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ABSTRACT 
 

One of the attractive research area in Engineering and Technology is Reversible Computing / Reversible logic. 

The attraction of scientists and researchers in this field in the last decade is strongly due to low-power 

consumption for the execution of operations. To minimize the width of circuit, garbage, total gate numbers and 

delay are the objectives of the reversible logic synthesis. This paper explains the design methodology regarding 

reversible Booth’s multiplier to be realized. Researchers’ attempts are thus making complete reversible logic 

circuits made up of reversible gates. Reversible Booth’s multiplication process as considered to be a speediest 

multiplier method. Being inspired in it, an efficient design-methodology for reversible paradigm is shown. The 

proposed architecture for reversible multiplication is capable of performing over signed and unsigned number 

multiplications for two input numbers without keeping any feedbacks. But the existing reversible mode of 

multiplication thinks of the feedback loop that is strongly prohibited in our present reversible multiplication 

mode. Theoretical underpinnings are able to show the efficiency of a reversible logic calculation and 

accordingly it is observed that our proposed circuit is more efficient with respect to the design viewpoint of a 

reversible circuit.  

Keywords :  Quantum Cost, Reversible Logic Booth’s Multiplier, Permutation Matrix, Garbage Value 

 

I. INTRODUCTION 

 

The field of reversible logic is achieving a growing 

interest by its possibility in quantum computing, low-

power CMOS, nanotechnology, and optical 

computing. It is now strongly taken that CMOS 

technology used for irreversible logic will create hit to 

a scaling limit beyond 2016, and this positive power 

consumption/dissipation is a considerable limiting 

factor. Landauer’s principle [1] says that the logic 

computations, not reversible create heat 

kT(ln2)( where k = Plank′s constant) for any bit of 

information that is lost. In idle case, Frank [2] says 

that computers computations on reversible logic 

operations are able to reuse a fractional part of signal 

power that can approach close to 100%.  

A gate which has k-number inputs and k-number of 

outputs is said to be reversible iff it maps each vector 

input to a unique vector output. The structure of a 

reversible network lies in the cascade or in sequence 

of reversible gates. In practice, not all of the n! It is 

important that the reversible functions can be 

considered as a reversible gate. There are two 

restrictions joined in reversible networks, they are 

back-feeds and fan-outs. There is a reversible 

multiplier designed in [3] that acts only on the 

unsigned numbers only, whereas, the recently 

developed reversible multiplier in [4] is on the basis of 

Booth recoding. On the other hand, the proposed 
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design is dedicated to eliminate these limitations and 

to prove its supremacy thereby. This design also 

develops its efficiency by means of assimilating all the 

fine characteristics of reversible circuits characterized 

by the positive number of garbage outputs as well as 

number of gates. 

 

Rest of the paper is organized as follows: After 

illustrating the preliminaries of reversible logic gates 

in Sections 2 and 3 we have presented the input-

output vectors of popular reversible gates along with 

their quantum costs. Section 5 concentrates on the 

main logic synthesis of the proposed reversible 

multiplier with the detailed description of each 

designed blocks. The theoretical underpinnings and 

the evaluation of the proposed Booth’s multiplier are 

shown in Section 6. Some theorems with respect to 

the n × n Reversible Multiplier are given in section 8. 

We conclude in Section 9 discussing the main 

contribution and the future work. 

 

II.   LITERATURE REVIEW 

Here, ideas and definitions relating to reversible logic 

are cited. 

1)  Related works in reversible gates 

Reversible gates or reversible logic gates are the gates 

with a property of equal number of inputs and 

outputs, i.e. n-inputs and n-outputs. This reversible 

gates will minimize power consumption during the 

executions or computations provided the number of 

inputs equal to the number of outputs. This is possible 

because the outputs can be determined using the 

inputs and on the other hand equally the inputs can 

be recovered from the output uniquely [13,14,15]. 

