

# **Runoff-Rainfall Prediction Formula for West Dar Fur State** using Statistical Methods and GIS <sup>1</sup>Tyseer Y. Mustafa ,<sup>2</sup>Abbas A. Ibrahim ,<sup>3</sup>Insaf S. Babiker, <sup>4</sup>Arman M. Abdalla

<sup>1,2</sup> Sudan University of Science and Technology, collage of Environment and water resource Engineering,

Department of water resource Engineering, Sudan

<sup>3</sup>University of Khartoum, Faculty of science, Department of Geology, Sudan

<sup>4</sup>Sudan University of Science and Technology, collage of Engineering and Technology Industries, Department of

Plastic Engineering, Sudan

# ABSTRACT

The Runoff-Rainfall prediction formula of annual stream flow was developed for Wadis system in West Dar Fur State using discharge gauged stations, GIS program, and rainfall data analysis together with multiple regression equation were evaluated by XLSATA tool in Excel. The relationship produced R<sup>3</sup> (correlation coefficient) value equal to 0.995. Some stations were chosen to verify the accuracy of the relationship. Finally, the total annual flow was calculated for the State based on two major Wadis are Azum and kaja. The collective flow volume calculated in West Dar Fur State was (2348 Million m<sup>3</sup>) for the two wadies. These results were discussed and compared with previous studies in West Dar Fur State. The integrated approach using GIS and statistical methods proved to be successful and accurate procedure.

Keywords: West Dar Fur, multiple regression, prediction, GIS, XLSATA tools

## I. INTRODUCTION

West Dar Fur State has a total area of 150,000 km<sup>2</sup> and a population of 1,693,000 in 2003. Its capital is Al-Ginaina Town. The main water resources in the State are seasonal streams running from Jebel Mara and the groundwater. It has an arable land of about 8 million feddans, 3 million of which are exploited. The major Wadis are Azum and Kaja. The overall surface area of Wadi Azum -including all three sub-streams is 36965 km2[1], 36700 km2 [2], and 40393 km2 [3]. It drains from the higher western slopes of Jebel Marra with altitudes ranging between 2600m and 600m[1].The surface area of Kaja is 42850 km2 [2], and 47337 km2 [3]. The measured discharge rate is 487 million cubic meter per year[3].

Multiple regression model is one of the statistical methods, it is relation between one depending parameter with more independent one, and it is commonly used to estimate mean annual stream flow of any gauge station. The meteorological and geographic characteristics of stations upstream were related to formulate the adopted multiple regressions model the developed empirical equation has the form:

$$Q = b_0 A^{b_1} P^{b_2} S^{b_3} L^{b_4}$$
(1)

Where: -

Q is discharge value at gauged station (million  $m^3/s$ ), A is catchment area (km2), P is mean annual rainfall precipitation (mm), S is mean catchment slope (%) L is longest flow path in catchment (km) And  $b_0$ ,  $b_1$ ,  $b_2$ ,  $b_3$ ,  $b_4$  are model coefficients.

The above empirical relationship developed a better linear form by taking logarithms as in the equation below:

$$logQ = logb_0 + b_1 logA + b_2 logP + b_3 logS + b_4 logL$$
(2)

The optimum values of model parameters can be estimate in this equation and several combinations of stations can be investigated in order to optimize the equation. Combination regression achieves maximization of the correlation coefficient R and compatibility of estimated discharge and precipitation. This has resulted in a small difference between estimated and observed discharge in different stations.[4]

The optimum model parameters were estimated with selected independent characteristics such as the mean precipitation, catchment area, and catchment mean slope while the length of Wadis was not considered in previous studies [4]. The model used in this paper uses parameters shown in equation (1).

# **II. METHODS AND MATERIAL**

The data used to predict the equation for the West Dar Fur region include; Wadi discharge data (station names and length of time period), rainfall data (number and name of stations and length of time period) [5],and digital elevation model DEM (90m) of the Shuttle Radar Topography Mission (SRTM). The later was used to create layers such as catchment, stream length and slope employing the Arc-Hydro tool of the ArcGis 10 software following the routine analysis shown in figure (1). The annual stream discharge (Table 1) and rainfall data were analyzed by XLSATA tools in Excel program in order to determine the best distribution for the thirtyyear rainfall data. Layers of some parameters were created by using Kringing Method. Mapping all data in GIS environment and the application of multiple regression method reveal the general methodology developed in this study (Figure 2).

The best selected discharge station that has given a high and accurate R value in the regression analysis, belongs to Wadi Azum which has more gauging stations compared to Wadi Kaja (table 1)[3]. The Arc-Hydro tools and the Kriging Method were used to compute all independent characteristics such as catchment area, precipitation, stream length and slope as shown in table (1 and 2). Hence using the data set layers for each wadi, the regression was performed (3 to 13). Table (3) was used to verify the equation. Figures (14 to 15), (16 to 17) show Wadi Azum and Wadi Kaja catchment properties obtained by GIS.

# **III. RESULTS AND DISCUSSION**

The result of regression for West Dar Fur State of figure (18) is summarize in table (4)

- i. Firstly, the discharge is considered as the most important parameter in the study. It was revealed from the result that the difference between measured and predicted annual discharges was small ranging from 0.25% to 7.71%. Furthermore, it is associated with a reasonably high correlation coefficient close to ( $R^2 = 0.995150$ )
- ii. For the verification equation, the analysis is depicted in table (6).
  From table (6) it is clearly apparent that the verification stations located in Wadi Azum has smaller difference, (approximately 29.2) than those located in Wadi Kaja (approximately 113.5). Wadi Azum Station has close precipitation data values (indicating homogeneity) and would preferably be used to develop the equation.
- iii. Tables (7) and (8) described the simple calculation of annual discharges for both Wadi Azum and Wadi Kaja respectively. They were calculated using the layers prepared in GIS as shown the figures (13, 14, 15, and 16).
- iv. Table (9) showed the discharge quantities based on small catchment areas using Kringing Method which identified the rainfall range as (367.923187-970.0508) and (258.8495-615.3716) for Azum and Kaja, respectively The calculated discharge quantities were less than values obtained by previous studies (references No. (1) and (3)) because these studies did not considered the small size of wadies. The result gave high discharge quantities especially for Wadi Azum. The result of this work was also higher than that of study No.(2) which has used the rainfall parameter values (546),(465) for the two wadis. The validated prediction equation provides an accurate method for estimating stream discharge based on topographic and climatic variables a thing which allows better resource assessment and sustainable management and development.

### **IV. CONCLUSION**

The use Arc-Hydro tools reduced time needed to delineate West Dar Fur catchments. The 3D TIN layer for elevation values and Kringing Method for rainfall data interpolation provided successful tools. This methodology would also help scientists to understand morphology and topographic characteristics of study area. It is highly recommended to use XLSATA tools in Excel to get most suitable probability distributions that fits the annual rainfall data and to use multiple regression method.

