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ABSTRACT 

Hyperspectral image segmentation is a crucial task in remote sensing and computer vision, where the goal is to 

classify each pixel in an image based on its spectral characteristics. Despite significant advancements, achieving 

high classification accuracy in hyperspectral image segmentation remains challenging due to factors like noise, 

spectral variance, and the high dimensionality of hyperspectral data. In this work, we propose an innovative 

approach for hyperspectral image segmentation by integrating deep learning with adaptive boosting techniques. 

Our framework uses a boosting-based strategy to enhance classification accuracy at the pixel level, focusing on 

misclassified pixels to progressively refine predictions. The core of our approach lies in the use of weak learners, 

such as shallow convolutional neural networks (CNNs), decision trees, and support vector machines (SVMs), 

combined with popular boosting algorithms like AdaBoost, Gradient Boosting, and XGBoost. These weak 

learners are trained iteratively, with each iteration focusing on the misclassified pixels from the previous round, 

thereby improving the accuracy of the overall model. The adaptive boosting mechanism dynamically adjusts 

the weights of weak learners to ensure that challenging, hard-to-classify pixels are given more attention. This 

iterative refinement process results in a more robust and accurate classification model for hyperspectral image 

segmentation. We evaluate the performance of our proposed framework using standard performance metrics 

including accuracy, precision, recall, and F1-score.  

Keywords: Hyperspectral Image Segmentation, Deep Learning, Adaptive Boosting, Pixel-Level Classification, 

XGBoost 

 

I. Introduction 

Hyperspectral image segmentation has emerged as a critical task in remote sensing and computer vision due to 

its ability to capture rich spectral information from the electromagnetic spectrum. Hyperspectral images (HSI) 

contain hundreds of spectral bands, offering a detailed representation of the surface, which allows for precise 

classification of various materials and objects. These images are widely used in applications such as land cover 

classification, agriculture monitoring, environmental assessment, and mineral exploration. Despite the 

significant advantages of hyperspectral imaging, achieving high-accuracy segmentation of such images remains a 

challenging problem due to factors such as noise, high dimensionality, spectral variance, and the complexity of 

the underlying objects. The primary objective of hyperspectral image segmentation is to classify each pixel based 

on its spectral signature. Traditional machine learning and image processing techniques, such as supervised 

classification using support vector machines (SVMs) and decision trees, have been used for this task. However, 
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the performance of these methods can degrade when faced with the complexity and high dimensionality of 

hyperspectral data [1]. The difficulty lies in the fact that hyperspectral data often suffer from high inter-class 

similarity and intra-class variability, making pixel-wise classification particularly challenging. Recent 

advancements in deep learning have led to significant improvements in image segmentation tasks. 

Convolutional neural networks (CNNs), a type of deep learning architecture, have shown excellent performance 

in image classification and segmentation tasks due to their ability to automatically extract hierarchical features 

from images [2].  

However, despite their powerful feature extraction capabilities, CNNs still face difficulties in dealing with the 

high dimensionality of hyperspectral data, which can lead to overfitting and poor generalization. To address 

these challenges, researchers have explored various approaches to enhance the performance of deep learning 

models for hyperspectral image segmentation. One promising technique is boosting, which involves combining 

multiple weak learners to form a strong predictive model. Boosting methods, such as AdaBoost, Gradient 

Boosting, and XGBoost, have been widely used in machine learning due to their ability to improve classification 

accuracy by focusing on misclassified samples during the training process. In the context of hyperspectral image 

segmentation, boosting techniques can be used to iteratively refine the predictions made by weak classifiers, 

resulting in a more robust model. Weak learners, such as shallow CNNs, decision trees, and SVMs, can be 

employed to handle the large amount of data efficiently, and their individual predictions can be improved over 

multiple iterations by emphasizing the difficult-to-classify pixels. Figure 1 shows a visual representation of 

enhanced deep learning model for hyperspectral image segmentation accuracy. 

 
Figure 1: Boosted Deep Learning for Hyperspectral Image Segmentation 

In this paper, we propose an adaptive deep learning framework for hyperspectral image segmentation that 

leverages boosting techniques to improve pixel-level classification accuracy. The proposed framework integrates 

AdaBoost, Gradient Boosting, and XGBoost to iteratively refine the segmentation process by focusing on the 

misclassified pixels at each stage. The framework utilizes weak learners such as shallow CNNs, decision trees, 

and SVMs, which are trained to correct errors from previous iterations [3]. By employing adaptive boosting, the 
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proposed method adapts to the challenging nature of hyperspectral data, allowing it to progressively enhance 

classification performance with each iteration. The primary contribution of this paper is the development of an 

adaptive boosting framework that combines deep learning and boosting methods to improve hyperspectral 

image segmentation. This approach aims to overcome the inherent challenges of hyperspectral data by 

iteratively refining the pixel-level classification predictions, focusing on difficult cases where the model has 

previously made errors [4]. Through this, we aim to achieve superior segmentation accuracy compared to 

traditional approaches.  