Some works already have been done regarding 

reversible logics but this paper work is the first 

attempt in constructing it a structured type from the 

very fundamental logic gates [16]. This method of 

designing from logic gates improves the designing 

strategy from basic level which will have an effect on 

further higher level circuits and modules thus 

designed [17]. Hence, here an attempt is made to 

design reversible circuits from basic level to advanced 

level, by first designing logic gates and then using 

them to design higher level modules. This kind of 

structured approach is not carried out yet, to the best 

of the author’s knowledge [18]. 

 

1.1.1. Controlled NOT gate [CNOT gate] 

This gate is also called as Feynman gate, which gives 

the XOR operation of the inputs, as shown in Fig 1. 

Its quantum cost is 1. CNOT is widely used for fan-

out purposes. Here P=A; Q= A ⊕ B. 

 

 
Fig. 1. CNOT gate. 

 

1.1.2. Peres Gate 

 

The new logic gate named “Peres gate” is a reversible 

gates having 3 inputs (A, B, C) and 3 outputs (P,Q,R) 

in Fig. 2 bearing quantum cost of 4.  In the Figure, 

input-output relationships are: R = (A 𝐀𝐍𝐃  B) ⊕ 

C, Q = A ⊕ B and P = A [13]. 

 

 
Fig. 2. Peres Gate 

1.1.3. URG Gate (Universal Reversible logic Gate) 

Like the “. Peres Gate” URG has the same number of 

input and outputs i.e, 3 inputs (A, B, C) and 3 outputs 

(P,Q,R), but quantum cost of 6 which is not the same 

as 4(for Peres Gate). The input-output relationships 

https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0013
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0014
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0015
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0016
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0017
https://www.sciencedirect.com/topics/engineering/and-logic-gate
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0018
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#fig0008
https://www.sciencedirect.com/science/article/pii/S2666285X22000474#bib0013
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are: R = (A.B) ⊕ C, Q = B and P = (A+B) ⊕ C. This 

relationship is depicted in Fig. 3 below.  

 

 
Fig. 3 URG Gate 

 

2). Reversible gates  

Reversible gates are being the system of circuits 

which perform one-to-one mapping betwixt vectors 

of inputs and outputs; as the mapping capability they 

have, the input vector states can always be retrieved 

from the output vector states if they got lost. Research 

performed by Landauer[1] and Bennett proved that 

the energy dissipation will not happen if computation 

is made reversible. With a view to obtain a number of 

reversible gates, many of such gates are designed and 

invented. Some examples concerning them are – (i) 

the Feynman gate, (ii) the Fredkin gate, (iii) the 

Toffoli gate, and (iv) the Peres gate. Extensive 

applications involved in Reversible logic is considered 

to be one of futuristic technologies. We are aware of 

the logic circuit constructed for a special purpose on 

the basis of logic gates, which are not reversible but 

non-reversible. In this paper we have designed logic 

gate by using reversible gates. Such reversible gates 

will give us assistance for implementing logic circuits 

having higher end (of degree).  

Suppose the input vector  is  Vi ,  output  vector  Vo  

and  they are defined like this,  Vi  =  (Vi1 , Vi2, . . . , 

Vin) and  Vo  = ( Vo1 , Vo2 , . . . , Von ), then the 

relationship for a reversible gate gives Vi  ⇌ Vo. 

a) Feynman gate  

In a reversible gate, some unwanted/unused outputs 

are known to be Garbage outputs. It can also be 

defined or treated as Garbage outputs. In the 

Feynman gate (CNOT gate), while it performs the 

exclusive-OR operation for one output, the other 

output is called the garbage depicted in Fig. 4(a).  

This garbage (P=A) is essential for the purpose of 

controlling the reversibility of the output. The gate 

bearing garbage has its quantum cost equal to 1. 

CNOT can be used for fan-out purposes. The input-

output relationships are P=A and Q= A⊕B. The 

Permutation Matrix for this gate is given in Fig. 4(b). 