# **V. REFERENCES**

- [1]. M. A. R. Yousif, "Darfur Water Resources, Current Situation and Future Perspectives and opportunities" Darfur International Water Conference -Water for sustainable Peace, vol. Friendship Hall, Khartoum Sudan, 27th and 28th June 2011, June 2011
- [2]. Dr. Babiker I. Barsi, "Water Resources of Wadi Systems in Darfur," International Seminar on "Challenges in Applications of Integrated Water Resources Management, vol. Water and Environment Center, Sana'a University, Sana'a, 2010.
- [3]. H. E. Ali, Darfur's Political Economy: A Quest for Development: Routledge, 2014.
- [4]. B. E. ZOBANAKIS G., DASSAKLIS A., and MIMIKOU M., "QUANTIFYING SURFACE RUNOFF IN THE WATER DISTRICT OF WESTERN MACEDONIA USING MULTIPLE REGRESSION ANALYSIS AND G.I.S " International Conference on Environmental Science and Technology September 2003.
- [5]. T. A & M's, "( http://globalweather.tamu.edu) " 2016.

 TABLE 1

 The Independent Characteristics for Wadi Azum

| Wadi, station        | Q<br>Measured<br>annual<br>discharge<br>(M.m <sup>3</sup> ) | A<br>(Km <sup>2</sup> ) | Max.Elev<br>(m) | Min.Elev<br>(m) | L<br>long flow path<br>(Km) | $S \\ Slope\% \\ (Max - Min) \\ L \times 10$ | P<br>(mm) |
|----------------------|-------------------------------------------------------------|-------------------------|-----------------|-----------------|-----------------------------|----------------------------------------------|-----------|
| Wadi Saleh, Saleh    | 180                                                         | 317.0476                | 921.527         | 807.6355        | 9.133234                    | 1.247                                        | 1010.5    |
| Wadi Toro , Toro     | 45                                                          | 541.4434                | 1116.538        | 1054.94295      | 34.34349                    | 0.17935                                      | 537.5     |
| Wadi Aribo, Aribo    | 58                                                          | 1282.083                | 1196.834        | 870.829         | 69.112694                   | 0.4717                                       | 566.3232  |
| Wadi Dodari, Dodari  | 40                                                          | 1074.1                  | 1835.618        | 1095.672        | 68.647                      | 1.0779                                       | 494.5     |
| Wadi Bari, Murnei    | 150                                                         | 11904                   | 1370.636        | 736.9433        | 315.27                      | 0.201                                        | 645       |
| Wadi Bari, kabkabiya | 70.93                                                       | 789.8476                | 1361.172        | 1160.48433      | 45.40445                    | 0.442                                        | 368.96051 |

Source: [3],

## TABLE 2

### THE INDEPENDENT CHARACTERISTICS AT LOG SCALE FOR WADI AZUM

| Wadi, station        | Log Q    | Log A    | Log P    | Log S    | Log L    |
|----------------------|----------|----------|----------|----------|----------|
| Wadi Saleh, Saleh    | 2.255273 | 2.501124 | 3.004536 | 0.095866 | 0.960625 |
| Wadi Toro , Toro     | 1.653213 | 2.733553 | 2.730378 | -0.7463  | 1.535844 |
| Wadi Aribo, Aribo    | 1.763428 | 3.107916 | 2.753064 | -0.32633 | 1.839558 |
| Wadi Dodari, Dodari  | 1.60206  | 3.031045 | 2.694166 | 0.032578 | 1.836622 |
| Wadi Bari, Murnei    | 2.176091 | 4.075693 | 2.80956  | -0.6968  | 2.498679 |
| Wadi Bari, kabkabiya | 1.85083  | 2.897543 | 2.56698  | -0.35458 | 1.657098 |

 TABLE 3

 VERIFICATION FOR WEST DARFUR EQUATION

| Years of measured | Big Wadi-small<br>wadi<br>station    | Q<br>Measured annual<br>discharge (M.m <sup>3</sup> ) | A<br>(Km <sup>2</sup> ) | Max.Elev<br>(m) | Min.Elev<br>(m) | L<br>long flow path<br>(Km) | $\frac{S}{Slope\%} \frac{(Max - Min)}{L \times 10}$ | P<br>(mm)  |
|-------------------|--------------------------------------|-------------------------------------------------------|-------------------------|-----------------|-----------------|-----------------------------|-----------------------------------------------------|------------|
| 1977-1997         | Azum -wadi<br>elserief<br>kabkabiya  | 23.27                                                 | 146.2845                | 1259.412        | 1159.3065       | 14.26003                    | 0.702                                               | 372.661407 |
| 1965-1973         | Kaja - wadi abu<br>sunut<br>Ereigi   | 9.928482                                              | 655.6033                | 1111.282        | 945.393         | 68.21074                    | 0.2432                                              | 335.9222   |
| 1965-1972         | Kaja- wadi abu<br>sunut<br>Tilfou    | 2.707991                                              | 37.57289                | 868.346         | 867.981         | 9.172147                    | 0.00398                                             | 262.5257   |
| 1964-1973         | Kaja -wadi abu<br>sunut<br>Abu Gidad | 45.20211                                              | 744.33341               | 892.198         | 875.323         | 39.21754                    | 0.04303                                             | 408.0355   |
| 1978-2002         | Azum -wadi<br>bargu<br>Umm Sineina   | 40.7902068                                            | 425.2775                | 988.376         | 924.398         | 39.01083                    | 0.164                                               | 403.3955   |

|                       | Coefficients     | Predicted Discharge Function (million m <sup>3</sup> )<br>Four Decimal Places.      |
|-----------------------|------------------|-------------------------------------------------------------------------------------|
| $log b_0$             | 1.57996091739009 |                                                                                     |
| $b_1$                 | 2.01127688478    |                                                                                     |
| <i>b</i> <sub>2</sub> | -0.74371290456   | 20.01 = 5 $+ 2.0113$ $-0.7437$ $= -0.008$ $t - 2.2056$                              |
| <i>b</i> <sub>3</sub> | -0.00795204617   | $30.0155 \times A^{2.0113} \times P^{-0.7437} \times S^{-0.008} \times L^{-2.2056}$ |
| $b_4$                 | -2.20560977060   |                                                                                     |
| <b>R</b> <sup>2</sup> | 0.995150         |                                                                                     |

