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ABSTRACT 
 

In this paper, we describe a novel and generic approach to address fully-automatic segmentation of brain tu-mors by 

using patch-based voting techniques. In addition to avoiding the local search window assumption, the conventional 

patch-based framework is enhanced through several simple procedures: an improvement of the training dataset in 

terms of both label purity and intensity statistics, augmented features to implicitly guide the nearest-neighbor-search, 

multi-scale patches, invariance to cube isometries, stratification of the votes with respect to cases and labels. A 

probabilistic model auto-matically delineates regions of interest enclosing high-probability tumor volumes, which 

allows the algorithm to achieve highly competitive running time despite minimal processing power and resources. 

This method was evaluated on Multimodal Brain Tumor Image Segmentation challenge datasets. State-of-the-art 

results are achieved, with a limited learning stage thus restricting the risk of overfit. Moreover, segmentation 

smoothness does not involve any post-processing. 

Keywords : Patch-Based, Glioma, Segmentation. 

 

I. INTRODUCTION 

 

A. Motivation 

 

LIOBLASTOMA is the most severe case of brain 

Gtumors. Clinical guidelines such as RECIST [1] or 

RANO [2] are limited to 1D or 2D analysis (maximal 

diameter and possibly second diameter) of the lesions. 

However, from tumor growth monitoring to 

radiotherapy planning, 3D anal-ysis is crucial in the 

clinical pipeline [3], [4]. Glioblastoma segmentation 

consists in a 3D delineation of the pathological 

compartments [5] shown in Figure 1. Manual 

segmentation is usually complex, subjective and time-

consuming. First, glioblastoma exhibit high tumor shape 

variability. Second, the border between compartments 

can appear fuzzy, which can lead to a debatable 

segmentation: inter-rater variability of manual 

segmentations is in the range 74-85% (Dice over-lap) 

[5]. Third, the segmentation task requires the 

simultaneous screening of 3D images acquired with 

multiple Magnetic Res-onance (MR) sequences (Figure 

1). This explains the ongoing interest for automatic 

segmentation algorithms, notably within the Multimodal 

Brain Tumor Image Segmentation (BraTS) benchmark 

challenge [5]. 

 

 

 
 

Figure 1. MR channels (top row) ; whole brain 

segmentation and mutually-inclusive pathological 

regions (bottom row). 
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II. METHODS AND MATERIAL 
 

Related Work 

 

1) Glioma segmentation: Most of the automatic glioma 

segmentation approaches learn offline a discriminative 

model [5]–[7]: image intensity features are computed, 

then a machine learning algorithm is trained offline. 

Most compu-tation time is spent during the learning 

stage, which should be run again if newly acquired data 

is annotated. Moreover, results are highly dependent on 

the choice of features [7], and feature extraction has to 

be performed at test time. For instance, [7] introduce a 

cascade of random forest classifiers based on a set of 

intensity, geometry and asymmetry features. The 

segmentation is refined using Markov random field 

regu-larization. Feature extraction takes about 90 

minutes (single-thread implementation) [5], mostly due 

to the computation of the most relevant features 

(asymmetry) [7]. 

 

The generative approach builds a probabilistic model of 

ob-served image intensity given the tissue type. The 

latent variable is the spatial distribution of healthy 

tissues and tumor compart-ments. Prior knowledge 

includes the location and spatial extent of healthy 

tissues in an atlas. [8] introduce a generative model for 

channel-specific pathology segmentation: the 

appearance of healthy tissues is modelled as a 

multivariate distribution for all channels simultaneously, 

while tumor appearance is channel-specific. Tumor 

location is a latent variable shared between MR 

channels, which results in tumor segmentations 

consistent across channels. Since tumor compartments 

are not explicitly modelled in [8], a discriminative 

classifier is learnt to transform channel-specific 

abnormality probability maps into tumor compartment 

delineations [5]. To reach state-of-the-art results, a 

strong post-processing is required to deal with the high 

number of false positives. Running time is 20 minutes 

[5]. 

 

Recently, Kwon [9] achieved top rank among the BraTS  

benchmark competitors with a semi-automatic 

framework. First, an expert inputs multiple seed points 

and radii, and samples one point from each tissue class. 

A tumor shape prior is generated from the seed points 

via random walk. A pathological atlas is synthesized by 

growing tumors from the seed points and combining the 

result with a normal atlas. Average running time is less 

than 10 minutes for the user inputs, plus 85 minutes for 

the remaining automatic pipeline on a machine with 8 

cores. 

 

2) Multi-atlas segmentation: When applied to glioma 

seg- mentation, machine learning techniques are 

confronted with two major problems. First, the amount 

of training data is usually small: for instance, there are 

only 20 high-grade training cases for the 2013 BraTS 

benchmark [5]. Second, most algorithms require a 

computationally intensive offline learning stage, which 

can be subject to overfit. Multi-atlas segmentation 

methods are appealing as they can cope with a small 

training dataset, and are performed online, which allows 

a seamless integration of new cases into the training 

dataset. Atlas-guided segmentation consists in encoding 

the relation- ship between image intensities and labels 

through the use of an atlas, an expert-annotated image 

[10]. The segmentation of a test case relies on label 

propagation, the deformable registration of the atlas to 

the test case. Recently, multi-atlas segmentation [11], 

which uses several atlases to best capture anatomical 

variability, has proven successful for the segmen- tation 

of healthy brain structures [10], [12]–[14]. However, 

limitations include i) the high computational cost of 

non-linear registration, and ii) the assumption that a 

one-to-one mapping exists between atlas and patient. 