 

 
Fig. 4(a) Feynman gate (CNOT gate) 

 

 
Fig. 4(b) Truth Table and Permutation Matrix 

 

b) Delay 

The executing/quantum delay executing/quantum 

delay regarding to a logic circuit can be defined as 

sum of the executing/quantum delays of all gates 

connected sequentially in a path starting from an 

input point to a desired output terminal point. The 

executing/quantum delay of the circuit given in Fig. 

4(a) is 1 because of its having only a gate in any path 

getting started from the input to the output 

terminal(s). 

 

c) Quantum Cost (QC) 

For a 2× 2 (2-inputs, 2-outputs) gate the quantum cost 

(QC) equal to  (=1) [16], whereas a 1×1 gate costs 

nothing because this gate can always be included in 

arbitrary 2×2 gate and this gate can follow or precede 

it. Each permutation quantum gate can be constructed 

from 1×1 and 2×2 quantum primitives and its 

https://www.sciencedirect.com/topics/engineering/energy-dissipation
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quantum cost is measured as the sum total of 2×2 gates 

being used in the circuit. 

Given below some popular reversible gates in Table 1 

along with their corresponding quantum cost and 

input-output vectors. 

 

Table-1   Some popular reversible gates with their input-output relations and quantum costs 

 

3). Implementation of array for booth Multiplication 

 

Booth multiplication method implemented by a 

combinational array attracts a multifunctional cell 

called “Main Cell” which is capable of doing 

subtraction, addition and no operation or skip. Such a 

multifunctional “Main Cell” is depicted in Fig. 6(a) 

showing the different inputs (a, b, c, D, H) and 

outputs (z, b, Cout, D, H). The relationships between 

inputs and outputs can be established with the help of 

the following equations: 

z=a⨁(b⨁𝑐)𝐻…………………... (1) 

𝐶𝑜𝑢𝑡= (a⨁D) (b+c) + bc………… (2) 

From the above equations, if the values of H and D 

are assumed to be 1 and 0 respectively, then these two 

equations reduce to full-adder equations like 

z=a⨁b⨁𝑐………………..…….. (3) 

𝐶𝑜𝑢𝑡=a (b+c) + bc……………… (4) 

−where 𝑐 and  𝐶𝑜𝑢𝑡 do the roles of carry-in and carry-

out. 

If the values of H and D are assumed to be 1 and 1 

respectively, then these two equations reduce to full-

subtractor equations like 

 

z=a⨁b⨁𝑐………………..…….. (5) 

𝐶𝑜𝑢𝑡=a̅ (b+c) + bc……………… (6) 

here 𝑐 and  𝐶𝑜𝑢𝑡do the roles of borrow-in and 

borrow-out 

 

When the values of H and D are assumed to be 0 and 

0 respectively, the equations reduce to (7) and (8), 

where z has no change, i.e., it takes the previous value. 

𝐶𝑜𝑢𝑡 indicates the carry-out. 

z=a……………………….…….. (7) 

𝐶𝑜𝑢𝑡=a (b+c) + bc……………… (8) 

When the values of H and D are assumed to be 0 and 

0 respectively, the equations reduce to (9) and (10), 

where z has no change, i.e., it takes the previous value. 

𝐶𝑜𝑢𝑡 indicates the borrow-out. 

z=a……………………….…….. (9) 

𝐶𝑜𝑢𝑡=a̅ (b+c) + bc……………… (10) 

 
Fig. 5(a) HD Cell 

 

Fig. 5(b) Quantum Cell of HD Cell with quantum cost 

3 
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Noted that the operations performed by the row 𝑖 of 

“main Cells” [in Fig. 6(a)] are concluded by the values 

of 𝑥𝑖𝑥𝑖−1  of the multiplier   𝑋 . We can use every 

possible pair 𝑥𝑖 , 𝑥𝑖−1  for the purpose of controlling 

the row operations, by introducing another Cell 

indicated HD shown in Fig. 5(b). This HD Cell 

produces the controlling input signals H and D which 

are essential for the “Main Cells”. The HD Cell must 

compare the values of 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑖−1 and deliver the 

decision value of HD inevitable for the Fig. 5(a).The 

values of H and D are produced by the following two 

equations. 

