

International Journal of Scientific Research in Science, Engineering and Technology Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com) doi : https://doi.org/10.32628/IJSRSET214414

Ghaph Valued Functions

Mr. Somashekhar Maranoor Sr. Scale Lecturer in Science, Govt. Polytechnic, Vijayapur, Karnataka, India Mr. Umesh Sr. Scale Lecturer in Science, Govt. Polytechnic, Aurad (B), Karnataka, India

ABSTRACT

Article Info	In this paper, we obtain some basic results on minimal dominating graph,
Volume 8, Issue 6	in particular a characterization of $MD(G)$ which are complete, eulerian,
Page Number : 305-310	hamiltonian and connectedness. In addition, we find the relationship of
Publication Issue :	MD(G) with other graph valued functions.
November-December-2021	
Article History	Keywords : Minimal Dominating Graph, Domatic Number, Graph Valued
Accepted : 15 Dec 2021	Functions
Published: 24 Dec 2021	

1. INTRODUCTION

Let G = (V, E) be a graph. A set $D \subseteq V$ is called a dominating set if every vertex $v \in V$ is either an element of Dor is adjacent to an element of *D*.

A dominating set *D* is a minimal dominating set if no proper subset $D' \subset D$ is a dominating set. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set in G. The upper domination number $\Gamma(G)$ of *G* is the maximum cardinality of a minimal dominating set in *G*.

Illustration:

The dominating sets of *G* are {2}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {1,2,4}. The minimal dominating sets of *G* are {2}, {1,4}, {1,3}. $\gamma(G) = 1, \Gamma(G) = 2$

Let *S* be a finite set and $F = \{S_1, S_2, ..., S_n\}$ be a partition of *S*. Then the intersection graph $\Omega(F)$ of *F* is the graph whose vertices are the subsets in *F* and in which two vertices S_i and S_j are adjacent if and only if $S_i \cap S_j \neq \varphi$, for $i \neq j$.

Illustration:

Domatic number d(G) of a graph G to be the largest order of a partition of V(G) into dominating set of G.

Illustration:

A clique in a graph *G* is a maximal complete subgraph of *G*. The order of the largest clique in a graph *G* is its clique number, which is denoted by $\omega(G)$. (The symbol ω is the Greek letter "Omega"). The clique graph of a given graph *G* is the intersection graph of cliques of *G* and it is denoted by K(G).

The line graph L(G) of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. The independence graph I(G) of a graph G is defined to be the intersection graph on the independent sets of vertices of G (see [2]).

The independence domination number i(G) of G is the minimum cardinality among all independent dominating sets of G.

DEFINITION: The minimal dominating graph MD(G) of a graph *G* is the intersection graph defined on the family of all minimal dominating sets of vertices of *G*. We illustrate this concept through Fig 2.1.

A graph and its minimal dominating graph **Figure. 2.1**

The following Theorems are useful to prove our next results.

THEOREM 2.A [5]. Every maximal independent set in a graph *G* is a minimal dominating set of *G*.

THEOREM 2.B [3]. If G is a graph without isolated vertices and S is a minimal dominating set of G then V(G) - S is a dominating set of G.

THEOREM 2.C [5]. For any graph G, $\gamma(G) \le i(G) \le \beta_0(G) \le \Gamma(G)$

THEOREM 2.D [4]. A graph *G* is eulerian if and only if every vertex of *G* has even degree.

THEOREM 2.E [4]. If for each vertex v of G, $\deg v \ge p/2$, where $p \ge 3$, then G is hamiltonian.

2. SOME BASIC PROPERTIES OF THE MINIMAL DOMINATING GRAPH

THEOREM 2.1. For any graph *G* with at least two vertices, MD(G) is connected if and only if $\Delta(G) .$

PROOF: Let $\Delta(G) . Let <math>D_1$ and D_2 be two disjoint minimal dominating sets of G. We consider the following cases:

Case 1. Suppose there exist two vertices $u \in D_1$ and $v \in D_2$ such that u and v are not adjacent. Then there exists a maximal independent set D_3 containing u and v. Since by Theorem 2.A, D_3 is minimal dominating set, this implies that D_1 and D_2 are connected in MD(G) through D_3 .