The development of patch-based segmentation 

alleviates these two limitations by performing only 

affine registration and by introducing the concept of 

local search window to take into account registration 

errors: since brain structures should be located around 

the same position after registration, it is sufficient to 

compare a test patch to annotated patches positioned in 

a spatial neighbourhood. Patch-based methods have 

achieved state-of-the-art results for the segmentation of 

brain structures [15]–[17]. [18] adopt a multi-atlas 

approach for the detection of cancerous brain regions, 

based on atlases of healthy brains. This approach relies 

on the core assump- tion that there is an equivalence 

between image outliers and pathological regions. 

Similar works include outlier detection using a patch-

based metric [19]. However, local search cannot be used 

for the multi-label segmentation of pathologies: tumor 

patches may not be located in the same region of the 

human body.  

 

In this paper, we address the automatic segmentation of 

brain tumors by using multi-atlas patch-based 

techniques, without any assumption of local search, so 
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that i) minimal learning is required, which decreases the 

risk of overfit, especially on a small training dataset, ii) 

minimal post- processing is required, since 

segmentation is robust, and spatially consistent labelling 

is guaranteed by patch overlap, iii) competitive running 

times are achieved using a single core, and the 

algorithm could benefit from a computer grid as it is 

embarrassingly parallel. To obtain a reliable patch-

based method which does not rely on the concept of 

local search window, we combine several 

methodological advances: fea- ture augmentation based 

on spatial prior and robust intensity likelihood, selection 

of training dataset based on label purity and intensity 

statistics, and a stratification of the votes with respect to 

cases and labels. In the following, an enhanced patch-

based segmentation framework is introduced to accom- 

modate with the presence of a pathology (Section II). 

Then  the algorithm is evaluated on publicly available 

MR images, and its performance is benchmarked 

against state-of-the-art methods (Section III). Finally, 

results and perspectives are  discussed (Section IV).   

 

Patch-Based Glioma Segmentation 

 

Conventional patch-based segmentation without any 

search window constraint is illustrated in Figure 2, 

along with our contributions. The fundamental 

assumption is that central voxels of similar patches 

should have similar labels. Consequently, the label of a 

test patch could be inferred by finding similar patches in 

a subset of the training cases and performing a weighted 

vote: each patch votes for its label with a weight 

depending on its similarity to the target patch. A 

probabilistic model is first described to automatically 

define a region-of-interest (ROI) within the target image. 

Then three improvements to the conventional 

framework are proposed: feature augmentation and 

invariance, training patch selection, and stratification of 

votes. 

 

A. Notations 

 

Patch-based segmentation relies on a set of training 

cases fIn; Lngn where In denotes multi-channel MRI 

and Ln is a label map. A label l is assigned to a test 

patch S (J; x) based on comparisons with a database of 

annotated patches fS (In; y)gn; y, where y indexes every 

spatial position in the reference space  . Conventionally, 

a mono-channel patch S (I; x) is a cube of edge length 

2r+1, centered at spatial posi- tion x 2 R3, consisting of 

image intensity values taken from a mono-channel MR 

image I. The distance d (S(I; x); S(J; y)) between 3D 

mono-channel patches of identical edge length is the 

canonical L2-norm on R(2r+1)3 . A multi-channel patch 

is the concatenation of mono-channel patches. The 

squared distance between multi-channel patches is the 

sum of the squared distances between mono-channel 

patches. 

 

B. Patch Selection 

 

A probabilistic model for glioma detection  1) 

Motivation: segmentation speed-up: The automatic defi- 

nition of ROI, enclosing high-probability tumor regions, 

allows patch-based segmentation to achieve competitive 

running time, thanks to patch selection ahead of time. 

Indeed, patches out- side of the target ROI in the target 

case are directly discarded, which cuts down on time for 

both patch extraction and patch match. Moreover, 

patches outside of the training ROI in the training case 

are similarly discarded since they are unlikely to be 

relevant matches. In practice, target patch selection has 

close to no influence on segmentation results: discarded 

target patches are unlikely to trigger any alarm during 

segmentation, since the features used for detection 

(average intensity over a patch) are less specific than the 

patches used for segmentation.  

 

 
Figure 2. Patch-based glioma segmentation. Our 

contributions are mentioned in blue. Green disks mark 

known tumor locations. 

 

2) Definition of a probabilistic model: The idea is to 

perform a robust clustering of patches into 7 clusters 

based on average patch intensity. Clusters include 

cerebrospinal fluid (CSF), grey matter (GM), white 

matter (WM), necrotic core (Nec.), edema, non-

enhancing tumor core (NETC), and en-hancing core 

(EC). Robustness to outliers arising from imaging 

artefacts, bias field or ground truth mislabelling, is 

achieved through the use of multivariate Student 

distributions to model the heavy-tailed distribution of 
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multi-channel intensity. The proposed model is a 

mixture of Student distributions [20], with fixed and 

spatially-varying mixing coefficients, similar to [21]. 