H=(𝑥𝑖  𝑋𝑂𝑅 𝑥𝑖−1)……………………. (11) 

D=(𝑥𝑖  𝐴𝑁𝐷 𝑥 𝑖−1)………………........ (12) 

 

5. Two Cells --“Main Cell” , “HD Cell” 

For the purpose of designing of the proposed 

reversible array multiplier [KOREN 93], we must 

arrange combinational array multiplier which 

requires the reversible multifunctional cell (called 

“Main Cell”) performing addition, subtraction and no 

operation (skip). The different functions performed 

by this Main Cell are done with the two control 

signals designated as H and D. These two control 

signals H and D are generated by another Cell called 

“HD Cell” The two inputs ( 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑖−1 ) of this HD 

Cell are taken from the Multiplicand (or Multiplier). 

Note that 𝑥−1is always zero, i.e. 𝑥−1 = 0. 

Both the “Main Cell” and “HD Cell” can be 

implemented by the popular reversible gates like TS-3 

Gate, MTSG and Peres Gate or URG (Universal 

Reversible gate).The MTSG Gate is a Reversible gate 

having 4 inputs and four outputs which provides a 

full-adder [15].This MTSG is really a modified version 

of TSG [3], as the complex input-output relationship 

regarding TSG, this gate is wanting some inefficiency 

in terms of quantum costs. As the quantum cost of 

TSG is equal to13, whereas the QC of MTSG is 6. 

Therefore not accepting the TSG gate, we must prefer 

the modified TSG gate for the design methodology. 

The MTSG reversible gate creates very simple output 

maintaining the reversibility property. If D=0 and 

H=1, we can easily get a Full-adder from MTSG gate. 

In the circuit Fig. 6(a), we have drawn a “Main Cell” 

consisting of (i) one TS-3 gate, (ii) one MTSG gate and 

(iii) one Peres gate, one output is of the TS-3  is fed 

into the MTSG and another is also fed into the Peres 

gate. Similarly a single output of MTSG gate is fed 

into the Peres 

 

Fig. 6 (a) Main Cell 

 

Fig. 6(b) Block diagram of Fig. 6(a) 

 

The single-bit addition or subtraction results z; and 

carry-out or borrow-out Cout are produced fromTS-3 

and MTSG gates respectively. Two control signals (H, 

D) and a one-bit multiplicand b are fed into the “Main 

Cell” and they are bypassed safely for activating the 

next Cells. To find the quantum cost of the main Cell 

we have to add all the quantum costs of TS-3 Gate, 

MTSG Gate and Peres Gate. As the quantum costs of 

them are 2, 6 and 4 respectively, hence the quantum 

cost of Fig. 6(a) is 12. When we are intended to 

making a generalized circuit diagram, the “Main cell” 

plays the role of a building block. Now we can 

summarize the number of gates requited, garbage 
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outputs and the individual quantum cost regarding 

the cells in Table-2 below. Note that although the 

sum of the quantum cost of TS-3 and FRG is 2+5=7, 

and the quantum cost for the circuit HD drawn in Fig. 

5(a) is 4. 

Table-2 

Sl. No. Cell 

Name 

Gate 

Required 

Gar

bage 

Cost 

Quantu

m Cost 

1 Main Cell MTSG(on

e) 

Peres(one) 

TS-3(one) 

2 12 

2 HD Cell  2 4 

 

6. Reversible Two’s Complement Combinational 

Array multiplication Construction  

An n×n reversible Booth’s Multiplication can be 

realized with the help of (i) “Main Cell” and (ii) “HD 

Call”. The architecture of this multiplier is depicted 

in Fig. 7(a). The extra Main cells set at the left alter 

the shape of the array from a parallelogram to a 

trapezium. They are employed to sign-extend the 

multiplicand Y= yn, yn−1, yn−2 ,  . . . , y0 for the purpose 

of addition/subtraction. Noted that, the diagonal line 

identified by b in Fig. 7(b) provide the sign-extended 

Y at each row of “Main Cell”. If Y is positive, then it 

is sign-extended by leading 0s. On the contrary, if Y 

is negative, it is sign-extended by the leading 1s. As 

there are n numbers of row of “Main Cells” in Fig. 

