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Introduction 

A class of almost contact metric manifolds known as trans-Sasakian manifolds was introduced by J.A.Oubina 

[6] in 1985. This class contains α-Sasakian, β-Kenmotsu and co-symplectic manifolds.  

 

Trans-Sasakian manifolds are an important generalization of Sasakian, Kenmotsu and co-symplectic manifolds 

in differential geometry. They arise naturally in the study of contact geometry and Riemannian geometry. An 

almost contact metric structure on a manifold M is called a trans-Sasakian structure if the product manifold 

M × R belongs to the class W4, a class of Hermitian manifolds which are closely related to a locally conformal 

Kahler manifolds. Trans-Sasakian manifolds were studied extensively by J.C. Marrero [5], C.S. Bagewadi and 

Venkatesha [1, 2], M.M. Tripathi [9] and others. Trans-Sasakian manifolds are an important generalization of 

Sasakian and cosymplectic manifolds in differential geometry. They arise naturally in the study of contact 

geometry and Riemannian geometry. Trans-Sasakian manifolds are used in theoretical physics, particularly in 

string theory and contact mechanics. They also appear in Hamiltonian dynamics, differential geometry, and sub-

Riemannian geometry. They provide a unifying framework to study different geometric structures that arise 

naturally in complex geometry and topology. 

In this paper, we study the trans-Sasakian manifolds satisfying the conditions R(X, Y ) · S = 0, is iEinstein. 

Finally, we show that R · C̃  = R · R, where C̃  is concircular curvature tensor. 
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Preliminaries 

An n-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits a 

(1, 1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g, which satisfy 

 

(2.1) φ2X =  −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1, 

 

(2.2) g(φX, Y )  =  −g(X, φY ), η(X) = g(X, ξ), 

 

(2.3) g(φX, φY )  =  g(X, Y ) − η(X)η(Y ), 

 

for all vector fields X, Y on M. 

An almost contact metric manifold M (φ, ξ, η, g) is said to be trans-Sasakian manifold if (M × R, J, G) belongs 

to the class W4 of the Hermitian manifolds, where J is the almost complex structure on M × R defined for 

any vector field Z on M and smooth function f on M × R and G is the product metric on M × R. This 

may be stated by the condition 

(2.4) (∇Xφ)Y = α{g(X, Y )ξ − η(Y )X} + β{g(φX, Y )ξ − η(Y )φX}, 

where α, β are smooth functions on M and such a structure is said to be the trans-Sasakian structure of type (α, 

β). From (2.4) it follows that 

(2.5) ∇Xξ =  −αφX + β{X − η(X)ξ}. 

Note: 

(1) If we consider α and β are smooth functions in equation (2.4) and α /= 0, β = 0 then the trans-

Sasakian manifolds of type (α, β) reduces as α-Sasakian manifolds. Similarly, if α and β are scalars and α = 1, β = 

0 then the trans-Sasakian manifolds reduces as Sasakian manifolds. 

(2) If we consider α and β are smooth functions in equation (2.4) and α = 0, β /= 0 then the trans-

Sasakian manifolds of type (α, β) reduces as β-Kenmotsu manifolds. Similarly, if α and β are scalars and α = 

0, β = 1 then the trans-Sasakian manifolds reduces as Kenmotsu manifolds. 

In a trans-Sasakian manifold M (φ, ξ, η, g) the following relations hold: 

R(X, Y )ξ =  (α2 − β2)[η(Y )X − η(X)Y ] − (Xα)φY − (Xβ)φ2Y 

(2.6) +  2αβ[η(Y )φX − η(X)φY ] + (Y α)φX + (Y β)φ2X, 

η(R(X, Y )Z)  =  (α2 − β2)[g(Y, Z)η(X) − g(X, Z)η(Y )] − 2αβ[g(φX, Z)η(Y ) − g(φY, Z)η(X)] 

 — (Y α)g(φX, Z) − (Xβ){g(Y, Z) − η(Y )η(Z)} + (Xα)g(φY, Z) 

(2.7)  + 
(Y β){g(X, Z) − η(X)η(Z)}, 

(2.8) 
R(ξ, X)ξ 

= 
(α2 − β2 − (ξβ))[η(X)ξ − X], 
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(2.9) 
S(X, ξ) 

= 
[(n − 1)(α2 − β2) − (ξβ)]η(X) − ((φX)α) − (n − 2)(Xβ), 

(2.10) 
S(ξ, ξ) 

= 
[(n − 1)(α2 − β2) − (ξβ)], 

(2.11)   
ξα + 2αβ = 0. 

where R is the curvature tensor of type (1, 3) and Q is the symmetric endomorphism of the tangent space at 

each point of the manifolds corresponding to the Ricci tensor S, that is, g(QX, Y ) = S(X, Y ) for any vector 

fields X, Y on M. 