Case 2. Suppose every vertex in D_1 is adjacent to every vertex in D_2 . We consider the following two subcases:

Subcase 2.1. Suppose there exist two vertices $u \in D_1$ and $v \in D_2$ such that every vertex not in $D_1 \cup D_2$ is adjacent to either u or v. Then $\{u, v\}$ is a minimal dominating set of G. Hence D_1 and D_2 are connected in MD(G) through $\{u, v\}$.

Subcase 2.2. Suppose for any two vertices $u \in D_1$ and $v \in D_2$, there exists a vertex $w \notin D_1 \cup D_2$ such that w is adjacent to neither u nor v. Then there exist two maximal independent sets D_3 and D_4 containing u, w and v respectively. Thus, as above D_1 and D_2 are connected in MD(G) through D_3 and D_4 .

Thus, from the above cases every two vertices in MD(G) are connected and hence MD(G) is connected.

Conversely, suppose MD(G) is connected. Assume $\Delta(G) = p - 1$ and u is a vertex of degree p - 1. Then $\{u\}$ is a minimal dominating set of G and $V - \{u\}$ also contains a minimum dominating set of G. This shows that MD(G) has at least two components, a contradiction. Hence $\Delta(G) . This completes the proof.$

We characterized graphs G whose minimal dominating graphs MD(G) are complete.

THEOREM 2.2. The minimal dominating graph MD(G) of a graph *G* is complete if and only if *G* contains isolated vertex.

PROOF: Let *u* be an isolated vertex of *G*. Then *u* is in every minimal dominating set of *G*. Hence every two vertices in MD(G) are adjacent. Thus MD(G) is complete. Conversely, suppose MD(G) is complete. Assume *G* has no isolated vertex. Let *D* be a minimal dominating set of *G*. Then V - D contains a minimal dominating set D'. Then *D* and *D'* are two non adjacent vertices in MD(G), a contradiction. Which shows that *G* contains an isolated vertex. This completes the proof.

The following result gives the existence of the minimal dominating graph of a graph.

THEOREM 2.3. The minimal dominating graph MD(G) of a graph G is either connected or has at most one component that is not K_1 .

PROOF: We consider the following three cases:

Case 1. If $\Delta(G) , then by Theorem 2.1, <math>MD(G)$ is connected.

Case 2. If $\Delta(G) = \delta(G) = p - 1$, then $G = K_p$ and hence each $\{v\} \subseteq V$ is a minimum dominating set of *G* and hence each component of MD(G) is K_1 .

Case 3. Suppose $\delta(G) < \Delta(G) = p - 1$. Let $u_1, u_2, ..., u_n$ be the vertices having degree p - 1. Let $H = G \setminus \{u_1, u_2, ..., u_n\}$. Then clearly $\Delta(H) < V(H) - 1$ and hence by Theorem 2.1, MD(G) is connected. Since $MD(G) = \Omega(V(MD(H)) \cup \{u_1\} \cup \{u_2\} \cup ... \cup \{u_n\})$, then exactly one component of MD(G) is not K_1 . This completes the proof.

The next result relates to the independence number $\beta_0(MD(G))$ and domatic number d(G).

THEOREM 2.4. For any graph G, $\beta_0(MD(G)) = d(G)$ ------(1)

PROOF: Let *F* be a maximum order domatic partition of V(G). If each dominating set in *F* is minimal, then *F* is a maximum independent set of vertices in MD(G) and hence $\beta_0(MD(G)) = d(G)$. Otherwise, let $D \subseteq F$ be a dominating set in *F* which is not minimal. Then there exists a minimal dominating set $D' \subset D$. Replacing each such *D* in *F* by its subset *D'*, we see that *F* is a maximum independent set of vertices in MD(G). Thus $\beta_0(MD(G)) = d(G)$. This completes proof.

