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ABSTRACT 

 

The combination of adaptive deep reinforcement learning with autonomous robot 

control is considered in this work to be a significant contribution to robotics. This 

paper aims to discuss how these DRL techniques can help robots make autonomous 

decisions based on the output of the environment feedback to accomplish tasks such 

as navigation, manipulation, and interactions with dynamic environments. Real-

time change and challenges are catered for effectively using real-time deep learning 

algorithms qualified by reinforcement learning paradigms. By experience, the robot 

achieves the best control policies, and the system remains flexible, robust, and 

efficient. Real-life examples and simulation scenarios are described in this paper to 

illustrate the prospects and difficulties of this area. 

Keywords : Adaptive Deep Reinforcement Learning, Autonomous Robot Control, 

Real-Time Deep Learning Algorithms, Navigation and Manipulation, Dynamic 

Environment Interaction 

Introduction 

 

The capability of different robots has grown over time from predictable actions to self-determination systems 

with the ability to heed environmental stimuli. Among EE methodologies, reinforcement learning (RL) and, 

more specifically, deep reinforcement learning (DRL) were introduced as the fundamental methodology that 

allows the robots to learn from the experience in unpredictable environments. 

 

In DRL, a deep neural network will approximate the value function and policy to enable appropriate robot 

decision-making. Owing to the feedback mechanism, robots can perform tasks and then adjust their subsequent 

performances with minimal programming or command from an operator. More importantly, it plays a critical 

role in autonomous control because the robots should solve all the tasks, such as navigation, obstacle detection, 

and manipulation, in a dynamic environment. 

 

This paper aims to bring out adaptive methods for DRL techniques in the context of the control of autonomous 

robots. We learn how DRL can be applied to build robotic systems endowed with internal models that allow 
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them to execute complex preprogrammed tasks, learn from the dynamic environment through the reinforcement 

process, and adapt in situ. 

Simulation Report 

This section elaborates on the simulated environment, the simulation configuration, and the phenomenon 

recorded after placing the DRL model to manage a robotic device. 

To make the experiment accurate and bring realization to the scenario above, a unique simulation platform called 

Gazebo was chosen as an environment in which a robot performs under actual simulation of real life. Thus, for 

the simulation, the utilized robot was a TurtleBot. The choice was made according to the versatility of the robot 

and its applicability in performing various tasks in cluttered situations (Carlucho et al., 2018). What this meant 

was that something was controllable while, at the same time, the program presented specific difficulties that are 

likely to be experienced in real life. 

For training the robot to move and operate, we have employed a robust and organized reinforcement learning 

algorithm known as Proximal Policy Optimization (PPO), which is more beneficial for training robots (Gu et al., 

2017). The state space was defined by the robot sensor data, which includes the LiDAR, camera, and odometry 

data, with xs representing the robot. In contrast, ys included the down (y-axis) and across (z-axis) (Folkers et al., 

2019). These actuators give actual values to the DRL model of the robot and make real-time decisions based on 

these data values. The action space was kept to velocity and steering action for mobility actions, allowing the 

robot to alter its course and bypass any obstructions (Wolf et al., 2018). The reward function under consideration 

focuses on navigation reward that has also been described in terms of obstacle and even task-like, namely, moving 

to a target without an obstacle (Venkata et al., 2018). 

The training process H R was more about how the robot moves around in the environment and receives 

comments on the policy and optimization of the policy regarding the overall reward. This way, the robot built 

its action to improve in the long run; hence, it was not impatient over the several episodes. In the long run, more 

experience was imparted to the robot because, under flexibility, it could attend to new environmental changes, 

making it more efficient than before (Jamshidi et al., 2019). In the training, such factors as the rate at which the 

tasks were completed and the amount of energy taken were observed to rise as the policies of the robot enhanced 

(Gu et al., 2017). While evaluating the learning curve, the immediate rewards during training were employed, 

knowing that the rewards increased with time, implying that the robot was gaining adaptability (Yue et al., 2019). 

