
IJSRSET151190 | Received: 25 Feb 2015 | Accepted: 27 Feb 2015 |  January-February 2015 [(1)1: 364-368]  

Themed Section:  Engineering and Technology 

 

364 

 

Meeting of Time Limit Based Resource Distribution for Process in Cloud 
R.Ramesh Kannan

1
, S.Abinaya

2
, D.Dheepikaraghavi

3
 

Dhanalakshmi College of Engineering, Kancheepuram District, Tamilnadu, India 

 

 
ABSTRACT 
 

Cloud computing is the latest technology and it gives excellent possibilities to solve a systematic difficulties. It 

provides many queries that is used to finish the work economically. Even though it offers many benefits in 

workflow applications it also has some threats in cloud circumstances. In the existing invention the work get 

neglected due to the user's Quality of Service (QoS) and also it combines elasticity and heterogeneity as basic 

principles in computing assets. This paper presents resource provisioning and scheduling strategy for systematic 

workflows on Infrastructure as a Service (IaaS) Cloud. We use two algorithms namely meta-heuristic optimization 

technique and Particle Swarm Optimization (PSO), which plans to reduce the workflow execution cost in deadline 

constraints. Our heuristic is evaluated using systematic workflows and CloudSim. The conclusion of our project is, 

it advances better than the current state-of-the-art algorithms. 

Keywords: Cloud Computing, Systematic Workflow, Resource Provisioning, Scheduling 

 

I. INTRODUCTION 

 

Workflows have been repeatedly used to model the 

systematic difficulties in areas such as physics, 

astronomy, and bioinformatics. Such systematic 

workflows have setting data and computing 

requirements and therefore demand a high performance 

computing surroundings in order to be executed in a 

required amount of time. The workflows are modeled by 

a set of tasks interconnected data or computing 

dependencies.  They are studied by focusing on 

surroundings like Grids and Clusters. Although, with the 

emergence of new paradigms such as Cloud computing, 

novel approaches that address the particular challenges 

and opportunities of these technologies need to be 

developed. 

 

Later the distributed environments have evolved from 

shared community platforms to utility-based models 

being the Cloud computing latest one. It enables the 

technology to deliver the IT resources over the Internet, 

and also follows a pay-as-you-go model where users are 

charged based on their consumption. There are many 

types of Cloud providers has different product offerings. 

They are Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS). 

This paper concentrates on IaaS Clouds which offer the 

user a virtual pool of unlimited, heterogeneous resources 

that can be accessed on demand. They also offer the 

flexibility of elastically acquiring or releasing resources 

with varying configurations which is suitable for 

requirements of an application. It empowers the users 

and gives them more control over the resources; it also 

explains the scheduling techniques so that the distributed 

resources are capably utilized. 

 

While planning the execution of a Cloud environment 

there are two main stages. The first stage is the resources 

provisioning phase; during this stage, the computing 

resources that is used to run the tasks which are selected 

and provisioned. In the second one, the schedule is 

generated and each task is mapped onto the best suited 

resource. The selection of the resources and mapping of 

the tasks is done so that different user defined Quality of 

Service (QoS) requirements are met. The previous works 

in this area, are especially developed for Grids or 

Clusters, concentrated mostly on the scheduling phase. 

The reason behind this is that these surroundings provide 

a static pool of resources which are readily available to 

execute the tasks and whose configurations are known in 

advance. Both problems need to be addressed and 

© 2015 IJSRSET | Volume 1 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

365 

combined in order to produce an efficient execution plan, 

since this is not the case in Cloud environments. 

 

Our work is based on the algorithms such as meta-

heuristic optimization technique, Particle Swarm 

Optimization (PSO). PSO is inspired on the social 

behaviour of bird flocks. It is based on the swarm of 

particles moving through space and communicating with 

each other in order to determine an optimal search 

direction. PSO has high computational performance 

compared with other algorithms and parameters which 

makes easier to apply. In different areas many problems 

have been successfully addressed by using PSO to 

particular domains. This technique has been used to 

solve in areas such as reactive voltage control, pattern 

recognition and data mining among other areas. 