 TABLE 4

 COEFFICIENTS OF REGRESSION FUNCTIONS FOR WEST DIFFERENT STATE

| TABLE 5                                             |
|-----------------------------------------------------|
| WEST DARFUR STATE PREDICTED AND MEASURED DISCHARGES |

| Wadi, station        | Q<br>Measured annual<br>discharge (M.m <sup>3</sup> ) | Q<br>Predicted annual discharge (M.m <sup>3</sup> ) | Difference % |
|----------------------|-------------------------------------------------------|-----------------------------------------------------|--------------|
| Wadi Saleh, Saleh    | 180                                                   | 180.458                                             | 0.254646159  |
| Wadi Toro, Toro      | 45                                                    | 46.317                                              | 2.925721942  |
| Wadi Aribo, Aribo    | 58                                                    | 53.530                                              | 7.706383996  |
| Wadi Dodari, Dodari  | 40                                                    | 41.823                                              | 4.557533861  |
| Wadi Bari, Murnei    | 150                                                   | 152.136                                             | 1.423983613  |
| Wadi Bari, kabkabiya | 70.93                                                 | 70.232                                              | 0.984334135  |

TABLE 6Result of verification West Dar Fur Equation

| Years of measured | Big Wadi-small wadi -station    | Q<br>Measured<br>annual<br>discharge<br>(M.m <sup>3</sup> ) | Q<br>Predict annual<br>discharge (M.m3) | Difference % |
|-------------------|---------------------------------|-------------------------------------------------------------|-----------------------------------------|--------------|
| 1977-             | Azum -wadi elserief -kabkabiya  | 23.27                                                       | 30.070                                  | 29.22327729  |
| 1997<br>1965-     |                                 |                                                             |                                         |              |
| 1973              | Kaja - wadi abu sunut- Ereigi   | 9.928482                                                    | 21.200                                  | 113.5237807  |
| 1965-<br>1972     | Kaja- wadi abu sunut -Tilfou    | 2.707991                                                    | 6.991                                   | 158.1689908  |
| 1964-<br>1973     | Kaja -wadi abu sunut -Abu Gidad | 45.20211                                                    | 81.384                                  | 80.04483017  |
| 1978-<br>2002     | Azum -wadi bargu-Umm Sineina    | 40.7902068                                                  | 26.654                                  | 34.65571343  |

| CALCULATED WADI AZUM DISCHARGE |            |          |          |                          |          |          |                 |
|--------------------------------|------------|----------|----------|--------------------------|----------|----------|-----------------|
| Gird ID<br>of<br>catchment     | A $(km^2)$ | Max.Elev | Min.Elev | long flow<br>path (L) km | slope%   | P(mm)    | Pred<br>Q(M.cm) |
| 162                            | 3231.616   | 1373.955 | 923.775  | 150.97                   | 0.298192 | 367.9232 | 84.837          |
| 170                            | 1077.417   | 1111.134 | 923.775  | 78.59                    | 0.238401 | 375.8245 | 38.760          |
| 172                            | 80.09485   | 923.775  | 921.221  | 12.28                    | 0.020798 | 402.6767 | 12.087          |
| 174                            | 5540.519   | 921.221  | 736.43   | 163.54                   | 0.112994 | 566.1135 | 153.832         |
| 175                            | 1974.184   | 1463.652 | 921.221  | 135.94                   | 0.399022 | 425.1625 | 35.551          |
| 182                            | 1526.142   | 1145.335 | 1105.925 | 91.85                    | 0.042907 | 446.6855 | 49.351          |
| 186                            | 1638.639   | 1821.245 | 1060.513 | 102.81                   | 0.73994  | 485.4009 | 40.810          |
| 191                            | 30.60531   | 1060.513 | 1105.925 | 11.33                    | 0.400812 | 541.8088 | 1.633           |
| 192                            | 1203.044   | 1275.332 | 1060.513 | 58.41                    | 0.367778 | 561.1142 | 68.870          |
| 193                            | 12.60822   | 1105.925 | 1005.851 | 6.07                     | 1.648666 | 545.1047 | 1.070           |
| 194                            | 1589.628   | 897.69   | 735.933  | 97.22                    | 0.166382 | 672.0461 | 34.503          |
| 197                            | 1422.191   | 1302.953 | 1005.851 | 73.5                     | 0.40422  | 644.2181 | 52.378          |
| 198                            | 298.986    | 1005.851 | 897.69   | 29.29                    | 0.369276 | 513.9307 | 20.487          |
| 199                            | 3119.261   | 870.46   | 643.763  | 114.31                   | 0.198318 | 767.2358 | 84.755          |
| 200                            | 1282.083   | 1225.616 | 897.69   | 69.06                    | 0.474842 | 724.5131 | 44.642          |
| 202                            | 1206.129   | 857.661  | 643.763  | 76.69                    | 0.278913 | 777.2839 | 29.864          |
| 206                            | 3726.948   | 1091.976 | 609.183  | 129.15                   | 0.373823 | 970.0508 | 77.405          |
| 208                            | 1461.726   | 887.675  | 609.183  | 85.17                    | 0.326984 | 797.9763 | 34.161          |
| 213                            | 153.4563   | 609.183  | 581.34   | 22.52                    | 0.123637 | 805.462  | 6.907           |
| 214                            | 191.551    | 584.703  | 581.34   | 18.3                     | 0.018377 | 807.6827 | 17.276          |
| 215                            | 9.103717   | 581.34   | 571.609  | 6.98                     | 0.139413 | 816.0332 | 0.309           |
| 223                            | 3186.626   | 799.402  | 584.703  | 115.32                   | 0.186177 | 911.2453 | 76.394          |
| 225                            | 1456.116   | 730.879  | 584.703  | 66.22                    | 0.220743 | 818.6612 | 58.121          |
| Sum                            | 35418.674  |          |          |                          |          |          | 1024.004        |
| Sum                            | <u>4</u>   |          |          |                          |          |          | 1024.004        |

 TABLE 7

 CALCULATED WADI AZUM DISCHARGE

# TABLE 8 CALCULATED WADI KAJA DISCHARGE

| Gird ID<br>of catchment | A (km2)  | Max.Elev | Min.Elev | long flow path (L) km | slope%   | P(mm)    | Pred<br>Q(M.cm) |
|-------------------------|----------|----------|----------|-----------------------|----------|----------|-----------------|
| 138                     | 4363.07  | 966.998  | 884.653  | 183.02                | 0.044992 | 275.6788 | 127.689         |
| 139                     | 3167.741 | 1236.244 | 900.349  | 131.15                | 0.256115 | 258.8495 | 144.563         |
| 140                     | 2027.09  | 1108.259 | 900.349  | 127.25                | 0.163387 | 300.6055 | 56.530          |
| 143                     | 972.4702 | 928.832  | 884.653  | 48.2                  | 0.091658 | 370.4073 | 94.440          |
| 145                     | 2767.195 | 991.137  | 853.652  | 103.94                | 0.132273 | 372.3718 | 141.103         |
| 147                     | 1538.251 | 912.53   | 887.591  | 67.23                 | 0.037095 | 264.2979 | 147.604         |
| 148                     | 1769.888 | 1111.594 | 882.14   | 134.8                 | 0.170218 | 335.0053 | 34.947          |
| 150                     | 47.35878 | 882.14   | 887.591  | 12.08                 | 0.045124 | 354.0999 | 4.763           |
| 151                     | 1418.051 | 892.362  | 853.652  | 66.37                 | 0.058325 | 402.5789 | 93.946          |
| 152                     | 1373.896 | 1010.032 | 882.14   | 92.33                 | 0.138516 | 350.459  | 46.862          |

| Sum | 28746.88328 |         |         |        |          |          | 1324.073 |
|-----|-------------|---------|---------|--------|----------|----------|----------|
| 177 | 1373.583    | 892.798 | 763.928 | 50.25  | 0.256458 | 615.3716 | 117.326  |
| 176 | 931.0133    | 873.06  | 850.921 | 56.6   | 0.039115 | 575.9814 | 44.012   |
| 173 | 1029.509    | 995.057 | 850.921 | 65.61  | 0.219686 | 529.7501 | 40.830   |
| 163 | 2174.417    | 908.099 | 873.06  | 109.26 | 0.032069 | 504.1596 | 62.831   |
| 156 | 3793.35     | 974.261 | 873.06  | 116.96 | 0.086526 | 494.665  | 166.625  |

