijritcc.org/index.php/ijritcc/article/vie

w/10889

[54]. Prasad, N., Narukulla, N., Hajari, V. R., Paripati, L.,

& Shah, J. (2020). AI-driven data governance

framework for cloud-based data analytics. Volume

17, (2), 1551-1561.

[55]. Big Data Analytics using Machine Learning

Techniques on Cloud Platforms. (2019).

International Journal of Business Management and

Visuals, ISSN: 3006-2705, 2(2), 54-58.

https://ijbmv.com/index.php/home/article/view/76

[56]. Bhavesh Kataria, Jethva Harikrishna, "Performance

Comparison of AODV/DSR On-Demand Routing

Protocols for Ad Hoc Networks", International

Journal of Scientific Research in Science and

Technology, Print ISSN : 2395-6011, Online ISSN :

2395-602X, Volume 1, Issue 1, pp.20-30, March-

April-2015. Available at :

https://doi.org/10.32628/ijsrst15117

[57]. Shah, J., Narukulla, N., Hajari, V. R., Paripati, L., &

Prasad, N. (2021). Scalable machine learning

infrastructure on cloud for large-scale data

processing. Tuijin Jishu/Journal of Propulsion

Technology, 42(2), 45-53.

[58]. Narukulla, N., Lopes, J., Hajari, V. R., Prasad, N., &

Swamy, H. (2021). Real-time data processing and

predictive analytics using cloud-based machine

learning. Tuijin Jishu/Journal of Propulsion

Technology, 42(4), 91-102

[59]. Secure Federated Learning Framework for

Distributed Ai Model Training in Cloud

Environments. (2019). International Journal of Open

Publication and Exploration, ISSN: 3006-2853, 7(1),

https://doi.org/10.32628/ijsrset151386
https://doi.org/10.32628/ijsrst15117

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

376

31-39.

https://ijope.com/index.php/home/article/view/145

[60]. Paripati, L., Prasad, N., Shah, J., Narukulla, N., &

Hajari, V. R. (2021). Blockchain-enabled data

analytics for ensuring data integrity and trust in AI

systems. International Journal of Computer Science

and Engineering (IJCSE), 10(2), 27–38. ISSN (P):

2278–9960; ISSN (E): 2278–9979.

[61]. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke,

A. P. (2019). Investigating the use of natural

language processing (NLP) techniques in automating

the extraction of regulatory requirements from

unstructured data sources. Annals of Pharma

Research, 7(5),

[62]. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke,

A. P. (2021). Navigating regulatory requirements for

complex dosage forms: Insights from topical,

parenteral, and ophthalmic products.

NeuroQuantology, 19(12), 15.

[63]. Tilala, M., & Chawda, A. D. (2020). Evaluation of

compliance requirements for annual reports in

pharmaceutical industries. NeuroQuantology,

18(11), 27.

[64]. Ghavate, N. (2018). An Computer Adaptive Testing

Using Rule Based. Asian Journal For Convergence In

Technology (AJCT) ISSN -2350-1146, 4(I). Retrieved

from

http://asianssr.org/index.php/ajct/article/view/443

[65]. Shanbhag, R. R., Dasi, U., Singla, N.,

Balasubramanian, R., & Benadikar, S. (2020).

Overview of cloud computing in the process control

industry. International Journal of Computer Science

and Mobile Computing, 9(10), 121-146.

https://www.ijcsmc.com

[66]. Bhavesh Kataria, "XML Enabling Homogeneous and

Platform Independent Data Exchange in

Agricultural Information Systems, International

Journal of Scientific Research in Science,

Engineering and Technology, Print ISSN : 2395-

1990, Online ISSN : 2394-4099, Volume 1, Issue 2,

pp.129-133, March-April-2015. Available at :

https://doi.org/10.32628/ijsrset152239

[67]. Benadikar, S. (2021). Developing a scalable and

efficient cloud-based framework for distributed

machine learning. International Journal of

Intelligent Systems and Applications in Engineering,

9(4), 288. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/676

1

[68]. Shanbhag, R. R., Balasubramanian, R., Benadikar, S.,

Dasi, U., & Singla, N. (2021). Developing scalable

and efficient cloud-based solutions for ecommerce

platforms. International Journal of Computer

Science and Engineering (IJCSE), 10(2), 39-58.