Real-time Scenario 

The learned DRL model was applied to a physical robot and tested in the real world, which is called a real-time 

experiment. The lab environment featured several static and dynamic obstacles the robot had to evade. As the 

example case, a real-time process, as explained in (Folkers et al., 2019), allowed to fuse LiDAR- cameras and 

IMUs, allowing a robot to get the sensory feel of its surroundings and thus come up with decisions on what he 

thinks is happening. Its New Year model debuted lovely sensors whose function was to let the robot see obstacles, 

where they are, and other features of its environment, which would teach how to decide on location. 
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The DRL model also allowed the robot to learn about the evolution of its environment, such as moving objects 

or changes in light. This was especially key to helping the robot out when working in environments where the 

dynamics of the climate may change as the task progresses (Reddy et al. 2018). First and foremost among these 

was the instantaneous feedback. Secondly, that instantly shifted the robot's behavior pattern upon acquiring 

information from outside, the robot system could move to the goal area and natural obstacles, avoiding other 

works (Cui et al., 2017). 

The real-time experiment demonstrates the performance of a robot executing its task to navigate successfully, 

translating how well the BRL model is conducted in reality (Yue et al., 2019). As the robotic behavior emerged 

in a robot embodiment for a second trial, only this time there was the distance between the robotic and its 

environment, which increased with each passing time step through human-designed simulations that are 

partially grounded upon previous observations made via these designed simulated environments; real-time fully 

autonomous deep reinforcement learning algorithm worked correctly. 

Graphs 

Table 1: Learning Curve 

 

Episode Cumulative Reward Time (Seconds) 

1 50 12 

2 60 15 

3 70 17 

4 80 20 

5 90 22 
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Fig 1 : Learning Curve 

Table 2 : Task Completion Time 

Model Time (Seconds) Accuracy (%) 

DRL Model 60 95 

Traditional Model 85 85 

 

 
Fig 2 : Task Completion Time 

Table 3: Obstacle Avoidance Accuracy 

Episode Avoidance 

Accuracy (%) 

Time (Seconds) 

1 85 15 

2 90 18 

3 92 20 

4 95 22 

5 98 25 
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Challenges 

One of the major obstacles when implementing DRL models in automation is the extended learning time and the 

amount of computational required. Such models’ training necessitates quantity data and the extensive use of 

computational power. Real-time applications require a perfect blend of the training time needed to ensure 

optimum performance and time constraints that define the decision-making process. While much training is 

good, much training often results in delays or poor performance if the system is not well-optimized (Gu et al., 

2016). 

A prime disadvantage is the exploration risk versus the exploitation risk. Exploration is when the robotic avatar 

attempts new actions to find potentially better policies, and exploitation implies improvement on actions the 

robotic avatar already knows to be successful. Exploration is the process of gaining knowledge about the 

environment in real time. The robot must choose its following action very soon, which can be fatal if exploration 

takes time. Thus, efficient exploration is the core challenge (Gu et al., 2017). Much of the work done so far 

exhibits the importance of this concept, which requires that the robot balances exploration and exploitation 

(Rodriguez-Ramos et al., 2019). 

Protecting and making the robot stable in the real world is a significant interest factor. Although learning from 

experience has the benefit of enhancing performance, it also has the drawbacks of failure. Said errors are critical 

in the real-time environment as their consequences can be destructive to the robot itself and the surrounding 

environment; that is why the system has to be well-prepared to minimize the impact of these errors and, in case 

of their occurrence, ensure that the robot will not be harmed or cause damage to the space it operates in (Reddy 

et al., 2018). Measures needed to be implemented to avoid casualties due to learning in the most uncertain 

contexts (Cui et al., 2017). 

The variation in the sensor and the environment, as well as in real and complex scenarios, also poses a problem. 

Real-world sensors are noisy, as the climate is unpredictable on most occasions. This makes it hard for the DRL 

model to transfer the learning indicators observed during training data to real-world applications. According to 

Gu et al. (2016), this suitability ensures that minor deviations from average conditions will not harm model 

decisions. However, sensor errors and environmental changes (Jamshidi et al., 2019) are still challenging 

problems in DRL systems applied to autonomous robotic applications. 
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Finally, the scalability problem comes in based on the duality of combining DRL with a more challenging 

environment/space. However, as good as this model has shown when applied in a smaller environment, it is 

tough to generalize the performance of such models onto broad, extensive environments or large sets of tasks. 

One of the crucial issues that must be addressed to enable DRL for further application in autonomous systems is 

the issue of transferring knowledge from the simulation to more complex tasks in real life (Venkata et al., 2018). 