 

We develop a static cost-minimization, deadline-

constrained heuristic for scheduling a systematic 

workflow application in a Cloud environment. The 

fundamental features of IaaS providers are the dynamic 

provisioning and heterogeneity of computing resources 

and VM performance variation. To achieve this, both 

resources provisioning and scheduling are merged, 

modelled as an optimization problem. The contribution 

is, the algorithm with high accuracy in terms of meeting 

deadlines at low costs it considers heterogeneous 

resources that can be dynamically acquired and it is 

charged on a pay-peruse basis. 

 

II. METHODS AND MATERIAL 
 

RELATED CONCEPT 

 

Workflows scheduling on scattered systems has been 

studied from the Multiprocessor Scheduling problem. So 

it is difficult to generate an optimal solution within 

polynomial time and algorithms focuses on generating 

approximate or real optimal solution. The Algorithms 

which are aim to find a schedule meets the users QoS 

requirements have been developed. The range of target 

surroundings in the proposed solution is similar or equal 

to community Grids. The limited pool of computing 

resources is assumed to be available and the execution 

cost is rarely a concern while minimizing the 

application's implementation time.  

The solutions provide a valuable insight into the 

challenges and potential solutions for workflow 

scheduling. They are not optimal for utility like 

surroundings such as IaaS Clouds. There are many 

characteristics in Cloud atmosphere while developing 

the scheduling algorithm which is to be considered. For 

instance, Mao and Humphrey propose a dynamic 

approach for scheduling workflow ensembles on Clouds. 

There are various types of VMs with different prices and 

they can be leased on demand, depending on the 

application requirements. The execution cost is 

minimized based on the Clouds pricing model by which 

the VMs are paid by a fraction of time, which in most 

cases is one hour. The implementation cost is minimized 

by applying a set of heuristics such as merging tasks into 

a single one, identifying the most cost effective VM type 

for each task and instances. It is a suitable approach 

capable of reducing the completion cost of workflows on 

Clouds, the solution proposed only ensures a reduction 

on the cost and not a near-optimal solution. 

 

The line with our work is presented by Abrishami which 

presents a static algorithm for scheduling a single 

workflow instance on an IaaS Cloud. Their algorithm is 

based on the workflow's partial critical paths and 

considers the Cloud features such as VM heterogeneity, 

pay-as-you-go and time interval pricing model. They 

also try to minimize the execution cost based on the 

heuristic of scheduling all tasks in a partial critical path 

on a single machine which finishes the tasks within the 

allocated time. They also have no global optimization 

technique and hence fail to utilize the whole workflow 

structure and characteristics to generate a better solution. 

Recently the algorithm estimates that the optimal 

number of resources that need to be leased to decrease 

the workflow execution cost. Their algorithm also 

generates a task to resource mapping and is designed to 

run online. The schedule and resources are updated 

every change time interval of the running VMs and tasks 

based on their current status. Their approach is the 

advantage of the elasticity of Cloud resources but it fails 

to consider the heterogeneous nature of the computing 

resources by assuming there is only one type of VM 

available. 

 

III. PARTICLE SWARM OPTIMIZATION 
 

Particle Swarm Optimization (PSO) is an evolutionary 

computational method based on the behavior of animal 

herds. It was established by Eberhart and Kennedy  

in1995 and has been widely studied and utilized ever 

since. The algorithm is a stochastic optimization 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

366 

technique in which the most basic concept is that of 

particle. A particle represents an separate (i.e. fish or 

bird) that has the skill to move through the distinct 

problem space and signifies a candidate solution to the 

optimization  problem. At a specified point in time, the 

movement of particles is defined by their velocity, 

which is signified as a vector and therefore has 

magnitude and direction. This velocity is resolute by the 

finest position in which the particle has been so far and 

the best position in which any of the particles has been 

so far. Based on this, it is authoritative to be able to 

amount how decent (or bad) a particle’s position is; this 

is attained by using a aptness function that measures the 

class of the particle’s position and differs from problem 

to problem, depending on the framework and 

requirements. 

 

Each particle is signified by its position and velocity. 