II. Literature Review 

A. Traditional Methods for Hyperspectral Image Segmentation 

Hyperspectral image segmentation has been a well-researched field for several decades, with traditional 

methods predominantly focusing on statistical and machine learning-based techniques. Early approaches for 

segmenting hyperspectral images relied heavily on pixel-wise classification, where each pixel in an image was 

classified into a predefined class based on its spectral features. Popular algorithms included Maximum 

Likelihood Classification (MLC), Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). These 

methods are based on the assumption that pixels belonging to the same class share similar spectral signatures, 

allowing for the separation of different material classes in hyperspectral images. Maximum Likelihood 

Classification (MLC) has been one of the most widely used statistical methods for hyperspectral segmentation [5]. 

It works by modeling the probability distribution of each class and assigning a pixel to the class with the highest 

likelihood. However, MLC assumes that the data for each class follows a Gaussian distribution, which is often 

not the case in hyperspectral images. This limitation results in poor performance, especially in complex 

scenarios where the spectral signatures of different classes overlap. Similarly, support vector machines (SVMs) 

have shown excellent classification performance by finding optimal hyperplanes that maximize the margin 

between classes [6].  

B. Deep Learning in Hyperspectral Image Analysis 

In recent years, deep learning has emerged as a powerful approach for hyperspectral image analysis due to its 

ability to automatically learn hierarchical features from data without the need for manual feature engineering. 

Convolutional Neural Networks (CNNs) have been particularly successful in image classification tasks, and their 

application to hyperspectral images has shown promising results. CNNs are designed to automatically learn 

spatial and spectral features through convolutional layers, which makes them well-suited for handling the high-

dimensional data of hyperspectral images [7]. By capturing both local and global patterns in the data, CNNs are 

able to improve the segmentation accuracy compared to traditional pixel-wise classification methods. In the 

context of hyperspectral image segmentation, deep learning approaches have been developed to address the high 

dimensionality and spectral variance of the data. Several works have proposed CNN-based models that exploit 

the spectral-spatial features of hyperspectral images. These models combine spectral information from multiple 

bands and spatial features from the image's neighboring pixels to improve classification performance [8]. 

Moreover, variants of CNNs, such as 3D-CNNs, have been introduced to directly process the hyperspectral data 

in both spectral and spatial domains, capturing richer information for segmentation. Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks have also been applied to hyperspectral image analysis 

to model sequential dependencies between spectral bands.  

Table 1: Summary of Literature Review 

Study Methodology Weak Learners Key Contributions 

AdaBoost for Focused on AdaBoost for Decision Trees, Improved segmentation accuracy 
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Segmentation improving pixel 

classification. 

SVMs by adapting to misclassified 

pixels. 

XGBoost in Image 

Segmentation [9] 

Applied XGBoost to 

hyperspectral image 

segmentation. 

Shallow CNNs, 

Decision Trees 

Achieved higher accuracy in 

challenging segmentation tasks. 

Gradient Boosting with 

CNNs 

Combined Gradient Boosting 

and CNNs for segmentation. 

CNNs Enhanced deep learning 

frameworks with boosting for 

pixel-level refinement. 

Hybrid Deep Learning 

Models 

Integrated deep learning with 

boosting algorithms. 

Decision Trees, 

Shallow CNNs 

Iterative refinement for handling 

high-dimensional data. 

SVM and AdaBoost for 

Classification [10] 

Used SVMs with AdaBoost 

for hyperspectral data 

classification. 

SVMs, 

Decision Trees 

Improved precision and recall for 

pixel-level classification. 

Boosted Deep CNNs Applied boosting to CNN 

models for segmentation 

tasks. 

Shallow CNNs Focused on refinement of 

misclassified pixels to improve 

model robustness. 

AdaBoost with SVM for 

Remote Sensing 

Focused on AdaBoost and 

SVM for remote sensing 

applications. 

SVMs, 

Decision Trees 

Enhanced segmentation 

performance through iterative 

correction. 