COMPARISON BETWEEN PRESENT AND PREVIOUS STUDIES FOR WEST DAR FUR Estimated/predicted Estimated/predicted Name of Catchment area NO. Annual Discharge Total Annual Discharge Reference wadi (Km) (M.CM) (M.CM) 36965 Azum -4016 1 [1] Kaja \_ 36700 601 Azum 2 900 [2] Kaja 42850 299 40393 2597 Azum 3 4016 [3] 47337 Kaja 1419 35418.6744 1024.004 Azum 4 2348 Work study Kaja 28746.88328 1324.073

TABLE 9

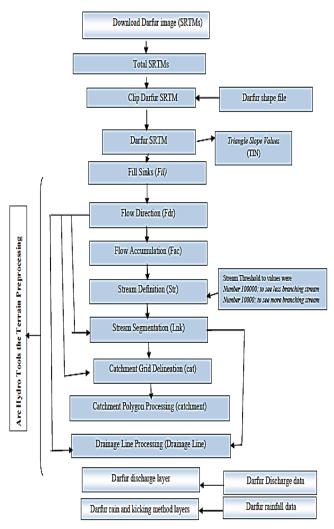



Figure 1. Researcher Developed ArcGIS Analysis and Layers

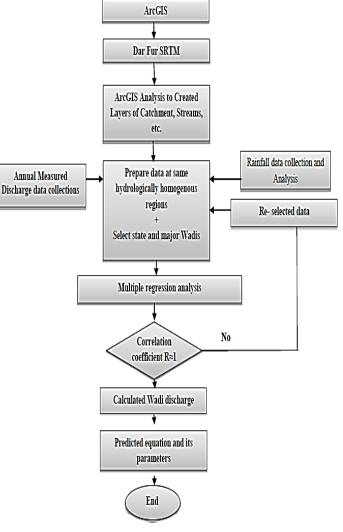



Figure 2. Researcher Developed General Methodology

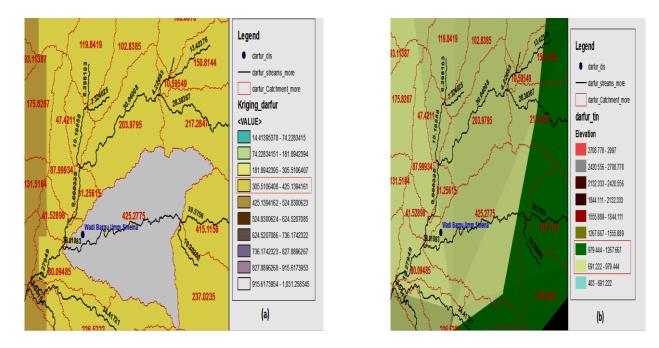



Figure 3. wadi Bari, Umm Sineina station, (a) rain, catchment and stream length, (b) elevation

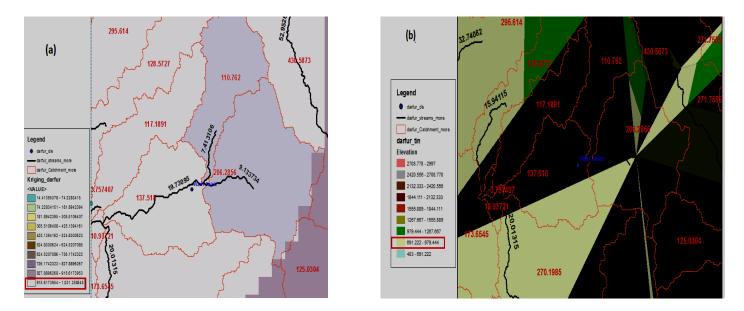



Figure 4. Wadi Saleh,(a) rain, catchment and stream length,(b) elevation

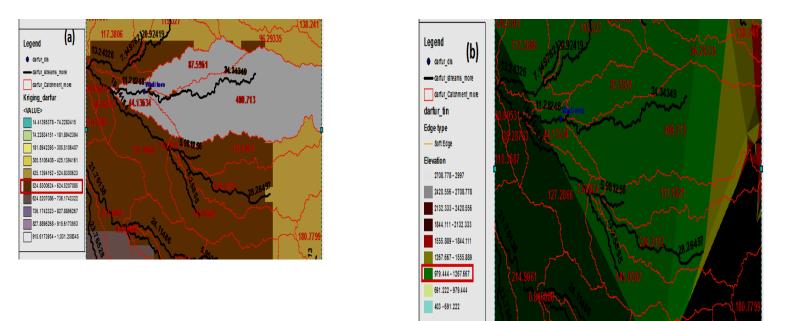



Figure 5. Wadi Toro,(a) rain, catchment and stream length,(b) elevation

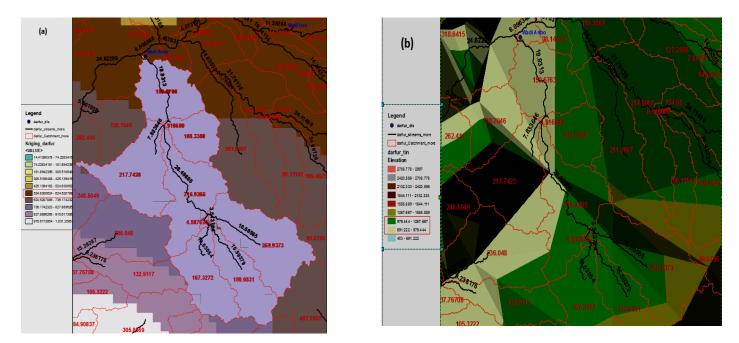
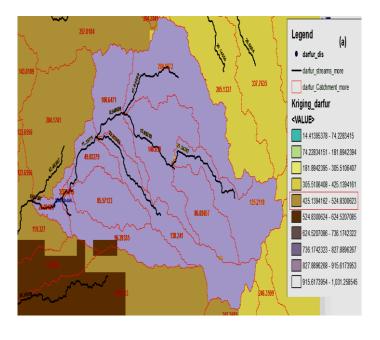