Each Student distribution is parametrized by l = ( l; l; l), 

where l is the mean, l the covariance matrix, and l the 

number of degrees of freedom. The joint probability is: 

 

p(J; L; X) = p(J j L)p(L j X)p(X) 

 

where X indexes the coordinates of the brain in the MNI 

space . The label map L is assumed to be sampled 

independently for each position x from a generalized 

Bernoulli distribution with parameters f x (l)gl, our prior 

regarding the spatial ex-tent of tissue classes. Given a 

class L(x) = l, the multimodal image intensity J(x) 2 R4 

is sampled independently from a Student distribution 

with parameters l. 

 

3) Estimation of the spatial probabilistic prior: To build 

at-lases of label spatial distribution, every training case 

is affinely registered to a reference space [22], then, for 

each label, an atlas of spatial distribution is defined as 

the voxel-wise average of warped label maps. Atlases 

are finally symmetrized with respect to the mid-sagittal 

plane and smoothed by a Gaussian convolution (see 

examples in Figure 3). For this task, 314 ground truth 

segmentations from BraTS are used, and the standard 

deviation of the smoothing Gaussian kernel is 10 mm. 

 

4) Estimation of the parameters of Student distributions: 

 

Multi-channel patch information is summarized by the 

aver-age intensity of mono-channel patches. 

Multivariate Student 

 

 

Figure 3 : Feature augmentation. A feature vector is 

composed of i) intensity patches extracted from 4 MR 

channels, ii) scalar values from 7 atlases of label spatial 

distribution (weight ), and iii) scalar values from 7 class 

conditional Student intensity likelihoods (weight ). 

 

 

distributions are fitted using Expectation-Maximization 

[23] on 6 6 6 mm3 pure patches, i.e. for which all 

voxels belong to the same class. Given the optimal 

parameters l , class conditional Student intensity 

likelihood can be computed in closed form for any patch 

(see Figures 3 and 4). 

 

5) Estimation of the posterior probabilities: The 

posterior probability of observing label L is given by 

Bayes’ rule: 

 

p(L j J; X) / p(J j L)p(L j X) 

 

6) Automatic glioma detection: To cope with the lack of 

specificity of detection features, the maximal posterior 

map is post-processed by thresholding signed Euclidean 

distance maps, as shown in Figure 5. The goal is to 

discard thin 

 
 

Fig. 4: 2D projections of Student distributions fitted to 

average intensity of pure patches, with 60% quantiles 

overlayed. 

 

layers of tumor-detected voxels which are adjacent to 

healthy-detected tissues, e.g. false positives at the 

outline of ventricles. Three distance thresholds are used: 

i) 3 mm from each healthy tissue (CSF, GM, WM), ii) 6 

mm from the intersection of the binary masks obtained 

in step i, and iii) 6 mm from the detected tumor binary 

mask obtained in step ii. 

 

C. Atlas selection: segmentation scaling to large data 

sets 
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Atlas selection, i.e. the pre-selection of a fixed number 

of training cases similar to the target case, is one 

solution to scale to large datasets. Higher priority is 

given to training cases with the same grade as the target. 

To sort training cases of identical grade, the distance 

between target case J and training case In is the 

arithmetic mean, for every label l, of the class-specific 

Hellinger distances between histograms 

 

(p (L = l j J; X = x))x2 and (p (L = l j In; X = x))x2 . For 

this purpose, the posterior probabilities detailed in Sec- 

 

tion II-B5 are used. 

 

D. Feature augmentation for a guided patch match 

 

Patch match consists in finding the most similar patches 

to a target patch. An augmentation of patch features 

with additional contextual features can implicitly guide 

patch match. Three feature augmentations and one 

feature invariance are proposed. 

 

1) Multi-scale patches: Conventional patches constrain 

our vision of structures to the scale of the patch. 

However, gliomas exhibit structures at scales varying 

from case to case: i) the edema often has the largest 

extent for high-grade cases, but can be very small 

compared to the tumor core for low-grade cases ; ii) the 

distinction between necrotic core and enhancing core 

may be challenging due to complex borders. 

 

As explained in Figure 6, we have adopted inherently 

multi-scale patches [24] with two scales: 6 mm (3x3x3 

patch) and 18 mm (9x9x9 patch). The central part of the 

patch is described precisely, while the peripheral part is 

described by average intensity values over smaller 

patches, by analogy with the foveal vision. This idea 

allows to capture longer-range image information since 

it is computationally efficient: conventional 3x3x3 and 

multi-scale 9x9x9 patches have a similar memory 

footprint. 

  

More precisely, conventional mono-channel patches are 

represented as vectors of the voxel-wise intensity values, 

e.g. Ln scalar values for an n-D patch of length L. 

However, for 3D multi-scale mono-channel patches: i) 

from a given voxel, we consider its 26 neighbouring 

voxels making a 3x3x3 image patch (this represents 27 

scalar values) ; ii) we then consider all the 26 

neighbouring conventional 3x3x3 patches and compute 

the average intensity for all these neighbouring patches, 

thus providing 26 additional scalar values. In the end, 

the feature vector corresponding to a 3D multi-scale and 

mono-channel patch is composed of 53 scalar intensity 

values. This process is repeated for each MR channel to 

process 3D multi-scale and multi-channel patches. 