Boosting with 3D CNNs 

[11] 

Introduced 3D CNNs in 

boosting for hyperspectral 

image analysis. 

3D CNNs Improved spatial and spectral 

feature extraction for pixel 

classification. 

Ensemble Boosting for 

Image Segmentation 

Used ensemble learning with 

boosting for segmentation. 

Decision Trees, 

CNNs 

Combined multiple models to 

improve performance across 

multiple datasets. 

CNN and XGBoost for 

Multispectral Image 

Classification 

Applied CNNs and XGBoost 

for multispectral 

classification. 

CNNs, 

XGBoost 

Achieved higher classification 

accuracy for complex 

multispectral data. 

Deep Learning with 

Gradient Boosting 

Integrated deep learning 

models with gradient 

boosting. 

Decision Trees, 

CNNs 

Focused on enhancing deep 

learning performance with 

boosting algorithms. 

III. Methodology 

A. Hyperspectral Data and Preprocessing 

Hyperspectral data consists of images captured across hundreds of spectral bands, each representing a narrow 

portion of the electromagnetic spectrum. These images provide detailed information about the materials and 

objects within a scene, enabling precise classification and segmentation tasks. However, the high dimensionality 

of hyperspectral images, with potentially hundreds of bands, poses challenges in terms of data processing, 

computational complexity, and feature extraction [12]. To address these issues, preprocessing steps are essential 

to improve the quality of the data and ensure more efficient model training.  
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Figure 2: Illustrating Hyperspectral Data Preprocessing 

The first step in hyperspectral data preprocessing is spectral calibration, which involves correcting any 

distortions or sensor-related errors in the spectral bands. This step ensures that the spectral data are consistent 

and accurate across all bands, mitigating issues like radiometric calibration and sensor noise. Following spectral 

calibration, the hyperspectral images are often geometrically corrected to align them with geographic 

coordinates, particularly in remote sensing applications, to remove distortions caused by sensor movement or 

terrain.Next, dimensionality reduction techniques are commonly applied to reduce the large number of spectral 

bands while preserving the most informative features [13]. Figure 2 shows the process of preprocessing 

hyperspectral data for improved analysis and segmentation. Methods such as Principal Component Analysis 

(PCA), Independent Component Analysis (ICA), or Linear Discriminant Analysis (LDA) are used to extract key 

features and reduce computational overhead.  

 

B. Deep Learning Framework Overview 

1. Role of Weak Learners 

In the proposed deep learning framework, weak learners play a crucial role in the overall model's performance. 

A weak learner is a simple model that performs slightly better than random guessing. In the context of boosting, 

weak learners are combined iteratively to form a strong classifier. The core idea is that by focusing on 

misclassified samples from previous iterations, these weak learners refine the model’s predictions. Weak learners 

are particularly effective in boosting methods like AdaBoost, Gradient Boosting, and XGBoost because they are 

computationally efficient and can be trained quickly [14]. By iterating over the weak learners and progressively 

improving their ability to classify difficult samples, the model becomes increasingly accurate, ultimately 

yielding a robust pixel-level classification model for hyperspectral image segmentation. This iterative correction 

process allows the framework to capture complex relationships in the data while maintaining simplicity and 

avoiding overfitting [15]. 

2. Shallow CNNs 
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Shallow Convolutional Neural Networks (CNNs) are a key component in our framework as weak learners. 

Unlike deep CNNs, which consist of many layers, shallow CNNs have a limited depth, typically consisting of 

only a few convolutional and pooling layers. Despite their simplicity, shallow CNNs are effective at capturing 

spatial features in hyperspectral images, making them ideal weak learners. These networks can process spectral 

and spatial information in a straightforward manner, extracting local features from a pixel and its neighbors [16]. 

When used in boosting, shallow CNNs iteratively focus on refining misclassified pixels, improving the overall 

segmentation accuracy without introducing excessive computational complexity. Their efficiency in learning 

spatial patterns allows for fast model training, particularly beneficial when working with high-dimensional 

hyperspectral data. 

• Step 1. Convolution Operation   

   In the first step, a convolution operation is applied to the input image I using a filter (or kernel) K of size m × n. 

The convolution operation is denoted as: 

   𝐶(𝑖, 𝑗) =  (𝐼 ∗  𝐾)(𝑖, 𝑗) =  𝛴{𝑎=0}

{𝑚−1}𝛴{𝑏=0}
{𝑛−1}𝐼(𝑖+𝑎,𝑗+𝑏)

⋅  𝐾(𝑎, 𝑏) 

   where C(i, j) is the output feature map at location i, j, and I(i+a, j+b) represents the pixel values of the input 

image. 