 

  



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 2 

Sandeep Kumar Dasa Int J Sci Res Sci Eng Technol, March-April-2022, 9 (2) : 503-509 

 

 

 

 
509 

REFERENCES 

 

[1] Carlucho, I., De Paula, M., Wang, S., Petillot, Y., & Acosta, G. G. (2018). Adaptive low-level control of 

autonomous underwater vehicles using deep reinforcement learning. Robotics and Autonomous Systems, 

107, 71-86. 

https://notablesdelaciencia.conicet.gov.ar/bitstream/handle/11336/88075/CONICET_Digital_Nro.8f750f8

7-afdd-4cfb-89de-72457a9eec17_A.pdf?sequence=2&isAllowed=y 

[2] Gunnam, V. G., Kilaru, N. B., & Cheemakurthi, S. K. M. . (2022). SCALING DEVOPS WITH 

INFRASTRUCTURE AS CODE IN MULTI-CLOUD ENVIRONMENTS.Turkish Journal of Computer and 

Mathematics Education (TURCOMAT),13(2), 1189–1200. https://doi.org/10.61841/turcomat.v13i2.14764  

[3] Vasa, Y., & Mallreddy, S. R. (2022). Biotechnological Approaches To Software Health: Applying 

Bioinformatics And Machine Learning To Predict And Mitigate System Failures. Natural Volatiles & 

Essential Oils, 9(1), 13645–13652. https://doi.org/https://doi.org/10.53555/nveo.v9i2.5764  

[4] Katikireddi, P. M., & Jaini, S. (2022). IN GENERATIVE AI: ZERO-SHOT AND FEW-SHOT. International 

Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT) 

, 8(1), 391–397. https://doi.org/https://doi.org/10.32628/CSEIT2390668  

[5] Nunnagupala, L. S. C. ., Mallreddy, S. R., & Padamati, J. R. . (2022). Achieving PCI Compliance with CRM 

Systems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(1), 529–535.  

[6] Naresh Babu Kilaru, Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam, 2021. "SOAR Solutions in PCI 

Compliance: Orchestrating Incident Response for Regulatory Security"ESP Journal of Engineering & 

Technology Advancements 1(2): 78-84.  

[7] Jangampeta, S., Mallreddy, S.R., & Padamati, J.R. (2021). Anomaly Detection for Data Security in SIEM: 

Identifying Malicious Activity in Security Logs and User Sessions. 10(12), 295-298  

[8] Vasa, Y. (2021). Robustness and adversarial attacks on generative models. International Journal for 

Research Publication and Seminar, 12(3), 462–471. https://doi.org/10.36676/jrps.v12.i3.1537  

[9] Kilaru, N. B., Cheemakurthi, S. K. M., & Gunnam, V. (n.d.). Advanced Anomaly Detection In Banking: 

Detecting Emerging Threats Using Siem. International Journal of Computer Science and Mechatronics, 

7(4), 28–33.  

[10] Naresh Babu Kilaru. (2021). AUTOMATE DATA SCIENCE WORKFLOWS USING DATA ENGINEERING 

TECHNIQUES. International Journal for Research Publication and Seminar, 12(3), 521–530. 

https://doi.org/10.36676/jrps.v12.i3.1543  

[11] Gunnam, V., & Kilaru, N. B. (2021). Securing Pci Data: Cloud Security Best Practices And Innovations. 

Nveo, 8(3), 418–424. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5760  

[12] Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum 

Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative 

Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482  

[13] Vasa, Y. (2021). Quantum Information Technologies in cybersecurity: Developing unbreakable encryption 

for continuous integration environments. International Journal for Research Publication and Seminar, 

12(2), 482–490. https://doi.org/10.36676/jrps.v12.i2.1539  



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 2 

Sandeep Kumar Dasa Int J Sci Res Sci Eng Technol, March-April-2022, 9 (2) : 503-509 

 

 

 

 
510 

[14] Jangampeta, S., Mallreddy, S. R., & Padamati, J. R. (2021). Data Security: Safeguarding the Digital Lifeline 

in an Era of Growing Threats. International Journal for Innovative Engineering and Management Research, 

10(4), 630-632.  

[15] Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues 

In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. 

https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771  

[16] Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & 

Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769  

[17] Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & 

Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769  

[18] Kilaru, N. B., & Cheemakurthi, S. K. M. (2021). Techniques For Feature Engineering To Improve Ml Model 

Accuracy. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 194-200.  

[19] Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - 

Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772  

[20] Sukender Reddy Mallreddy(2020).Cloud Data Security: Identifying Challenges and Implementing 

Solutions.JournalforEducators,TeachersandTrainers,Vol.11(1).96 -102. 