 

2) Atlases of label spatial distribution: One aspect to 

study glioma pathogenesis is the analysis of the 

distribution of gliomas by anatomic locations [25]–[27]. 

Based on 331 cases among which 47% were 

glioblastomas, [25] report the majority of gliomas in the 

frontal and temporal lobes, with 29% and 14% 

occurrences respectively. Similarly, based on 314 cases 

among which 82% are glioblastomas, most gliomas in 

the BraTS benchmark dataset are found in the temporal 

lobe, as illustrated with the atlas in Figure 7. We 

augment patch features with the atlases of spatial 

distribution for each of the 7 labels, in order to 

implicitly encode patch position in the reference space. 

The additional feature is a vector in R7, which is first 

normalized so that its sum is equal to the average 

intensity value reported in Section III-B, then weighted 

by a coefficient 0. The distance between augmented 

features is the L2-norm on concatenation of patch 

values and weighted additional features. 

 

3) Multivariate Student intensity likelihoods: Our 

sugges-tion is to augment patch features with robust 

Student intensity likelihoods, which encode the relative 

global intensity distance of a patch, with respect to each 

class taken as a whole. The fit of Student distributions is 

illustrated in Figure 4. Exactly as in Section II-D2, the 

additional feature is a vector in R7, which is first 

normalized (unit normalization, followed by the 

multiplication by a scalar value so that the L1 norm is 

the average intensity value reported in Section III-B) 

and then weighted by a coefficient 0. 

 

4) Invariance to cube isometries: The canonical L2 dis-

tance is sensitive to rotation or symmetry of the patches. 

This sensitivity is justified for healthy brain structures 

since rotated patches can be unrealistic. However, since 

the brain is roughly symmetric with respect to the mid-

saggital plane, the application of sagittal plane 

symmetry to healthy training patches results in plausible 

healthy patches. For pathological training patches, it is 

desirable that the similarity measure is insensitive to 

rotation and symmetry: gliomas do not seem to exhibit 

any general trend in terms of texture anisotropy. More-
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over, the training dataset is small, so plausible 

configuration of pathological patches are missing. Cube 

isometries consist of certain rotations under which the 

cube is invariant, plus their composition with central 

symmetry. The application of the 48 cube isometries to 

pathological training patches allows to generate 

additional plausible configurations, which leads to an 

invariant patch distance. 

 

 
Figure 5: Glioma detection post-processing. Euclidean 

distances from each healthy tissue are thresholded and 

intersected to determine the tumor bulk. The ROI is the 

result of a dilatation of the tumor mask using two 

additional distance maps. 

 

 
Figure 6: Multi-scale patch as described in [24]. In red: 

central voxel. In blue: intensity described at the same 

scale as the central voxel. In yellow: intensity described 

at a coarser scale, typically average intensity over the 

coarser area. 

 

 
Figure 7 : Atlas of spatial distribution of complete 

tumor super-imposed on a template. Colormap: 

percentage of occurrences. 

 

E. Training patch selection for a robust patch match 

 

Manual segmentations are prone to errors due to tumor 

com-plex appearance and shape. Training patch 

selection consists in trimming the training data, so as to 

increase its robustness to mislabelled patches. 

 

1) Data pruning based on class conditional Student 

inten-sity likelihood: The most representative 

patches lie near their class centroid, so patches 

whose Student likelihood lie outside of a 60%-

quantile could be discarded as dubiously labelled or 

least representative (Figure 4). 

 

2) Data pruning based on patch label purity: Patch 

label purity is defined as the percentage of voxels 

sharing the same label as the central voxel in a 

patch. The fundamental assump-tion of patch-based 

methods may not hold for patches of low purity. 

Different purity thresholds are tested in Section III-

F4. 

 
 

Figure 8. Graphical model for patch-based 

segmentation. A membership variable M : ! f1; : : : ; Ng 

is sampled at every position x in the MNI space to 

encode the training case n to sample from, and the 

spatial offset y. The observed intensity J(x) results from 

the sampling of a patch S(J; x) from a Gaussian 

distribution with S(In; y) for mean and isotropic scaling 

n
2
(x) for variance. The label L at position x is the central 

label Ln(y). 

 

F. Vote stratification for a robust vote aggregation 

 

1) Conventional  model  for  patch-based  

segmentation: 

 

Conventional patch-based segmentation is a variation of 

lo-cal weighted voting [10], [28] within Bayesian 

modeling of multi-atlas segmentation [29], as recalled in 

Figure 8. The target image is the result of sampling 

patches from atlases (In; Ln) at different positions y in 

the reference space . The membership index M encodes, 

for every position x 2 , both the atlas index n and the 

position y to sample from: M(x) = (n; y). If M were 

known, the target segmentation L would be given by 

labels Ln(y) at central voxels of sampled patches. 

However, since M is not observed, the inference has to 

be performed by marginalizing over M [29]. The exact 
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marginalization consists in a weighted vote involving 

patches at every position y in every atlas n, with weights 

proportional to both the probability that the training 

patch belongs to class Ln(y), and the intensity 

likelihood of the training patch. 