 

• Step 2. Activation Function   

   After applying the convolution operation, an activation function f is applied to the feature map. A commonly 

used activation function is the Rectified Linear Unit (ReLU): 

   𝐴(𝑖, 𝑗) =  𝑓(𝐶(𝑖, 𝑗)) = max(0, 𝐶(𝑖, 𝑗)) 

   where A(i, j) is the output after the activation function is applied, which introduces non-linearity. 

• Step 3. Pooling   

   Pooling is then applied to reduce the spatial dimensions of the feature map. In max pooling, the maximum 

value from a 2 × 2 region is selected: 

   𝑃(𝑖, 𝑗) = max(𝐴(2𝑖, 2𝑗), 𝐴(2𝑖 + 1, 2𝑗), 𝐴(2𝑖, 2𝑗 + 1), 𝐴(2𝑖 + 1, 2𝑗 + 1)) 

   where P(i, j) is the pooled feature map. 

• Step 4. Fully Connected Layer   

   The final step involves flattening the pooled feature map into a vector and passing it through a fully connected 

layer. The output y of the fully connected layer can be represented as: 

   𝑦 =  𝑊 ⋅  𝑥 +  𝑏 

   where x is the flattened vector, W is the weight matrix, and b is the bias term. This step outputs the class 

probabilities or prediction for the given input image. 

3. Decision Trees 

Decision trees are a classic machine learning algorithm that can be used as weak learners in boosting 

frameworks. A decision tree splits the data based on feature values to make predictions, creating a tree-like 

structure of decision nodes. In boosting, decision trees are often used in their simplest form—referred to as 

"stumps"—which consist of a single split based on a single feature. Despite their simplicity, decision trees are 

capable of modeling non-linear relationships in data and handling complex decision boundaries. In 

hyperspectral image segmentation, decision trees are effective at capturing spectral features and making pixel-
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wise classification decisions based on specific thresholds. The iterative nature of boosting allows decision trees to 

focus on misclassified samples, enhancing their ability to classify difficult pixels accurately [17]. When 

combined with boosting algorithms like AdaBoost or XGBoost, decision trees can contribute to highly accurate 

segmentation models while remaining computationally efficient. 

4. SVMs 

Support Vector Machines (SVMs) are another type of weak learner used in boosting for hyperspectral image 

segmentation. SVMs are supervised learning algorithms that find the optimal hyperplane that separates different 

classes in a high-dimensional feature space. In the context of hyperspectral images, SVMs work by mapping 

spectral features into a higher-dimensional space, where a hyperplane can effectively separate different material 

classes. When used as weak learners in boosting, SVMs are trained to focus on difficult-to-classify pixels from 

previous iterations, improving overall accuracy. SVMs are particularly well-suited for hyperspectral data, where 

class boundaries can be complex and non-linear. Boosting with SVMs allows for the creation of a robust 

classifier that can handle high-dimensional data efficiently. The flexibility of SVMs in handling different types 

of data distributions makes them an effective weak learner for improving segmentation results in hyperspectral 

image classification tasks. 

C. Adaptive Boosting Mechanism 

1. AdaBoost 

AdaBoost, short for Adaptive Boosting, is one of the most widely used boosting algorithms that enhances the 

performance of weak learners by focusing on misclassified samples. The algorithm works by training a series of 

weak models, typically decision trees, and combining their predictions to create a strong classifier. Initially, all 

samples are given equal weights, and the first weak learner is trained on the data. After the first iteration, the 

weights of misclassified samples are increased, forcing the next weak learner to focus on the difficult instances. 

This process is repeated, with each subsequent weak learner correcting the errors made by the previous ones. 

The final model is a weighted combination of all the weak learners, with more importance placed on the models 

that perform better on difficult samples. The main advantage of AdaBoost is its ability to significantly improve 

classification accuracy without requiring a complex model. By iteratively adjusting the weights of misclassified 

pixels, AdaBoost is particularly effective for hyperspectral image segmentation, where certain pixel 

classifications are more challenging due to spectral variance. However, one limitation of AdaBoost is its 

sensitivity to noisy data, as misclassified instances with noisy labels can disproportionately influence the model. 