Figure 6. Wadi Aribo,(a) rain, catchment and stream length,(b) elevation



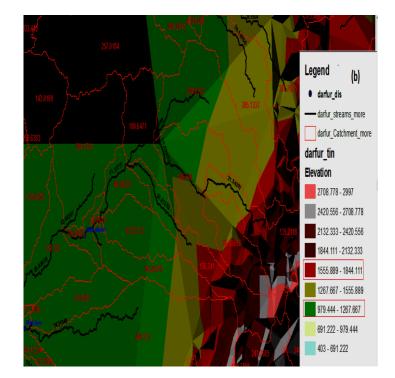
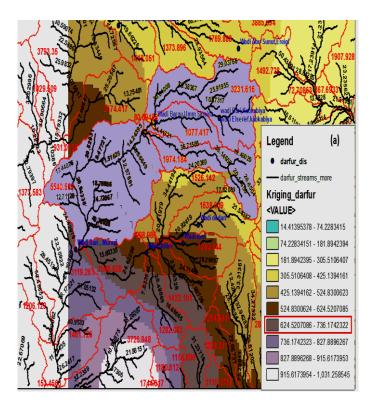




Figure 7. Wadi Dodari,(a) rain, catchment and stream length,(b) elevation



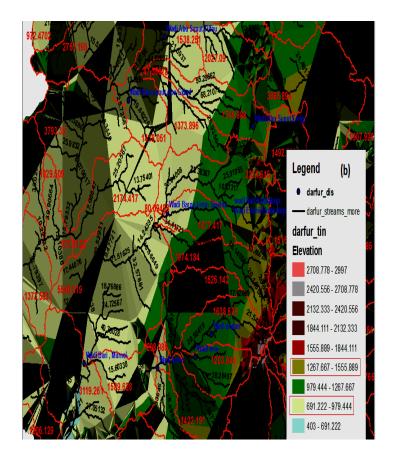
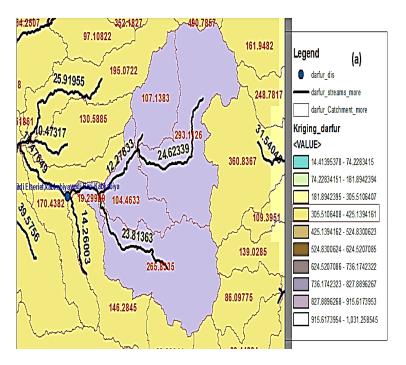




Figure 8. Wadi Bari, murnei station, (a) rain, catchment and stream length,(b) elevation



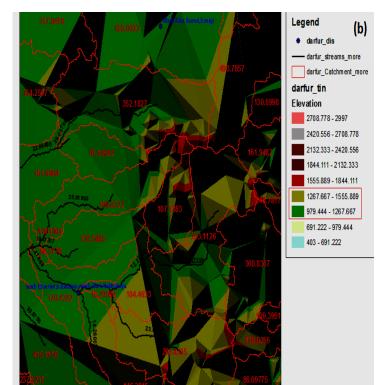
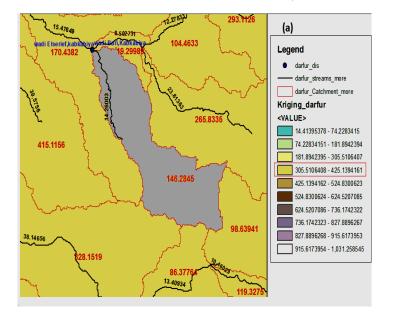




Figure 9. Wadi Bari, kabkabiya station, (a) rain, catchment and stream length,(b) elevation



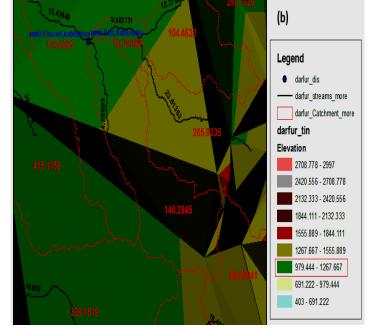
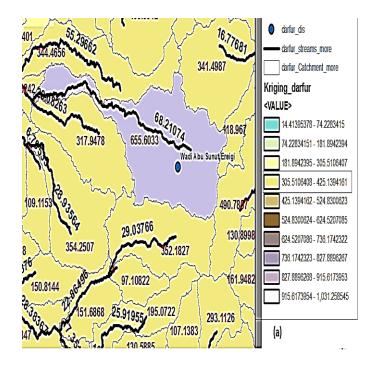




Figure 10. Wadi elserief, kabkabiya station, (a) rain, catchment and stream length, (b) elevation



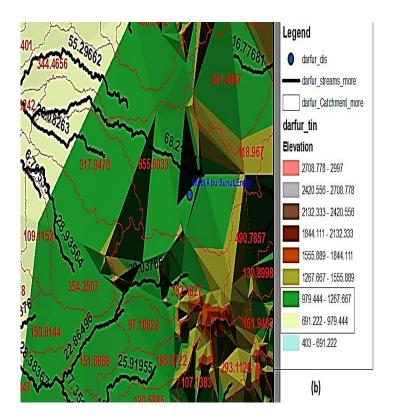



Figure 11. Wadi Abu Sunut, Ereigi station,(a) rain, catchment and stream length,(b) elevation

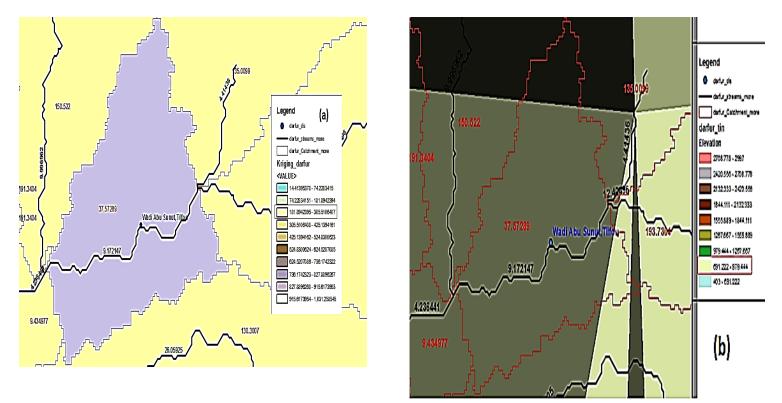
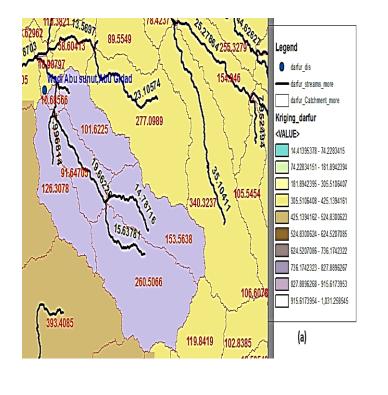