Particles keep path of their best position pbest and the 

global best position gbest; standards that are signified 

based on the fitness function. The algorithm will then at 

every step, change the velocity of each particle towards 

the pbest and gbest position. How much the particle 

transfers towards these values is biased by a random 

term, with different random numbers produced for 

acceleration towards pbest and gbest positions. The 

algorithm will continue to repeat until a stopping 

criterion is met; this is generally a specified maximum 

number of repetitions or a predefined fitness value 

considered to be good enough.  

 

In each iteration, the position and velocity of a particle 

are rationalised based in Equations. The pseudo code for 

the algorithm is shown in Algorithm 1. 

 

 

  ⃗⃗⃗  (   )    ⃗⃗⃗  ( )    ⃗⃗⃗  ( ) 

  ⃗⃗⃗  (   )      ⃗⃗⃗  ( )      (  
 ⃗⃗⃗⃗ ( )    ⃗⃗⃗  ( )   

    ( 
 ⃗⃗⃗⃗ ( )    ⃗⃗⃗  ( ) 

 

 

ALGORITHM 1 

PARTICLE SWARM OPTIMIZATION 

 

1. Set the dimension of the particles to d 

2. Initialize the population of particles with 

random positions and velocities 

3. For each particle, calculate its fitness value 

3.1 Compare the particle’s fitness value with the 

particle’s pbest. If the current value is better 

than pbest then set pbest to the current value 

and location 

3.2 Compare the particle’s fitness value with the 

global best gbest. If the particle’s current 

value is better than gbest then set gbest to 

the current value and location 

3.3 Update the position and velocity of the 

particle according to equations. 

4. Repeat from step 3 until the stopping criterion is 

met. 

Where: 

          

                                  

                              [   ] 

  
 ⃗⃗⃗⃗                              

  ⃗⃗⃗⃗                                 
  ⃗⃗  ⃗                                 

 

The velocity equation comprises various parameters that 

disturb the performance of the algorithm; moreover, 

some of them have a important influence on the 

convergence of the algorithm. One of these parameters 

is2v, which is recognized as the inertia factor or weight 

and is vital for the algorithm’s convergence. This weight 

regulates how much previous velocities will influence 

the current velocity and states a trade-off between the 

indigenous cognitive component and global public 

experience of the particles. On one hand, a large inertia 

weight will make the velocity rise and therefore will 

favour overall exploration. On the other hand, a smaller 

value would make the particles slow down and hence 

favour local consideration. For this reason, a w value 

that stabilizes global and local search implies less 

iteration in order for the algorithm to converge. 

 

Conversely, c1and c2do not have a serious effect in the 

convergence of PSO. However, spinning them properly 

may lead to a quicker convergence and may avert the 

algorithm to get trapped in local minima. Parameter c1is 

referred to as the cerebral parameter as the value c1r1in 

equation defines how much the preceding best position 

matters. On the other hand, c2is referred to as the 

common parameter as c1r2 in equations regulates the 

behavior of the particle relative to other neighbors.  

 

There are other parameters that are not part of the 

velocity descriptions and are used as key to the 

algorithm. The first one is the number of particles; a 

larger value generally rises the likelihood of finding the 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

367 

overall optimum. This number varies depending on the 

difficulties of the optimization problem but a typical 

span is between 20 and 40 particles. Other two 

parameters are the dimension of the particles and the 

range in which they are permitted to move, these values 

are solely determined by the kind of the problem being 

solved and how it is modeled to fit into PSO. Finally, the 

determined velocity defines the maximum change a 

particle can have in one repetition and can also be a 

parameter to the algorithm; however, this rate is usually 

set to be as large as the half of the location range of the 

particle. 

 

IV. PROPOSED APPROACH 
 

PSO Modeling 

 

There are two key steps when modeling a PSO problem. 

The first one is describing how the problem will be fixed, 

that is, defining how the answer will be represented. The 

second one is defining how the “goodness” of a particle 

will be considered, that is, defining the aptness function.  