Lemma 2.1. In a trans-Sasakian manifold of type (α, β), if 

(2.15) φ(gradα) = (n − 2)(gradβ), then we have 

(2.16) ξβ = 0. 

Thus the directional derivative of β with respect to characteristic vector field ξ is zero. 

The concircular curvature tensor C̃  and Weyl projective tensor P on Trans-Sasakian manifold M of 

dimensional n is defined by 

 
for any vector fields X, Y, Z where R is the curvature tensor and r is the scalar curvature 

Trans-Sasakian manifolds satisfying R(X, Y ) · S = 0 

Definition 3.1. An n-dimensional trans-Sasakian manifold M is said to be Ricci semi-symmetric if 

(3.1) R(X, Y ) · S = 0, 

for any vecotr fields X, Y where R is the curvature tensor and S is the Ricci tensor 

Theorem 3.1. Let M be an n-dimensional trans-Sasakian manifold. Then M is Ricci-semi-symmetric if and 

only if an Einstein manifold. 

Proof. We know that every Einstein manifold is Ricci-semi-symmetric but the converse is not true in general. 

Here, we prove that in a trans-Sasakian manifolds R(X, Y ) · S = 0 implies that the manifold is an Einstein 

manifold. 

(3.2) S(R(X, Y )U, V ) + S(U, R(X, Y )V ) = 0, 

putting X = ξ in equation (3.2), we have 

(3.3) S(R(ξ, Y )U, V ) + S(U, R(ξ, Y )V ) = 0. 

By using (2.6) in (3.3), we obtain 

(α2 − β2)[g(Y, U )S(ξ, V ) − η(U )S(Y, V ) + g(Y, V )S(U, ξ) − η(V )S(U, Y )] 

+2αβ[g(φU, Y )S(ξ, V ) + η(U )S(φY, V ) + g(φV, Y )S(U, ξ) + η(V )S(U, φY )] 

+(Uα)S(φY, V ) + g(φU, Y )S(gradα, V ) + (Uβ)[S(Y, V ) − η(Y )S(ξ, V )] 

−g(φU, φY )S(gradβ, V ) + (V α)S(U, φY ) + g(φV, Y )S(U, gradα) 

(3.4) +(V β)[S(U, Y ) − η(Y )S(U, ξ)] − g(φV, φY )S(U, gradβ) = 0. 

By putting U = ξ in (3.4) and by using (2.9), (2.10), (2.11) and (2.16), we obtain 

(3.5) S(Y, V ) = (n − 1)(α2 − β2)g(Y, V ). 
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Therefore, M is Einstein manifold. This completes the proof of the theorem. 

Now we consider R · C̃  and prove the following theorem: 

Theorem 3.2. Let M be an n-dimensional trans-Sasakian manifold. Then 

 

 

Therefore, R · C̃  = R · R. This completes the proof of the theorem.   

 

From the above theorem we conclude that if Riemannian manifold is semi-symmetric satisfy R(X, Y ) · R = 

0 in (3.10) then the condition for concircularly semi-symmetric that is R(X, Y ) · C̃  = 0 also satisfies in trans-

Sasakian manifolds. From this we state the following corollary: 

Corollary 3.3. A trans-Sasakian manifold M is Concircularly semi-symmetric if and only if it is semi-

symmetric Riemannian manifold. 
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Corollary 3.4. [1] If in a trans-Sasakian manifold M the relation R(X, Y ) · C̃  = 0 holds then the 

manifold is concircularly flat. 

In general, a concircularly flat Riemannian manifold is Einstein and so, in particular, a concircu- larly flat trans-

Sasakian manifold is Einstein. Hence we can state: 

Corollary 3.5. [1] A trans-Sasakian manifold M satisfying R(X, Y )· C̃  = 0 is an Einstein manifold. 

Conclusion 

In a trans-Sasakian manifold if R(X, Y ) · S = 0 then the manifold is Einstein manifold. Further, it is 

shown that R · C̃  = R · R in trans-Sasakian manifold which implies R(X, Y ) · R = 0 if and only if R(X, Y 

) · C̃  = 0 that is the manifold is concircularly flat. Trans-Sasakian manifolds serve as a bridge between 

Sasakian, Kenmotsu and cosymplectic geometries, making them a rich area of study in modern differential 

geometry. Researchers continue to explore their curvature properties, classification, and applications in various 

fields of mathematics and physics. The concircular curvature tensor provides a refined way to measure the 

deviation of a manifold from constant curvature while preserving geodesic concircularity. It is particularly useful 

in trans-Sasakian geometry, Einstein manifolds, and conformal geometry. Understanding its properties allows 

for deeper insights into the geometric and physical interpretations of various manifolds. 
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