Figure 12. Wadi Abu Sunut, Tilfou station,(a) rain, catchment and stream length,(b) elevation



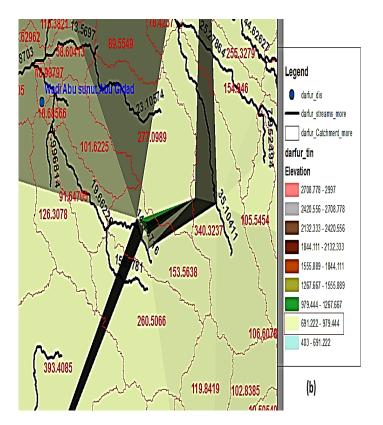



Figure 13. Wadi Abu Sunut, Abu Gidad station,(a) rain, catchment and stream length,(b) elevation

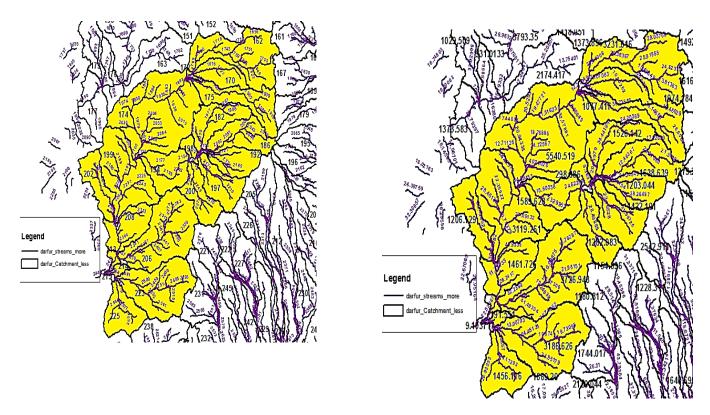



Figure 14. Wadi Azum,(a) Grid ID catchments and streams length, ,(b) values of catchments and streams length

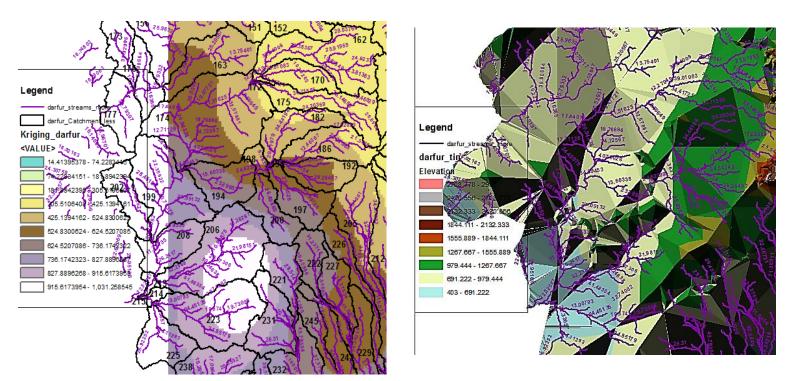



Figure 15. Wadi Azum ,(a) rain, catchment and stream length,(b) elevation

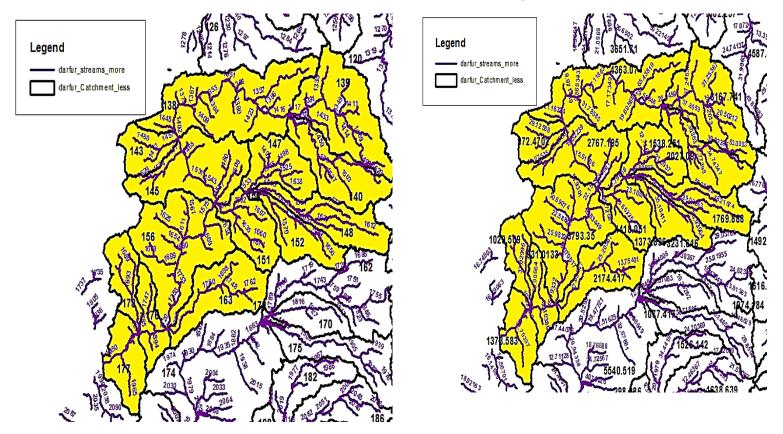



Figure 16. Wadi Kaja,(a) Grid ID catchments and streams length, ,(b) values of catchments and streams length

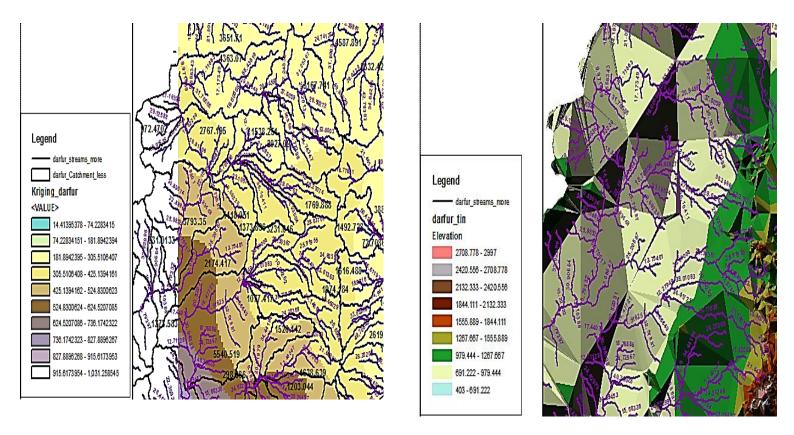



Figure 17. Wadi Kaja ,(a) rain, catchment and stream length,(b) elevation

| Y / Depen        | dent variat  | oles: Work  | book = reg | ression.xls | x / Sheet =  | stations / | Range = st  | ations!\$Q  | \$1:\$Q\$7/{ | 5 rows and | 1 colum |
|------------------|--------------|-------------|------------|-------------|--------------|------------|-------------|-------------|--------------|------------|---------|
| X / Quant        | itative: Wo  | rkbook = re | egression. | xlsx / Shee | t = stations | / Range =  | stations!\$ | r\$1:\$U\$7 | 6 rows an    | d 4 colum  | ns      |
| Confiden         | ce interval  | (%): 95     |            |             |              |            |             |             |              |            |         |
| Tolerance        | : 0.0001     |             |            |             |              |            |             |             |              |            |         |
|                  |              |             |            |             |              |            |             |             |              |            |         |
|                  |              |             |            |             |              |            |             |             |              |            |         |
|                  |              |             |            |             |              |            |             |             |              |            |         |
| Summary          | statistics ( | Quantitativ | re data):  |             |              |            |             |             |              |            |         |
|                  |              |             |            |             |              |            |             |             |              |            |         |
| Variable         | bservatior   | ith missin/ | thout miss | Minimum     | Maximum      | Mean       | d. deviatio | n           |              |            |         |
| log(Q)           | 6            | 0           | 6          | 1.602       | 2.255        | 1.883      | 0.273       |             |              |            |         |
|                  | 6            | 0           | 6          | 2.501       | 4.076        | 3.058      | 0.544       |             |              |            |         |
| log(A)           | 6            | 0           | 6          | 2.567       | 3.005        | 2.760      | 0.145       |             |              |            |         |
| log(A)<br>log(P) | 0            |             |            |             | 0.000        | 0 222      | 0.352       |             |              |            |         |
|                  | 6            | 0           | 6          | -0.746      | 0.096        | -0.333     | 0.552       |             |              |            |         |