COROLLARY 2.5. For any graph *G*,

$$\begin{aligned} |V(MD(G))| &\geq d(G) & -----(2) \\ \gamma(MD(G)) &\leq \delta(G) + 1 & -----(3) \\ \gamma(MD(G)) &\leq p - \gamma(G) + 1 & -----(4) \end{aligned}$$

where $\delta(G)$ is the minimum degree of *G* and V(MD(G)) and $\gamma(MD(G))$ are the vertex set and domination number of MD(G), respectively.

PROOF: (2) follows from (1) and the fact that, for any graph G,

$$\begin{split} |V(G)| &\geq \beta_0(G) \qquad \Rightarrow \qquad |V(MD(G))| \geq \beta_0(MD(G)) \\ \text{Also by (1)} \qquad \beta_0(MD(G)) = d(G) \qquad \Rightarrow |V(MD(G))| \geq d(G). \\ \text{We prove (3), since by the Theorem 2.C} \\ \gamma(G) &\leq \beta_0(G) \qquad \Rightarrow \gamma(MD(G)) \leq \beta_0(MD(G)) \\ \text{Also, we know that by (1)} \qquad \gamma(MD(G)) \leq d(G) \\ \text{In [1] Cockayne and Hedetniemi shown that} \\ d(G) &\leq \delta(G) + 1 \\ \gamma(MD(G)) \leq \delta(G) + 1. \\ \text{Finally, we prove (4). Since, } \gamma(G) \leq p - \delta(G) \\ \gamma(MD(G)) \leq p - \gamma(G) + 1. \\ \end{split}$$

This completes the proof.

In the next result, they characterized graphs whose minimal dominating graphs have domination number equal to the order of *G*.

THEOREM 2.6. For any graph $G, \gamma(MD(G)) = p$ ------(5)

if and only if every independent set of G is a dominating set.

PROOF: Suppose every independent set of *G* is a dominating set. Then each $\{v\} \subseteq V$ is a minimal dominating set of *G*. This proves that $MD(G) = \overline{K_p}$. Hence (5) holds.

Conversely, suppose (5) holds. Then by (3)

$$(MD(G)) \le \delta(G) + 1 \qquad \Rightarrow p \le \delta(G) + 1$$

it follows that $\delta(G) = p - 1$. Hence $G = K_p$. Thus, every independent set of G is dominating set. This completes the proof.

They also characterized graphs whose minimal dominating graphs have domatic number one.

THEOREM 2.7. For any graph *G*,
$$d(MD(G)) = 1$$
 ... (6)

if and only if $G = \overline{K_p}$ or $\Delta(G) = p - 1$, where $\overline{K_p}$ is complement of K_p .

PROOF: Suppose (6) holds. Then MD(G) contains an isolated vertex D. If $V(MD(G)) = \{D\}$, then D = V, and hence $G = \overline{K_p}$. Otherwise, MD(G) is disconnected and hence by Theorem 2.1, $\Delta(G) = p - 1$. The converse is obvious. This completes the proof.

THEOREM 2.8. For any graph G, $\omega(G) \leq |V(MD(G))|$... (7)

where $\omega(G)$ is the clique number of *G*.

PROOF: Let *S* be a set of vertices in *G* such that the induced graph $\langle S \rangle$ is complete with $|S| = \omega(G)$. Then, for each vertex $v \in S$, there exists a minimal dominating set containing v and (7) follows. This completes the proof.

They characterized the graphs *G* for which $K(\overline{G}) = MD(G)$.

3. RELATIONSHIP WITH OTHER GRAPH VALUED FUNCTIONS

THEOREM 2.9. For any graph G, $K(\overline{G}) \subseteq MD(G)$... (8)

Furthermore, equality is attained if and only if every minimal dominating set of G is independent.

PROOF: Let *S* denote the family of all maximal independent sets of vertices in *G*. Then $\Omega(S) = K(\overline{G})$, and (8) follows from the fact that $\Omega(S) \subseteq MD(G)$. Therefore, $K(\overline{G}) = \Omega(S) \subseteq MD(G)$

 $\Rightarrow K(\overline{G}) \subseteq MD(G)$

Suppose the equality in (8) is attained. Then it follows that $MD(G) = \Omega(S)$. This prove that every minimal dominating set of *G* is independent.