 

Assuming the membership index M(x) is independent 

and identically uniformly distributed p (M) = (N j j) j j, 

the marginalization over M [29] is given voxel-wise by: 
N    

X X  

L(x) =  argmax  pn (L (x) = l j Ln; y) (x) 
b pn  S(J; x) j In; y;  n

2 

l2f1; :::; Lg n=1 y 
2 
  

   

where: i) since label maps of training cases are warped 

from patient space into a reference space, the ground 

truth can be represented as probabilistic label map Ln 

(y), or as a binary label map Ln (y) obtained by 

binarizing L
f
n (y). The proba-bility of belonging to class 

Ln(y) is pn (L (x) = l j Ln; y), which is either the l-th 

component of Ln (y) (probabilistic label), or the 

indicator function 1Ln(y)=l (binarized label), and ii) a 

multivariate Gaussian probability density function 

pn  S(J; x) j In; y;  n
2
(x)1 2    

 

 

/ exp 

 

d (S(J; x); S(In; y)) 

with 
p 2 n

2
 (x) 

2 n (x) = miny d (S(J; x); S(In; y))  
 

2) Vote stratification for an approximate 

marginalization: 

 

The exact marginalization over M would require a high 

number of comparisons between image patches, which 

would result in prohibitive computation time. 

Conventional patch-based methods approximate the 

marginalization step with K-nearest-neighbor patch 

match or local search window. 

 

For pathology segmentation, we propose to use a 

stratified K-nearest neighbor approach in order to 

improve the robust-ness of the approximate 

marginalization. More precisely, the set of all patches 

from all training patients may be partitioned into Q sets 

of patches which match a number of criteria such as the 

patient Id, and label type. Given a test patch, the final 

vote for its label combines the contributions of the K 

closest patches within each of the Q sets leading to K Q 

votes. Vote stratification can be seen as a way to 

normalize the vote to limit bias in the training dataset. 

For this application, we chose to stratify the sets 

according to patient Id and label type such that Q = N L 

and K = 1. Indeed, this allows to cope with the 

variability in tumor size between patients, and the 

unbalanced number of patches between labels. 

Moreover, this approximation sounds reasonable since, 

in practice, we verified that taking into account strictly 

more than K = 1 neighbor does not affect segmentation 

results. In the case of binary label maps, the proposed 

approximate marginalization consists in: 
    N    

L(x) = argmax  
p

n S(J; x) j In; yn;1 (l);  n
2
(x) 

b 2f 

1; :::; 
Lg 

X 
   

l   n=1    
       

 

where yn;1(c) is the position in reference space of the 

closest patch of label c found in the training case (In; 

Ln). An imple-mentation of this stratification scheme is 

given in Algorithm 1. 

 

In the case of probabilistic label maps, the equation for 

an approximate marginalization differs slightly due to 

the fact that 

 

Algorithm 1: Stratified patch-based segmentation. The 

blue dashed line marks an embarassingly parallel for-loop. 

pre-select N training cases similar to J          

foreach voxel x 2  do           
  evaluate the features S(J; x)          

  foreach training case j do          
    initialize the vote vector vx;j = 0 2 R

L 
 

    foreach class l 2 f1; : : : ; Lg do     
      

 
pre-select K closest patches of label l in Ij 

 

       

       foreach annotated patch k 2 f1; : : : ; Kg do  
         evaluate the features S(Ij; yj;k)  

         accumulate the vote:  
jjS(J;x)  S(Ij;yj;k)jj2

2  
         vx;j(l) vx;j(l)+exp( )               2 

2
(x) 

                 j  

                    

   
  

 
foreach class l 2 f1; : : : ; Lg do 

 
vx;j(l) 

 
      
       

evaluate the probability px;j(l) = 
    

        lvx;j(l)  
                    

   foreach class l 2 f1; : : : ; Lg do  1      
    

evaluate the probability px(l) = 
 

 

 

jpx;j(l) 
 

     N  

  
set the label: L

b
(x) = 

argmax p (l)     
  l2f1; :::; Lg 

x 
         

                    

 
 

pn (L (x) = l j Ln; y) is no longer an indicator function: 
 

 
2f 

 N  L    
  Lg X X 

pn (L (x) = l j Ln; yn;1(c)) L(x) = argmax  
b  

1; :::; 
 p  S(J; x)  I ; y  (c);  

2
 (x)  

l  n=1 c=1   

    n j n   n;1 n 

In practice, the only impact of considering probabilistic label 

maps L
f
n lies in the vote accumulation step in Algorithm 1. 

The update becomes a for-loop over classes c 2 f1; : : : ; Lg: 

vx;j(c) vx;j(c) + pj (L (x) = c j Lj; yj;k) 

exp( 2 2
1
(x) jjS(J; x)  S(Ij; yj;k)jj

2
2) 
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III. RESULTS AND DISCUSSION 
 

RESULTS 

 

A. Dataset and Evaluation 

 

Four MR channels commonly acquired for glioma 

assess-ment are available in 1 mm isotropic resolution 

for each case: pre-contrast T1-weighted image (T1), 

contrast-enhanced T1-weighted (T1C), T2-weighted 

(T2), and T2-FLAIR MR images. Details about MRI 

acquisition and processing, manual delineation protocol, 

and expert consensus can be found in [5]. 