Figure 18. regression analysis results

| Correlatio     | n matrix:     |               |             |           |                       |       |  |
|----------------|---------------|---------------|-------------|-----------|-----------------------|-------|--|
|                |               |               |             |           |                       |       |  |
|                | log(A)        | log(P)        | log(S)      | log(L)    | log(Q)                |       |  |
| log(A)         | 1             | -0.111        | -0.502      | 0.947     | 0.232                 |       |  |
| log(P)         | -0.111        | 1             | 0.310       | -0.382    | 0.699                 |       |  |
| log(S)         | -0.502        | 0.310         | 1           | -0.554    | 0.094                 |       |  |
| log(L)         | 0.947         | -0.382        | -0.554      | 1         | -0.084                |       |  |
| log(Q)         | 0.232         | 0.699         | 0.094       | -0.084    | 1                     |       |  |
| Regression     | n of variabl  | e log(Q):     |             |           |                       |       |  |
| Goodness       | of fit statis | tics (log(Q   | )):         |           |                       |       |  |
| Observati      | 6.000         |               |             |           |                       |       |  |
| Sum of we      | 6.000         |               |             |           |                       |       |  |
| DF             | 1.000         |               |             |           |                       |       |  |
| R <sup>2</sup> | 0.995         |               |             |           |                       |       |  |
| Adjusted (     | 0.976         |               |             |           |                       |       |  |
| MSE            | 0.002         |               |             |           |                       |       |  |
| RMSE           | 0.042         |               |             |           |                       |       |  |
| MAPE           | 0.751         |               |             |           |                       |       |  |
| DW             | 3.103         |               |             |           |                       |       |  |
| Ср             | 5.000         |               |             |           |                       |       |  |
| AIC            | -38.664       |               |             |           |                       |       |  |
| SBC            | -39.705       |               |             |           |                       |       |  |
| PC             | 0.053         |               |             |           |                       |       |  |
| Analysis o     | f variance    | (log(Q)):     |             |           |                       |       |  |
|                |               |               |             | -         | <b>D</b> = 1 <b>C</b> |       |  |
| Source         |               | m of squar    |             | F         | Pr > F                |       |  |
| Model          | 4             | 0.370         | 0.092       | 51.300    | 0.104                 |       |  |
| Error          | 1             | 0.002         | 0.002       |           |                       |       |  |
| Corrected      | 5             | 0.372         |             |           |                       | <br>  |  |
| Computed       | l against m   | odel Y=Me     | an(Y)       |           |                       |       |  |
|                |               |               |             |           |                       |       |  |
| Type I Sun     | n of Square   | es analysis ( | (log(Q)):   |           |                       |       |  |
|                |               |               |             |           |                       |       |  |
| Source         | DF            | m of squar    | ean squar   | F         | Pr > F                |       |  |
| log(A)         | 1             | 0.020         | 0.020       | 11.130    | 0.185                 |       |  |
| log(P)         | 1             | 0.198         | 0.198       | 109.660   | 0.061                 |       |  |
| log(S)         | 1             | 0.000         | 0.000       | 0.172     | 0.750                 |       |  |
| log(L)         | 1             | 0.152         | 0.152       | 84.240    | 0.069                 |       |  |
| /              | -             |               |             |           |                       | <br>_ |  |
| Type III Su    | m of Squa     | res analysis  | (log(O))    |           |                       | <br>  |  |
| Type III Su    | in or squa    | cs analysis   | , (IOB(Q)). |           |                       |       |  |
| Source         | DF            | m of squar    | ean squar   | F         | Pr > F                |       |  |
| log(A)         | 1             | 0.173         | 0.173       | 96.147    | 0.065                 |       |  |
| log(P)         | 1             | 0.014         | 0.014       | 7.696     | 0.220                 |       |  |
| log(S)         | 1             | 0.000         | 0.000       | 0.015     | 0.923                 |       |  |
| log(L)         | 1             | 0.152         | 0.152       | 84.240    | 0.069                 | <br>  |  |
|                | 1             | 0.132         | 0.102       | Eigung 10 |                       |       |  |