7(a), there are 𝑛 number of “HD Cells”. In the first 

row(upper row), the figure contains n+(n-1)=2n-1 

“Main Cells”, in the second it is (2n-2), in the 3rd it is 

(2n-3)…,in the last row it is n. Total number of 

“Main Cells” in Fig. 7(a) is  

= {n+ (n-1)} + {n+ (n-2)} +…+(n +1)+n 

= 𝑛2+ 
𝑛(𝑛−1)

2
. 

When n=4, total “Main Cells” is equal to 22. 

All the bits of Y= yn, yn−1, yn−2 ,  . . . , y0 are fed to  the 

upper-row “Main Cells”, i.e. at the line marked b in 

the Fig. 6(b). Values of “a” are set to 0 initially for 

the first row. Carry in for each rightmost “Main 

Cells” is set to 0. The input-output relationships for 

the case of “Main Cell” and “HD Cell” is presented in 

Fig. 7(b) and Fig. 7(c). 

 

Fig. 7(a) General Reversible Two’s Complement Array multiplication Construction 
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 Fig. 7(b)   Main Cell                                                                                                 Fig. 7(c) HD Cell 

 

7. Observation of results 
For the verification of the ‘Reversible Array multiplication of Booth’s Algorithm’, we have analyzed the circuit 

results for different inputs. For our convenience, a  4×4 (4-bit by 4-bit) multiplication is performed in three 

cases: (i) two signed numbers, (ii) one signed number and on unsigned number and (iii) two unsigned numbers. 

For the first case in Fig 8(a), Multiplicand X and multiplier Y are chosen as  

X= x3, x2,  x1 ,  x0 = 1011= -5 

Y= y3, y2,  y1 ,  y0 =1010= -6 

 And output we obtained is=[0011110]2=30  which satisfies the arithmetic operation value( -5×-6 ).    

 
Fig. 8(a) Circuit for Multiplication of two signed numbers ( −5× −6) 

Similarly, for the second case in Fig 8(b), multiplicand X and multiplier Y are chosen as  

X= x3, x2,  x1 ,  x0 = 0010= 2 

Y= y3, y2,  y1 ,  y0 =1000=-8 
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 And output we obtained from the diagram is=[1110000]2=−16  which satisfies the arithmetic operation value 

(2× −8) = −16. 

 
Fig. 8(b) Circuit for Multiplication of 1 one unsigned and signed number (2×-8) 

In the same way, we can investigate the third case in Fig 8(c) here, multiplicand X and multiplier Y are chosen 

as  

X= x3, x2,  x1 ,  x0 = 0100=4 

Y= y3, y2,  y1 ,  y0 = 0100=4 

And output we obtained from the circuit is=[0010000]2=16 which satisfies the arithmetic operation value 

(4× 4) = 16. 

 
Fig. 8(c) Circuit for Multiplication of two unsigned numbers like 4 𝑎𝑛𝑑 4 (4 ×4) 
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According to the reversible 4x4 multiplication circuit, some inputs, different carry-outs and output products 

are given below in the Table-3. 

 

Table-3 

 
 

8. Some theorems with respect to the n × n Reversible 

Multiplier are given below: 

Theorem1: Total number of gates 𝑇𝐺  required to 

construct an (n × n) Reversible Multiplier is not less 

than 4.5𝑛2+1. 