 

The proposed glioma segmentation algorithm is 

evaluated on publicly available MR images of high-

grade (HG) and low-grade (LG) gliomas, made 

available for training and testing in the 2013 and 2014 

editions of the MICCAI BraTS bench-mark [5]. Ground 

truth is only publicly available for 2013 and 2014 

Evaluation datasets. The 2014 Evaluation dataset is used 

for the construction of atlases of label spatial extent and 

to fit Student distributions. Unless explicitly mentioned 

otherwise, the training dataset used for patch match in 

this article is the 2013 Evaluation dataset for a fair 

comparison to other competitors. For validation on 

training cases, a comprehensive leave-one-out 

procedure is applied to exclude the target image from 

the training dataset at every stage of the method, namely 

i) for atlas of label spatial extent construction, ii) to fit 

Student 

 
Fig. 9: Left: recall of glioma detection for the complete 

tumor, reported for cases grouped by year and grade. 

Right: volume ratio of detected ROI over the brain 

mask. 

 

 

distributions, iii) during patch-match. This way, the 

target case cannot result in any overtraining that would 

be due to a favourably-biased glioma detection, atlas 

selection, feature augmentation, or patch match. 

 

 

B. Pre-processing pipeline 

 

Every image is affinely registered to an MNI atlas and 

warped to the same reference space. A resampling to 2 

mm isotropic resolution is performed to decrease 

computation time at little accuracy cost: most MR 

channels were not acquired in 1 mm isotropic 

resolution, and interpolation artefacts are already visible 

on few MRI. A robust image normalization en-sures 

that inter-patient patch distance is meaningful: non-zero 

intensity are clipped below 1% and above 99% 

quantiles, then mean and standard deviation are set to 

the values reached by averaging over training data, 

respectively 360 and 120. Image normalization is 

performed separately for each MR channel, to allow an 

equal contribution of each channel in the patch distance. 

Finally, for the training cases, only the segmentation of 

the tumor compartments is originally available, so 

healthy tissues are automatically segmented using FSL 

FAST [30] to avoid under-segmentation by partitioning 

the background [31]. 

 

C. Glioma detection benchmark 

 

ROI are automatically defined by the glioma detection 

algorithm described in Section II-B. Recall, i.e. the 

proportion of tumor voxels which are successfully 

enclosed in the ROI, is evaluated on the 2013 and 2014 

training datasets. Considering all cases, i) regions-of-

interest occupy less than 17% of the brain masks, which 

effectively results in lower computational burden, ii) 

recall is higher than 97% for every tumor region. 

Individual results are summarized in Figure 9. 

 

D. Post-processing pipeline for glioma segmentation 

 

Segmentation results are smooth by design due to patch 

overlap, so post-processing is limited. The pipeline 

consists in warping back the probabilistic label maps to 

the 1 mm isotropic patient space, and then keeping at 

most the two biggest connected components of the 

segmentation: if the volume of the second component is 

less than 3 cm3, only the first component is kept. 
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Figure 10: Segmentation of 3 HG cases (coronal and 

axial views). 

 

E. Segmentation benchmark 

 

The proposed approach is benchmarked on the 2013 

Chal-lenge dataset against the top-performing 

documented meth-ods, according to the ranking found 

on the MICCAI 2013 BraTS benchmark website [5] on 

April 28, 2015: [9] is the highest ranked semi-automatic 

method, with Dice over-lap of 88%/83%/72% for 

CT/TC/EC respectively ; [7] is the highest ranked 

automatic method, with Dice overlap of 87%/78%/74%. 

Our automatic method achieves state-of-the-art 

performance, with Dice overlap of 87%/77%/73%, in a 

shorter running time. Fast approximate nearest-

neighbour search, especially multiple randomized k-d 

trees for high di-mensional data [32], allows a single-

thread implementation of the proposed patch-based 

segmentation to achieve competitive running times: i) 

16 minutes on average for HG, and ii) about 1 minute 

for LG due to fewer selected atlases, using a single core 

(2.66 GHz) and less than 6 GB of RAM. Moreover, 

given access to a computer grid with at least as many 

cores as there are selected atlases, the proposed 

stratification scheme allows to achieve running times 

close to one minute. Segmentation results1 are shown in 

Figure 10, and box plots2 are displayed for HG in 

Figure 11. 

 

 

F. Parameter setting 

 

The optimal set of parameters is determined, using 

leave-one-out on the 2013 training dataset of HG cases, 

by changing one parameter at a time and defining its 

optimal value based on 

 

1 All the segmentation results are shown in 

supplementary material for the 2013 validation dataset. 

 

2 A table with average assessment measures is given in 

supplementary material for all the datasets. 

 

The proposed payment system combines the Iris 

recognition with the visual cryptography by which 

customer data privacy can be obtained and prevents 

theft through phishing attack [8]. This method provides 

best for legitimate user identification. This method can 

also be implemented in computers using external iris 

recognition devices. 