Figure 18. Cont

|                                                                                                                                                                                                                                                   | el parame                         | eters (k                                                   | og(Q)):                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                 |                                          |                                  |                         |                         |                         |                         |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------|
| Sou                                                                                                                                                                                                                                               | rce Va                            | alue a                                                     | ndard err                                                                                                     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pr> t                                                                 | er bound (!                                     | er bound (                               | 95%)                             |                         |                         |                         |                         |            |
| Interd                                                                                                                                                                                                                                            |                                   | 1.580                                                      | 0.587                                                                                                         | 2.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.227                                                                 | -                                               | 9.040                                    |                                  |                         |                         |                         |                         |            |
| log(A                                                                                                                                                                                                                                             |                                   | 2.011                                                      | 0.205                                                                                                         | 9.805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.065                                                                 |                                                 | 4.618                                    |                                  |                         |                         |                         |                         |            |
| log(P)                                                                                                                                                                                                                                            |                                   | -0.744                                                     | 0.268                                                                                                         | -2.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.220                                                                 |                                                 | 2.663                                    |                                  |                         |                         |                         |                         |            |
| log(S)                                                                                                                                                                                                                                            |                                   | -0.008                                                     | 0.065                                                                                                         | -0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.923                                                                 | -0.838                                          | 0.822                                    |                                  |                         |                         |                         |                         |            |
| log(L)                                                                                                                                                                                                                                            |                                   | -2.206                                                     | 0.240                                                                                                         | -9.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.069                                                                 | -5.259                                          | 0.848                                    |                                  |                         |                         |                         |                         |            |
| Equat                                                                                                                                                                                                                                             | tion of th                        | ie mode                                                    | el (log(Q)):                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                 |                                          |                                  |                         |                         |                         |                         |            |
| log(Q                                                                                                                                                                                                                                             | 2) = <b>1.</b> 5799               | 9609173                                                    | 9009+2.011                                                                                                    | 27688478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 229*log( <i>4</i>                                                     | A)-0.7437129                                    | 04562729                                 | *log(P)-7.9                      | 520461668               | 5415E-03*               | log(S)-2.20             | 560977060               | )285*log(i |
| Stand                                                                                                                                                                                                                                             | dardized o                        | coeffici                                                   | ents (log(Q                                                                                                   | )):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                 |                                          |                                  |                         |                         |                         |                         |            |
| Sou                                                                                                                                                                                                                                               | 1000                              | alue a                                                     | ndard err                                                                                                     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dr.S. [+]                                                             | er bound (s                                     | r hound (                                | DE0/1                            |                         |                         |                         |                         |            |
| log(A                                                                                                                                                                                                                                             |                                   | 4.014                                                      | 0.409                                                                                                         | ر<br>9.805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.065                                                                 |                                                 | 9.216                                    | 3370j                            |                         |                         |                         |                         |            |
| log(P)                                                                                                                                                                                                                                            |                                   | -0.395                                                     | 0.1405                                                                                                        | -2.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.220                                                                 |                                                 | 1.414                                    |                                  |                         |                         |                         |                         |            |
| log(S)                                                                                                                                                                                                                                            | -                                 | -0.010                                                     |                                                                                                               | -0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.923                                                                 |                                                 | 1.062                                    |                                  |                         |                         |                         |                         |            |
| log(L)                                                                                                                                                                                                                                            |                                   | -4.043                                                     | 0.441                                                                                                         | -9.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.069                                                                 |                                                 | 1.554                                    |                                  |                         |                         |                         |                         |            |
|                                                                                                                                                                                                                                                   | log(O)                            | / Standar                                                  | dized coefficie                                                                                               | nts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !                                                                     |                                                 |                                          |                                  |                         |                         |                         |                         |            |
|                                                                                                                                                                                                                                                   |                                   | •                                                          |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.043                                                                |                                                 |                                          |                                  |                         |                         |                         |                         |            |
| 10                                                                                                                                                                                                                                                | g(A)] 4.014                       | (95% con                                                   | f. interval)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.043                                                                |                                                 |                                          |                                  |                         |                         |                         |                         |            |
| 10<br>5 10<br>0<br>0<br>-10<br>-15<br>dictions a                                                                                                                                                                                                  | (A) 4.014                         | (95% con<br>T<br>Iog(P), <sup>1</sup> =0.3                 | f. interval)                                                                                                  | 010<br>log(L),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                 |                                          |                                  |                         |                         |                         |                         |            |
| 10<br>5 10<br>0<br>0<br>-10<br>-15<br>dictions a<br>rvatio V                                                                                                                                                                                      | g(A) 4.014                        | (95% con<br><br>log(P),-0.3                                | f. interval)                                                                                                  | 110<br>Iog[L],<br>Residua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l td. resid                                                           |                                                 |                                          |                                  |                         |                         |                         |                         | servation  |
| 10<br>5 log<br>0<br>-10<br>-15<br>-10<br>-15<br>-10<br>-15                                                                                                                                                                                        | g(A) 4.014<br>and resid<br>Weight | (95% con<br>Iog(P)-0.3<br>Iog(Q)<br>2.25                   | f. interval)<br>f. interval)<br>Uariable<br>g(Q)):<br>red(log(C)<br>i5 2.256                                  | 210<br>Iog(l),<br>2) Residua<br>5 -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I td. resid<br>1 -0.0                                                 | 26 -1.000                                       | 0.042                                    | 1.717                            | 2.796                   | 0.060                   | 1.494                   | 3.019                   | servation  |
| 10 - 10<br>5 - 10<br>-105<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15 | and resid                         | (95% con<br>log(P),=0.2<br>log(Q)<br>2.25<br>1.65          | f. interval)<br>f. interval)<br>Variable<br>g(Q)):<br>red(log(C<br>55 2.256<br>53 1.666                       | 010<br>Iog(l),<br>Cag(l),<br>Residua<br>5 -0.00<br>5 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I td. resid<br>1 -0.0<br>3 -0.2                                       | 26 -1.000<br>95 -1.000                          | ) 0.042<br>) 0.041                       | 1.717<br>1.150                   | 2.796<br>2.181          | 0.060                   | 1.494<br>0.920          | 3.019<br>2.412          | servatio   |
| 10 - 10<br>5 - 10<br>-105<br>-1015<br>dictions a<br>ervatio V<br>51<br>-22<br>-33                                                                                                                                                                 | and resid<br>Weight               | (95% con<br>Iog(P) = 0.2<br>Iog(Q)<br>2.25<br>1.65<br>1.76 | f. interval)<br>f. interval)<br>Variable<br>g(Q)):<br>red(log(C)<br>is 2.256<br>is 1.666<br>is 1.725          | 2010<br>Iog(l),<br>21 Residua<br>5 -0.00<br>5 -0.01<br>9 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I td. resid<br>1 -0.0<br>3 -0.2<br>5 0.8                              | 26 -1.000<br>95 -1.000<br>20 1.000              | ) 0.042<br>) 0.041<br>) 0.024            | 1.717<br>1.150<br>1.420          | 2.796<br>2.181<br>2.037 | 0.060<br>0.059<br>0.049 | 1.494<br>0.920<br>1.107 | 3.019<br>2.412<br>2.350 | servatio   |
| 10 - 10<br>5 - 10<br>-105<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-1015<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15 | and resid                         | (95% con<br>log(P),=0.2<br>log(Q)<br>2.25<br>1.65          | f. interval)<br>f. interval)<br>Variable<br>g(Q)):<br>red(log(Q)<br>55 2.256<br>33 1.666<br>33 1.729<br>1.622 | 210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L)<br>210<br>Iog(L) | l td. resid<br>1 td. resid<br>1 -0.0:<br>3 -0.2:<br>5 0.8:<br>9 -0.4: | 26 -1.000<br>95 -1.000<br>20 1.000<br>56 -1.000 | 0 0.042<br>0 0.041<br>0 0.024<br>0 0.038 | 1.717<br>1.150<br>1.420<br>1.141 | 2.796<br>2.181          | 0.060                   | 1.494<br>0.920          | 3.019<br>2.412          | servatio   |

Figure 18. Cont

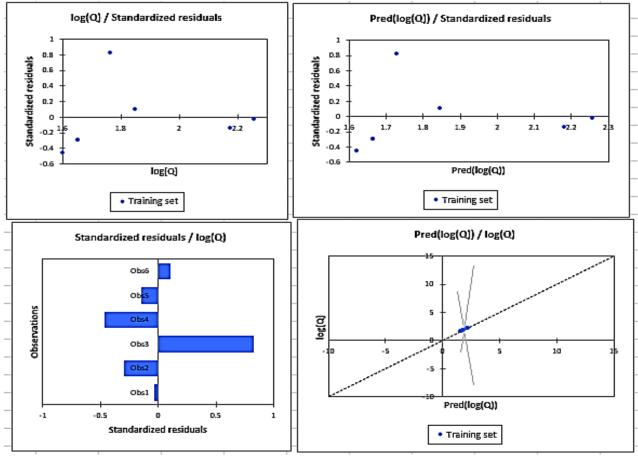



Figure 18. Cont