2. Gradient Boosting 

Gradient Boosting is another popular boosting algorithm that builds an ensemble of weak learners in a 

sequential manner, similar to AdaBoost. However, instead of focusing on misclassified samples, Gradient 

Boosting minimizes the residual errors made by previous models. It does this by training new models to predict 

the residuals, or differences, between the predicted values and the actual values. In each iteration, a weak model 

is trained to fit the residuals, and the predictions of the models are combined in a way that reduces the error of 

the entire ensemble. Gradient Boosting works by fitting new models to correct the mistakes made by earlier 

models, and it typically uses decision trees as the base learners. One of the key advantages of Gradient Boosting 

over AdaBoost is its ability to handle complex relationships between the input features and the target variable. 

Gradient Boosting is robust to overfitting when regularized properly, which makes it an ideal choice for 

hyperspectral image segmentation where the data is high-dimensional and complex.  

3. XGBoost 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com  

Published in Volume 11, Issue 8, May-June-2024 Page No : 260-272 
 

 

 

 
267 

XGBoost (Extreme Gradient Boosting) is an optimized version of Gradient Boosting that aims to improve both 

the speed and accuracy of the model. It incorporates several enhancements over traditional Gradient Boosting, 

such as regularization, parallel processing, and an efficient tree-building algorithm. XGBoost’s regularization 

techniques help to prevent overfitting by penalizing complex models, making it more robust, especially when 

dealing with high-dimensional data like hyperspectral images. XGBoost builds decision trees in a gradient 

descent manner, minimizing a regularized objective function that combines both the loss function (measuring 

prediction error) and the regularization term (penalizing model complexity). This results in better 

generalization performance compared to standard Gradient Boosting. Additionally, XGBoost employs a more 

efficient tree-building algorithm that speeds up the training process by utilizing parallel processing and 

hardware optimizations.  

D. Pixel-Level Classification Process 

In hyperspectral image segmentation, the pixel-level classification process involves classifying each individual 

pixel of the image based on its spectral characteristics. Each pixel in a hyperspectral image contains information 

from hundreds of spectral bands, representing specific wavelengths of light reflected or emitted by objects on 

the Earth's surface. The goal of pixel-level classification is to assign each pixel to a specific class (e.g., vegetation, 

water, urban areas, etc.) based on its spectral signature, which is often highly unique for different materials. The 

process begins by extracting the spectral features of each pixel. These features are typically in the form of a 

vector, where each element corresponds to the reflectance value of the pixel at a specific wavelength. This 

spectral information is then processed through machine learning or deep learning algorithms to classify the 

pixel. In the context of our proposed framework, weak learners such as shallow CNNs, decision trees, and 

support vector machines (SVMs) are used to perform the initial classification. Figure 3 shows the pixel-level 

classification process for accurate segmentation in hyperspectral image analysis. 

 
Figure 3: Illustrating the Pixel-Level Classification Process 
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Each weak learner independently processes the input data and assigns a predicted class label to each pixel. 

However, the predictions from individual weak learners may not be highly accurate, especially in complex 

regions of the image where classes are not well separated.  

 

IV. Results and Discussion 

The proposed adaptive deep learning framework, incorporating AdaBoost, Gradient Boosting, and XGBoost, 

significantly enhances pixel-level classification accuracy for hyperspectral image segmentation. Performance 

evaluations on the Indian Pines and Pavia University datasets show notable improvements in classification 

metrics, including accuracy, precision, recall, and F1-score, compared to baseline models. AdaBoost achieved the 

highest improvement in terms of precision, while XGBoost demonstrated superior overall accuracy and 

robustness, particularly in handling complex data distributions. The iterative refinement process, where 

misclassified pixels are given higher importance in each boosting iteration, allowed the model to focus on 

challenging regions in the data, resulting in better generalization and more accurate segmentation outcomes. 

Table 2: Weak Learners Evaluation For Pixel Classification 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Shallow CNN 85.4 83.5 82.1 82.8 

Decision Tree 84.2 81.8 80.7 81.2 

SVM 86.3 85 83.6 84.3 

 

The evaluation of weak learners—Shallow CNN, Decision Tree, and SVM—provides insight into their 

performance in pixel-level classification for hyperspectral images. The Shallow CNN model in table 2 shows 

solid performance across all evaluation metrics, achieving an accuracy of 85.4%, precision of 83.5%, recall of 

82.1%, and an F1-score of 82.8%. Figure 4 shows a performance comparison of different machine learning 

models for hyperspectral segmentation. 

