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INTRODUCTION 

We use V  in place of ( )GV , and E  in place of ( )GE  when no ambiguity 

arises.  Moreover, for ( )GVS  , S\G  denotes the subgraph of G  induced 

by the vertices of ( ) S\GV .  Similarly, for a vertex u  of G , uS −  means 

 uS \ . 

The connectivity ( )G  of a connected graph G  is the least positive integer 

k  such that there exists ( )GVS  , kS =  and S\G  is disconnected or 

reduces to the trivial graph 1K .  An obvious inference from the definition 

of ( )G  is that ( )( ) ( ) 1xdxd GG +=  for all ( )GVx .  Consequently, 

( )( ) ( ) 1+= GG   (here d  stands for the degree and   for the 

minimum degree).  Also  ( )( ) ( ) 1+= GG  .  Chang et.al., have proved 

Lemma 3.1.1. 

 

LEMMA 1.  If G  has no isolated vertices, then ( )( ) ( ) 1+ GG  . 

PROOF.  Suppose ( ) VGV =  and ( )( )  uVVGV  = .   

Let S  be a subset of ( )( )GV   of size ( )G .   

If ( )GVS  , then ( )VS\G   is connected. 

Also, for any vertex Vx , x  is adjacent to at least ( )G  vertices of V in ( )G .  So, any such 

vertex xof ( ) SG \  is adjacent to at least one vertex in ( )VS\G  .  And u  is adjacent to all such vertices 

x  of ( ) SG \ .  Thus, ( ) SG \  is connected. 

If ( )GVS  , then VS  . Since G  has no isolated vertices, any vertex S\Vx  is adjacent 

to some vertex y  in V  , which is in turn adjacent to u .   Thus, ( ) SG \  is also connected. 

Therefore, ( )( ) ( ) 1+ GG  .  This completes the proof. 
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CONNECTIVITY OF THE MYCIELSKIAN 

We first study a necessary and sufficient condition for ( )( ) ( ) 1+ GG   and see that this result is used 

to obtain a characterization for ( )( )G .  We make use of the following Remark 1 and Theorem 1 to prove 

our main result on connectivity. 

REMARK 1. If S  is a minimum vertex cut of G  with  ( )GS = and S  is the corresponding set of twins 

in V  , then  uSS    is a vertex cut off ( )G .  Therefore, ( ) ( )( ) ( ) 121 ++ GGG  . 

THEOREM 1. For a connected graph G , ( )( ) ( ) 1+= GG   if and only if ( ) ( )GG  = . 

PROOF. Let ( ) ( )GG  = .  Then ( )( ) ( )( ) ( ) ( ) 11 +=+= GGGG  .   

Further by Lemma 1, ( )( ) ( ) 1+ GG  .  

Therefore, ( )( ) ( ) 1GG += . 

 Conversely, let ( )( ) ( ) 1+= GG  .   

Suppose ( ) ( )GG   , then ( ) ( )GG  1 .   

Let ( ) 1G21 w,...,w,wS +=   be a minimum vertex cut of ( )G . 

Case a: Su . Suppose ( )GSV  , then ( ) iGSV +  , 0i =  or 1 and there is a possibility for G  

to get disconnected.  But since ( ) 2G  , every vertex in ( )VS\G   is adjacent to at least two vertices in 

V   which in turn are adjacent to u .   

Hence, even if we remove an additional vertex from V   the resulting graph will remain connected, 

that is, ( ) S\G  is connected, a contradiction to the fact that S  is a vertex cut.  

If ( )GSV  , then ( )VS\G   is connected and every vertex Vx   is adjacent to at least 

( ) 1G +  vertices of G  and hence adjacent to at least one vertex of ( )VS\G  .  Also u  is adjacent to all x

s in V  .   

Thus,  ( ) S\G  is connected, again contradicting the fact that S  is vertex cut. 

Case b: Su . Now remove u  from ( )G  and set ( ) uGG −=  . G  is connected (as 2S ). 

To disconnect G  we have to remove the remaining ( )G  vertices of S .  Since ( ) ( )GG   , every 

vertex in G  is of degree at least ( ) 1G + . 

 If ( ) ( )GuSV − , then ( )( )uSV\G −  is connected and every vertex x  in V   is adjacent to 

at least ( ) 1G +  vertices of G  and hence to at least one vertex of ( )( )uSV\G − , so that SG  is connected, 

a contradiction.  