Dice overlap 

 

 

 

 

 

 

 

 

Hausdorff distance 

 

 

 

 

 

 

 

 

 

Figure 11 : Box plots of Dice overlap and Hausdorff 

distance for HG cases. The test dataset consists of the 

2013 (left) and 2014 (right) MICCAI BraTS benchmark 

Evaluation datasets. In abscissa of each plot, 2013/2014 

indicates the year used for the training atlases, e.g. 2013 

for the 2013 Evaluation dataset ; CT/TC/EC denotes 

respectively complete tumor, tumor core, and enhancing 

core. 
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Dice overlap. No post-processing is applied. Moreover, 

binary label maps are used, which results in lower Dice 

overlap than with probabilistic label maps. 

 

1) Atlas selection: number of selected training cases: 

 

Given a target case, a number of similar training cases 

are selected to perform patch-based segmentation. The 

selection first considers training cases of the same grade 

as the target, and once the training dataset is exhausted, 

training cases of a different grade start to be selected. 

The influence of atlas selection count, i.e. the number of 

selected training cases, is studied in Figure 12. For HG 

target, an optimum of Dice overlap is reached for 28 

training cases if we only consider the complete tumor, 

and for 24 training cases (20 HG, 4 LG) if we 

simultaneously consider all the tumor regions. For LG 

target, Dice overlap is optimal once 3 LG training cases 

are selected, and then tends to decrease, especially as 

HG cases are selected: it is mostly detrimental to 

segment LG tumor core based on HG training cases. 

 

2) Feature: patch width, multi-scale patches, and invari-

ance to cube isometries or sagittal plane symmetry: 

Different patch widths were tested, as shown in Figure 

13. In the left pane for which features are not invariant 

to cube isometries or sagittal plane symmetry, the 

optimal patch width is 3, which is the smallest tested 

width. The use of multi-scale patches, including a 3-

voxel-wide central patch, results in Dice overlaps 

similar to these obtained with conventional 5-voxel-

wide patches. In the right pane for which features are 

invariant, the optimal patch width for conventional 

patches is 5. Comparable yet slightly better results are 

obtained with multi-scale patches. Invariance decreases 

Dice overlap for the smallest conventional patches, but 

increases Dice overlap for larger conventional patches 

and for multi-scale patches. Intuitively, matching larger 

patches is sufficiently constrained so that patch match 

actually benefits from an augmentation of the training 

dataset via cube isometries or sagittal plane symmetry. 

In the end, 9-voxel-wide multi-scale patches, with a 3-

voxel-wide central patch, are used along invariance to 

cube isometries for pathological training patches, and 

invariance to sagittal plane symmetry for healthy 

training patches. 

 

 
 

Figure 12. Influence of atlas selection count, in leave-

one-out. Vertical lines mark transitions between tumor 

grades of selected cases. 

 
 
Figure 13: Influence of patch width, multi-scale 

enhancement, and invariance to cube isometries on the 

average Dice overlap for HG target cases. The ”3*” 

index corresponds to multi-scale patches with a central 

patch of indicated width. The right part uses invariance 

to cube isometries (for pathological patches) and sagittal 

plane symmetry (for healthy patches). 

 

3) Feature augmentation weights and : With feature 

augmentation, a weighted L2-norm replaces patch 

distance, with weights and respectively for atlases of 

label spatial distribution and for class conditional 

Student intensity likeli-hoods. The influence of both 

weights is studied in Figure 14. Increasing leads to 

higher Dice overlap, with visually similar segmentation 

results in the range [8; 14]. When tends to infinity, the 

segmentation is only driven by label spatial priors, and 

Dice overlap measures tend to 0. Decreasing leads to 

higher Dice overlap. Indeed, class conditional Student 

intensity likelihoods do not allow to discriminate 

between classes in areas where clusters overlap (Figure 

4). When tends to infinity, Dice overlap measures fall 

off to 42%, 26% and 32% for complete tumor (CT), 

tumor core (TC), and enhancing core (EC) respectively. 

In the end, = 12 and = 2 are chosen, since a low non-

zero value for seems to result in slightly smoother 

segmentations. 
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Figure 14: Influence of feature augmentation weights ( 

, ) on the average Dice overlap for HG target cases. 

Chosen parameter values ( , ) are circled in white. 

 

4) Training patch selection: quantile of Student 

distribu-tions and minimal patch label purity: The effect 

of training patch selection is mostly visible if the pre-

processing pipeline accumulates approximations 

(interpolation of images, and bi-narization of warped 

label maps). In our case, its influence on Dice overlap is 

marginal for conventional or multi-scale patches. Dice 

overlap for enhancing core could benefit from a higher 

minimal patch label purity, but this would decrease Dice 

overlap for complete tumor and tumor core. In the end, 

the quantile of Student distributions is equal to 60%, 

and the minimal patch label purity is equal to 2/3, to 

ensure shorter running time at the cost of a marginal 

Dice overlap decrease. 

 

5) Vote aggregation: stratification scheme: The 

proposed stratification scheme is compared to simpler 

schemes, with the same number of patch matches for a 

fair comparison. No atlas selection is performed: the 

number of training cases is 29 due to leave-one-out. The 

four schemes are: A) stratification with respect to 

training cases (29) and labels (7): 1 patch match, B) 

stratification only with respect to labels (7): 29 patch 

matches, 

 

C) stratification only with respect to training cases 

(29): 7 patch matches, D) no stratification: 203 patch 

matches. 