Conversely, suppose every minimal dominating set *D* of *G* is independent. Then *D* is maximal independent set. Thus $MD(G) = \Omega(S)$ and hence the equality in (8) is attained. This completes the proof.

They also established the following other characterization.

COROLLARY 2.10. For any graph G, $L(\overline{G}) \subseteq MD(G)$... (9)

if and only if $\beta_0(G) \leq 2$.

PROOF: Suppose (9) holds. Then any two nonadjacent vertices of *G* form a minimal dominating set of *G*. This proves that $\beta_0(G) \leq 2$.

Conversely, suppose $\beta_0(G) \leq 2$. Then it follows that $\omega(\overline{G}) \leq 2$ and hence $L(\overline{G}) \subseteq K(\overline{G})$. Thus (9) follows from (8). This completes the proof.

COROLLARY 2.11. For any graph G, $MD(G) \subseteq I(G) \dots (10)$

if and only if every minimal dominating set of G is independent.

PROOF: Suppose every minimal dominating set of *G* is independent. Then by Theorem2.9, $K(\overline{G}) = MD(G)$. From Cockayne and Hedetniemi [2], $K(\overline{G}) \subseteq I(G)$. Hence (10) follows. The converse is immediate. This completes the proof.

4. EULERIAN AND HAMILTONIAN PROPERTIES OF MINIMAL

DOMINATING GRAPH

They gave a sufficient condition on G for which the minimal dominating graph MD(G) is eulerian.

THEOREM 2.12. If G is a (p - 2) - regular graph, then MD(G) is eulerian.

PROOF: Let $v \in V$ be a vertex in *G*. Then there exists exactly one vertex *u* such that *u* is not adjacent to *v*. This proves that $\{u, v\}$ is a minimal dominating set of *G*. Since for any vertex *w* adjacent to *v*, $\{v, w\}$ is also a minimal dominating set of *G*, for any minimal dominating set *D* of *G*, there exist exactly 2(p - 2) minimal dominating sets containing a vertex of *D*. Thus, *D* has even degree in MD(G) and hence by Theorem 2.D, MD(G) is eulerian. This completes the proof.

The following result gives sufficient conditions on G for which the minimal dominating graph G is hamiltonian. **THEOREM 2.13.** Let G be a graph satisfying the following conditions:

- (i) For any two adjacent vertices u and v, $\{u, v\}$ is a minimal dominating set of G; and
- (ii) $\delta(G) \ge \frac{1}{8}p(p-1).$

Then, MD(G) is hamiltonian.

PROOF: Let $u \in V$ be a vertex of G. Then by (i), there exists a vertex w such that w is not adjacent to u. Let S be a maximal independent set containing u and w. S is also minimal dominating set and for any minimal dominating set D of G, there are atleast $2\delta(G)$ minimal dominating sets containing a vertex of D and hence every vertex in MD(G) has degree at least $2\delta(G)$.

Also, if \overline{q} denotes the number of edges in \overline{G} , then $|V(MD(G))| \le q + \overline{q} = \frac{p(p-1)}{2} \le 4\delta(G)$, using (ii). Thus, by Theorem 2.E, MD(G) is hamiltonian. This completes the proof.

References

 E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs. Networks, 7(1977), 247-261.

- [2] B.J. Cockayne and S.T. Hedetniemi, Independence graphs. In proc.5th S-
- [3] E. Conf. combinatorics, Graph Theory and computing, (1974), 471-491.
- [4] Gary Chartrand and Ping Zhang, Introduction to Graph Theory. Tata McGraw-Hill Edition, (2006).
- [5] Jangid, J. (2020). Efficient Training Data Caching for Deep Learning in Edge Computing Networks. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7(5), 337–362. https://doi.org/10.32628/CSEIT20631113
- [6] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass, (1969).
- [7] T.W. Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs. Marcel Dekkar. Inc. New York, (1998).