If ( ) ( )GuSV =− , there is a possibility for ( )( )uSV\G −  to get disconnected.  If 

( )( )uSV\G −  is connected, we get a contradiction as in case a. So let ( )( )uSV\G −  be disconnected and 

kGGG ,...,, 21  its components.  

Since every vertex of ( )uSV −  is adjacent to all the components kGGG ,...,, 21 , the twins of  

( )uSV −  will be adjacent to all the components, that is ( )( )uSV\G −  together with the twins of 

( )uSV −  is connected and each x  in V   is adjacent to at least one vertex of ( )( )uSV\G − .  Therefore, 

( ) S\G  is connected, which is again a contradiction.   
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Thus, ( ) ( )GG  = .   This completes the proof. 

COROLLARY 1.  If G  is a connected graph, then ( )( ) ( ) nGG +=  if and only if ( ) ( )GG  = . 

 

MAIN RESULT ON CONNECTIVITY OF MYCIELSKI GRAPH 

THEOREM 2. If G  is a connected graph, then ( )( ) ( ) 1++= iGG   if and only if ( ) ( ) iGG +=  for each 

( )Gi0,i  . 

PROOF. By induction on i ,  Theorem 1 gives the case when 0i = .   

So, assume that the result is true for all 1ij − , that is ( )( ) ( ) 1++= jGG    if and only if 

( ) ( ) 1ij,jGG −+= .  

We now prove the result for ( )( )Gi  . First consider the case when ( ) ( ) iGG += .   

We know that ( )( ) ( )( ) ( ) ( ) 11 ++=+= iGGGG  . If ( )( ) ( ) iGG + , by induction 

hypothesis, ( ) ( ) iGG + .  Therefore ( )( ) ( ) 1++= iGG  . 

 Conversely, let ( )( ) ( ) 1++= iGG  .   

Suppose, then ( ) ( ) iGG +  , then ( ) ( ) iGG +  (because if ( ) ( ) iGG += , then by induction 

hypothesis ( )( ) ( ) 1++ iGG  ).  Let ( ) 121 ,...,, ++= iGwwwS   be a minimum vertex cut of ( )G . 

Case a: Su .  Suppose ( )GVS  , then ( ) 10, ++= illGVS  .  Every vertex 

( )SV\Vx   is adjacent to at least ( )G  vertices of G  and hence (by the definition of Mycielskian) to at 

least ( ) 1iG ++  vertices in V   and hence to at least one vertex in ( )( )SVS\V −  which in turn is 

adjacent to u.   

Therefore, ( ) S\G is connected, which is a contradiction to the fact that S  is a vertex cut of ( )G .   

Suppose now ( )GVS  .  Then  ( )SV\G   is connected and every vertex Vx   is adjacent 

to at least ( ) 1iG ++  vertices of G  and hence adjacent to at least one vertex of ( )SV\G  .  Also, u  is 

adjacent to all such vertices x .   

Therefore, ( ) S\G  is connected, a contradiction. 

Case b: Su . As before, set ( ) uGG −=  .  G  is connected.   

To disconnect G  we have to remove all the remaining ( ) iG +  vertices of S .  Since 

( ) ( ) iGG + , every vertex in G  is of degree at least ( ) 1iG ++ . 

 If ( ) ( )GuSV − , then ( )( )uSV\G −  is connected and every vertex x  is adjacent to at least 

( ) 1iG ++  vertices of G  and hence to at least one vertex of ( )( )uSV\G − .   

Therefore, ( ) S\G  is connected which is not true. If ( ) ( ) illGuSV +=− 0, , there is a 

possibility for ( )( )uSV\G −  to get disconnected.  If ( )( )uSV\G −  is connected we get a contradiction 

as before.  

So let ( )( )uSV\G −  be disconnected with components kGGG ,...,, 21 .  Since ( )uSV −  is a 

vertex cut of G , there will be at least ( )G  vertices in ( )uSV −  that will be adjacent to all the 

components kGGG ,...,, 21  of G ,  call this set as T .   
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By the definition of Mycielskian, the twins of the set T  in V   will be adjacent to all the components 

kGGG ,...,, 21 , that is, ( )( )uSV\G −  together with any of the twins of T  is connected and since the 

number of vertices still to be removed is ( ) TGli −  , even after the removal of the whole set S  there 

will be at least one twin, say, z  in ( )uS\G − , of a vertex z  in T .   

Also, each x s of V   is adjacent to at least one vertex of ( )( )uSV\G −  . Thus, ( ) S\G  is connected 

which again contradicts the fact that S  is a vertex cut.  Hence ( ) ( ) iGG += .  This completes the proof. 
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