 

To define the indoctrination of the problem, we need to 

found the sense and dimension of a particle. For the 

slating scenario presented here, a particle signifies a 

workflow and its tasks; thus, the dimension of the 

particle is equal to the number of chores in the workflow. 

The measurement of a particle will determine the 

coordinate system used to define its location in space. 

For example, the position of a 2-dimensional particle is 

stated by 2 coordinates, the position of a 3-dimensional 

one is stated by 3 coordinates and so on. As an example, 

the particle depicted in Figure represents a workflow 

with 9 tasks; the particle is a 9-dimensional one and its 

location is defined by 9 coordinates, coordinates 1 

through 9. 

 

The variety in which the particle is recognized to move 

is determined in this case by the number of resources 

available to run the chores. As a result, the worth of a 

coordinate can range from 0 to the number of VMs in 

the initial resource pool. Based on this, the numeral part 

of the value of each coordinate in a particle’s location 

corresponds to a resource directory and represents the 

compute resource assigned to the task defined by that 

specific coordinate. 

 

In this way, the particle’s position encodes a mapping of 

task to resources .Following the example given in Figure; 

there are 3 resources in the resource tarn so each 

coordinate will have a value among 0 and 3. Coordinate 

1corresponds to task 1 and its worth of 1.2 means that 

this task was allocated to resource 1. Coordinate 2 

parallels to task 2 and its value of 1.0 specifies that task 

2 was allocated to resource 1. The same reason applies 

to the rest of the coordinates and their values. 

Since the fitness function is used to establish how good a 

possible solution is, it needs to replicate the objectives of 

the planning problem. Based on this, the aptness 

function will be reduced and its value will be the total 

implementation cost TEC; associated to the schedule S 

resulting from the particle’s position. 

 

Because of the elasticity and dynamicity of the resource 

attainment model offered by IaaS providers, there is no 

first set of available resources we can custom as an input 

to the algorithm. Instead, we have the delusion of an 

unlimited pool of varied VMs that can be acquired and 

released at any outlet in time. 

 

 Consequently, a tactic to define a first pool of resources 

that the algorithm can use to travel different solutions 

and accomplish the scheduling objective needs to be put 

in place. 

Such strategy needs to return the heterogeneity of the 

VMs and give PSO enough choices so that a suitable 

particle (i.e. solution) is generated. If this first resource 

pool is limited, then so will be the resources that can be 

used to schedule the jobs. If it is very large, then the 

number of feasible schedules becomes very huge and so 

does the search space surveyed by PSO, making it hard 

for the algorithm to converge and discover a suitable 

solution. 

 

As for the problem restraints, PSO was not designed to 

solve forced optimization problems. To address this, we 

use a form of PSO that incorporates the constraint- 

handling strategy projected by Deb et al. In such strategy, 

whenever two solutions are being equated ,the following 

rules are used to select the superior one. If both of the 

solutions are viable, then the solution with healthier 

fitness is selected. If on the other hand, one solution is 

feasible and the other one is not, then the feasible one is 

selected. Finally, if both solutions are infeasible, the one 

with the smaller overall constraint defilement is selected. 

The latter scenario suggests that a measure of how much 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

368 

a solution violates a constraint requests to be in place. 

Our problem specifies a particular constraint, meeting 

the application’s deadline. Therefore, we define the 

complete constraint violation value of a solution to be 

the variance between the solutions makes span and the 

workflow’s deadline. In this way, a solution whose make 

span is nearer to the deadline will be preferred over a 

solution whose make span is further away. 

 

V. CONCLUSIONS 
 

In this paper we presented a collective resource 

provisioning and scheduling strategy for executing 

scientific workflows on IaaS Clouds. The scenario was 

showed as an optimization problem which aims to 

reduce the overall execution cost while meeting a 

consumer defined deadline and was resolved using the 

meta-heuristic optimization algorithm, PSO. The 

proposed approach includes basic IaaS Cloud principles 

such as a pay-as-you-go model, heterogeneity, elasticity, 

and dynamicity of the resources. 

 

Furthermore, our solution reflects other characteristics 

typical of IaaS platforms such as performance variation 

and VM boot time. 