[69]. Tripathi, A. (2020). AWS serverless messaging using

SQS. IJIRAE: International Journal of Innovative

Research in Advanced Engineering, 7(11), 391-393.

[70]. Bhavesh Kataria, "The Challenges of Utilizing

Information Communication Technologies (ICTs) in

Agriculture Extension, International Journal of

Scientific Research in Science, Engineering and

Technology, Print ISSN : 2395-1990, Online ISSN :

2394-4099, Volume 1, Issue 1, pp.380-384, January-

February-2015. Available at :

https://doi.org/10.32628/ijsrset1511103

[71]. Tripathi, A. (2019). Serverless architecture patterns:

Deep dive into event-driven, microservices, and

serverless APIs. International Journal of Creative

Research Thoughts (IJCRT), 7(3), 234-239.

Retrieved from http://www.ijcrt.org

[72]. Thakkar, D. (2021). Leveraging AI to transform

talent acquisition. International Journal of Artificial

Intelligence and Machine Learning, 3(3), 7.

https://www.ijaiml.com/volume-3-issue-3-paper-1/

[73]. Bhavesh Kataria, "Role of Information Technology

in Agriculture : A Review, International Journal of

Scientific Research in Science, Engineering and

Technology, Print ISSN : 2395-1990, Online ISSN :

2394-4099, Volume 1, Issue 1, pp.01-03, 2014.

Available at : https://doi.org/10.32628/ijsrset141115

[74]. Thakkar, D. (2020, December). Reimagining

curriculum delivery for personalized learning

experiences. International Journal of Education,

2(2), 7. Retrieved from

https://iaeme.com/Home/article_id/IJE_02_02_003

https://doi.org/10.32628/ijsrset152239
https://doi.org/10.32628/ijsrset1511103
https://doi.org/10.32628/ijsrset141115

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Swethasri Kavuri et al Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 359-377

377

[75]. Kanchetti, D., Munirathnam, R., & Thakkar, D.

(2019). Innovations in workers compensation: XML

shredding for external data integration. Journal of

Contemporary Scientific Research, 3(8). ISSN

(Online) 2209-0142.

[76]. Aravind Reddy Nayani, Alok Gupta, Prassanna

Selvaraj, Ravi Kumar Singh, & Harsh Vaidya. (2019).

Search and Recommendation Procedure with the

Help of Artificial Intelligence. International Journal

for Research Publication and Seminar, 10(4), 148–

166. https://doi.org/10.36676/jrps.v10.i4.1503

[77]. Vaidya, H., Nayani, A. R., Gupta, A., Selvaraj, P., &

Singh, R. K. (2020). Effectiveness and future trends

of cloud computing platforms. Tuijin Jishu/Journal

of Propulsion Technology, 41(3). Retrieved from

https://www.journal-propulsiontech.com

[78]. Alok Gupta. (2021). Reducing Bias in Predictive

Models Serving Analytics Users: Novel Approaches

and their Implications. International Journal on

Recent and Innovation Trends in Computing and

Communication, 9(11), 23–30. Retrieved from

https://ijritcc.org/index.php/ijritcc/article/view/111

08

[79]. Bhavesh Kataria, "Variant of RSA-Multi prime RSA,

International Journal of Scientific Research in

Science, Engineering and Technology, Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 1,

Issue 1, pp.09-11, 2014. Available at

https://doi.org/10.32628/ijsrset14113

[80]. Rinkesh Gajera , "Leveraging Procore for Improved

Collaboration and Communication in Multi-

Stakeholder Construction Projects", International

Journal of Scientific Research in Civil Engineering

(IJSRCE), ISSN : 2456-6667, Volume 3, Issue 3,

pp.47-51, May-June.2019

[81]. Voddi, V. K. R., & Konda, K. R. (2021). Spatial

distribution and dynamics of retail stores in New

York City. Webology, 18(6). Retrieved from

https://www.webology.org/issue.php?volume=18&i

ssue=60

[82]. Gudimetla, S. R., et al. (2015). Mastering Azure AD:

Advanced techniques for enterprise identity

management. Neuroquantology, 13(1), 158-163.

https://doi.org/10.48047/nq.2015.13.1.792

[83]. Gudimetla, S. R., & et al. (2015). Beyond the barrier:

Advanced strategies for firewall implementation and

management. NeuroQuantology, 13(4), 558-565.

https://doi.org/10.48047/nq.2015.13.4.876

https://doi.org/10.32628/ijsrset14113