 
Figure 4: Performance Comparison of Machine Learning Models 
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As a weak learner, the shallow CNN excels in capturing spatial patterns in the data, though its overall 

performance is slightly lower than more complex models. The ability of CNNs to automatically extract 

hierarchical features contributes to these results, especially in hyperspectral data where spectral and spatial 

information is critical. Figure 5 shows the trend analysis of model performance metrics for evaluating 

segmentation accuracy. 

 
Figure 5: rend Analysis of Model Performance Metrics 

The Decision Tree model performs well with an accuracy of 84.2%, but its precision (81.8%), recall (80.7%), and 

F1-score (81.2%) are comparatively lower. Decision trees are efficient at segmenting data based on simple 

feature thresholds but may struggle with high-dimensional data, leading to reduced performance. The SVM 

model demonstrates the best overall performance among the weak learners, with an accuracy of 86.3%, 

precision of 85%, recall of 83.6%, and an F1-score of 84.3%. SVMs are well-suited for hyperspectral data due to 

their ability to handle non-linear decision boundaries, making them highly effective for pixel classification in 

complex scenarios. 

Table 3: Evaluation With Misclassified Pixel Focus 

Model Accuracy (%) Precision (%) Recall (%) 
F1-Score 

(%) 

AdaBoost 

(Adaptive) 
94.5 93.7 92.5 93.1 

Gradient Boosting 

(Adaptive) 
95 94.5 93.2 93.8 

XGBoost 

(Adaptive) 
96.3 95.8 94.7 95.2 

Baseline (Non-

Adaptive) 
92.2 91.3 90.8 91 

 

Table 3 shows the evaluation of models with a focus on misclassified pixels, highlighting the effectiveness of 

adaptive boosting techniques in improving classification accuracy. Figure 6 shows a comparison of performance 

metrics between adaptive and non-adaptive models. The AdaBoost (Adaptive) model shows a significant 
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improvement over the baseline, achieving an accuracy of 94.5%, precision of 93.7%, recall of 92.5%, and F1-

score of 93.1%.  

 
Figure 6: Performance Metrics Comparison of Adaptive and Non-Adaptive Models 

The focus on misclassified pixels enables the model to prioritize difficult instances, leading to more refined 

predictions, especially in regions where previous models struggled. Gradient Boosting (Adaptive) improves 

further, with an accuracy of 95%, precision of 94.5%, recall of 93.2%, and an F1-score of 93.8%. Figure 7 shows 

the cumulative contribution of performance metrics in evaluating machine learning models' effectiveness. This 

model benefits from its ability to iteratively correct residual errors, refining the predictions in each boosting 

stage.  

 
Figure 7: Cumulative Contribution of Performance Metrics in Machine Learning Models 

Gradient Boosting’s ability to minimize errors in a sequential manner provides notable improvements in 

classification performance, especially when dealing with high-dimensional hyperspectral data. XGBoost 

(Adaptive) outperforms all other models, with the highest accuracy of 96.3%, precision of 95.8%, recall of 94.7%, 

and F1-score of 95.2%. XGBoost’s regularization techniques and efficient tree-building capabilities enable it to 

achieve superior performance in handling complex datasets with misclassified pixels, making it the most robust 

model in this evaluation. 

VI. Conclusion  
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This paper presents an innovative approach to hyperspectral image segmentation by combining deep learning 

with adaptive boosting techniques, specifically AdaBoost, Gradient Boosting, and XGBoost. The framework 

focuses on iteratively refining pixel-level classification, allowing the model to progressively improve its accuracy 

by addressing misclassified pixels in each iteration. Weak learners, including shallow CNNs, decision trees, and 

SVMs, are employed as base classifiers, with boosting methods enhancing their performance by focusing on the 

difficult-to-classify instances. This combination of deep learning and boosting techniques allows the model to 

capture complex spectral-spatial relationships, which is crucial in hyperspectral image analysis, where subtle 

spectral differences exist between classes. The proposed framework was tested on well-known hyperspectral 

datasets, including the Indian Pines and Pavia University datasets. The experimental results demonstrated that 

the boosting-based approach outperformed traditional methods and deep learning models in terms of accuracy, 

precision, recall, and F1-score. XGBoost, in particular, showed strong performance, benefiting from its 

regularization techniques and efficient tree-building capabilities. AdaBoost, with its adaptive focus on 

misclassified samples, contributed to higher precision in the segmentation tasks. The iterative refinement 

process proved effective in improving the model’s ability to handle challenging pixel classifications, enhancing 

the overall robustness and reliability of the segmentation results.  
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