 

VI. REFERENCES 
 

[1]. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., 

Mehta, G., & Vahi, K. (2012). Characterizing and 

profiling scientific workflows. Future Generation 

Comput. Syst. 29(3), 682- 692. 

 

[2]. Mell, P., and T. Grance. (2011). The NIST definition of 

cloud computing—recommendations of the National 

Institute of Standards and Technology. Special 

Publication 800-145, NIST, Gaithersburg.  

 

[3]. Buyya, R., Broberg, J., and Goscinski, A. M. (Eds.). 

(2010). Cloud computing: Principles and paradigms 

(Vol. 87).                                  

 

[4]. Wiley.Kennedy, J., and Eberhart, R. (1995). Particle 

swarm optimization. In Proc. 6th IEEE Int. Conf. 

Neural Networks, 1942-1948.  

 

[5]. Fukuyama, Y., and Nakanishi, Y. (1999). A particle 

swarm optimization for reactive power and voltage 

control consider- ing voltage stability. In Proc. 11th 

IEEE Int. Conf. Intelligent Systems Application to 

Power Systems (ISAP), 117-121. 

 

[6]. Ourique, C. O., Biscaia Jr, E. C., and Pinto, J. C. 

(2002). The use of particle swarm optimization for 

dynamical analysis in chem- ical processes. Comput. & 

Chemical Eng., 26(12), 1783-1793.  

 

[7]. Sousa, T., Silva, A., and Neves, A. (2004). Particle 

swarm based data mining algorithms for classification 

tasks. Parallel Computing, 30(5), 767-783. 

 

[8]. Garey, M. R., & Johnson, D. S. (1979). Computer and 

intractability: A Guide to the NP-Completeness. Ney 

York, NY. WH Freeman and Company. 238. 

 

[9]. Rahman, M., Venugopal, S., and Buyya, R. (2007). A 

dynamic critical path algorithm for scheduling 

scientific workflow applications on global grids. In 

Proc. 3rd IEEE Int. Conf. e-Sci. and Grid Computing, 

35-42. 

 

[10]. Chen, W. N., and Zhang, J. (2009). An ant colony 

optimization approach to a grid workflow scheduling 

problem with various QoS requirements. IEEE Trans. 

Syst., Man, Cybern., Part C: Applicat. Reviews, 39(1), 

29-43.  

 

[11]. Yu, J., and Buyya, R. (2006). A budget constrained 

scheduling of workflow applications on utility grids 

using genetic algorithms. In Proc. 1st Workshop on 

Workflows in Support of Large-Scale Sci. (WORKS), 

1-10.  

 

[12]. Mao, M., and Humphrey, M. (2011). Auto-scaling to 

minimize cost and meet application deadlines in cloud 

workflows. In Proc. Int. Conf. High Performance 

Computing, Networking, Storage and Analysis (SC), 1-

12. 

 

[13]. Malawski, M., Juve, G., Deelman, E., and Nabrzyski, J. 

(2012). Cost-and deadline-constrained provisioning for 

scientific workflow ensembles in IaaS clouds. In Proc. 

Int. Conf. High Performance Computing, Networking, 

Storage and Anal. (SC), 22. 

 

[14]. Abrishami, S., Naghibzadeh, M., and Epema, D. 

(2012). Dead- line-constrained workflow scheduling 

algorithms for IaaS Clouds. Future Generation Comput. 

Syst., 23(8), 1400-1414. 

 

[15]. Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). 

A particle swarm optimization-based heuristic for 

scheduling workflow applications in cloud computing 

environments. In Proc. IEEE Int. Conf. Advanced 

Inform. Networking and Applicat. (AINA), 400- 407.  

 

[16]. Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010). A revised 

discrete parti-cle swarm optimization for cloud 

workflow scheduling. In Proc. IEEE Int. Conf. 

Computational Intell. and Security (CIS), 184-188.  

 

[17]. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., 

Fahringer, T., and Epema, D. (2010). A performance 

analysis of EC2 cloud computing services for scientific 

computing. In Cloud Compu- ting. 115-131. Springer 

Berlin Heidelberg. 