Proof. As known that an n × n Reversible Multiplier 

contains 
3

2
n(n-1) number of “Main Cells” and n 

number of ”HD Cells”. Every “Main Cell” has 3 

reversible gates, So total number of gates needs to be 

taken for “Main Cells”  is =3×
3

2
n(n-1). Every “HD 

Cell” has two reversible gates, so 2n number of gates 

are needed for this cell. Moreover, n  number of 

LMain-Cell  cells  (Main Cell in  left  most  side)  are  

needed  along with the Main Cell and each of which 

has 2 reversible gates, so here 2n number of gates 

requires. Again (
𝑛

2
+ 1 ) number of FGs needs 

performing the copy operation.  

Number of gates needed = 3×
3

2
n(n-1)+2n+2n + (

𝑛

2
+

1)= 
9

2
𝑛2 −

9

2
n+ 

9

2
n +1=4.5𝑛2+1 

So at least (4.5𝑛2+1) number of gates required.  

i.e. 𝑇𝐺 ≥ (4.5𝑛2+1) 

Theorem 2 Total number of garbage output 𝑇𝐺𝑎𝑟𝑏𝑎𝑔𝑒 

required to construct an (n × n) Reversible Multiplier 

is not less than 3𝑛2+3n-1. 

Proof:  2 garbage outputs are created for every “Main 

Cell”, as there are 
3

2
𝑛(𝑛 − 1) number of “Main Cells” 

in (n × n) Reversible Multiplier, so 3𝑛(𝑛 − 1) number 

of garbage outputs are there. There are n number of 

LMain-Cell cells (Main Cells in left most side) and 

everyone has 3 garbage output. There are n number of 

HD cells and everyone has 2 numbers of garbage 

output. In addition, (𝑛 − 1) number of “Main Cells” 

in the last row creates (𝑛 − 1) garbage outputs for 

the purpose of propagating the prime input  𝑏. 

For realizing the (n × n) Reversible Multiplier the 

circuit requires the at least  

{+
3

2
𝑛(𝑛 − 1) × 2 + 3n+2n+ (n-1) = 3𝑛2-3n+3n+2n+n-

1=3𝑛2 + 3n − 1} number of garbage outputs 

So, 𝑇𝐺𝑎𝑟𝑏𝑎𝑔𝑒 ≥3𝑛2+3n-1 

Theorem 3: If the processing delay of “Main Cell”, 

“L-Main Cell” and “HD Cell” are 𝐷𝑀 , 𝐷𝐿𝑀  and 

𝐷𝐻𝐷 respectively of the n × n reversible multiplier. 

In addition, assume the delay of forwarding gate 

(FD) is  𝐷𝐹𝐷 and delay of n × n reversible multiplier 

is  𝐷𝑅𝑀, then   
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DRM ≥ (2n − 1) 𝐷𝑀+𝐷𝐿𝑀+𝐷𝐻𝐷+  𝐷𝐹𝐷 
Proof: In the first row, the longest path in the n × 

n reversible multiplier contains the maximum 

number of “Main Cells” which is (2n-1), in 

addition there is extra one “L-Main Cell” in this 

longest path in the leftmost position. In this path 

there is also a “HD Cell” and one forwarding gate 

“FD”. Hence the total delay DRM ≥ (2n − 1) 

𝐷𝑀+𝐷𝐿𝑀+𝐷𝐻𝐷+  𝐷𝐹𝐷 

 

9. Conclusion 

 

Reversible Booth’s Multiplication is elaborately 

discussed in this paper. Here, for multiplication 

purpose, Booth’s Multiplier is implemented keeping 

in view the use of Reversible Gates. Depending on the 

reversible logic aspects, the evaluation of our 

proposed multiplication circuit is done. The quantum 

cost of different gates and more complex circuits like 

proposed Cell are measured. And keeping track of the 

quantum value(s) the whole system is analyzed and 

designed. The performance of this reversible Booth’s 

multiplier is better than that of the design existing in 

terms of design methodology. In this case the 

constraints of reversible logic synthesis are preserved. 

The main role of this design is that it is working both 

for the unsigned and signed numbers. A Radix-2 or 

base-2 Booth’s Multiplier is implemented with the 

help of reversible gates in this work. 
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