 

Scheme C is comparable to our naive patch-based 

method [33], which ranked 5th in 2013, and would rank 

18th as of April 2015. The definition of n2 was 

different, votes were heuristically scaled, and results 

required stronger post-processing. On the 2013 training 

data in leave-one-out, Dice overlap measures were 

similar to those reported for scheme C: 79%, 60% and 

59% for CT, TC and EC respectively. 

 

As shown in Figure 15, a stratification with respect to 

labels (scheme B) decreases Dice overlap as compared 

to no stratification (scheme D). On the other hand, a 

stratification with respect to training cases (scheme C) 

consistently leads to higher Dice overlap. The situation 

regarding the tumor core on LG cases is particular since 

the distinction between edema and tumor core for this 

grade is especially debatable. Finally, for HG cases, a 

stratification with respect to both labels and training 

cases (scheme A) leads to 1% and 2% higher Dice 

overlap for CT and TC respectively, and 1% lower Dice 

overlap for EC. In the end, the chosen scheme is A. 

 

DISCUSSION 

 

A. Limitations of the approach 

 

Overall running time is highly competitive, mostly due 

to resampling to 2 mm isotropic resolution, target and 

training patch selection, and atlas selection. However, 

these methods show some limitations. First, image 

resampling leads to a loss of the finer structures, which 

can be detrimental to the segmentation of the enhancing 

core. For instance, in the second row in Figure 10, the 

enhancing core signal is subtle in T1C and only partially 

retrieved by our method. Second, target patch selection 

depends on a few automatic post-processing steps which 

could fail and hinder the segmentation process. Third, 

training patch selection leads to a decrease of Dice 

overlap, although very marginal in our experiments. 

Fourth, atlas selection could not be properly studied 

since the 2013 training dataset is small: the optimal atlas 

selection count would differ with a larger training 

dataset. 

 
Figure 15. Comparison of stratification schemes A to 

D. 

Patch distance is ultimately the canonical L2-norm. 

Based on the mean and covariance of the Student 

distributions, Mahalanobis patch distances have been 

tested but resulted in a radical drop of performance. 

This might be due to an inconsistent definition of the 

minimal patch distance n2 (x) in the case of class-

specific patch distances. 

 

Patch matching heavily relies on fast approximate 

nearest neighbor search for high-dimensional data. In 

our experiments, approximate search resulted in 

segmentation performance in-distinguishable from exact 

nearest neighbor search. However, this might be due to 

the fact that our approach only considers distances 

between patches to perform the segmentation. This 
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could lead to drastically different results for any 

application which would make use of the nearest-

neighbor per-se. 

 

B. Limited risk of overfit 

 

Our approach is based on patches extracted from the 

2013 training dataset, for which the ground truth is 

obtained as a consensus of four manual expert 

segmentations. The 2014 training dataset is only used 

for validation purpose, and for a few learning stages: the 

creation of atlases of label spatial distribution, and the 

fit of Student distributions to average patch intensity. As 

shown in Figure 11, we tried to base our approach on 

patches extracted from the 2014 training dataset, but 

segmentation results were less satisfactory: av-erage 

Dice overlap was slightly lower for 2013 target cases, 

and slightly higher for 2014, however Dice overlap 

variance was higher for both years. One possible 

explanation is that the ground truth of the 2014 training 

dataset, which was obtained as a consensus of 

randomly-selected top-ranking algorithms, could be less 

reliable. Another explanation is that the two types of 

delineations (BraTS 2013 and 2014) are based on 

slightly different assumptions. Nevertheless, 

segmentation results obtained on the 2 Challenge 

datasets are consistent, and assessment measures are 

similar, irrespective of the choice of the training dataset 

(Figure 11), which seems to indicate that the proposed 

method does not suffer from overfitting. 

 

Finally, the proposed approach has lead to state-of-the-

art brain tumor segmentation results on the BraTS 

benchmark, and appears to work fine on the clinical data 

of our collaborators. However, a larger test dataset, with 

a reliable and hidden expert ground truth, would be 

necessary to be able to distinguish between the 

performances of the top-ranked algorithms of the BraTS 

benchmark. More importantly, given the amount of 

machine learning segmentation methods, it is essential 

that test datasets are made available through third-

parties as is the case with the BraTS benchmark: it is 

not uncommon that learning-based procedures overfit, 

which makes irrelevant any comparison of segmentation 

results on the training datasets. 

 

IV. SUMMARY AND CONCLUSIONS 

 

We presented a generic approach to adapt patch-based 

techniques to the segmentation of pathological cases. 

This approach has lead to state-of-the-art brain tumor 

segmentation results in a fully automatic setting. The 

procedure requires very limited to no prior learning, 

which limits the risk of overfit and can take advantage 

of a constantly growing database of annotated cases. 

Due to patch overlap, segmentation results only require 

minimal post-processing, which confirms the robustness 

of the proposed segmentation approach. Patch ex-

traction and matching benefits from automatic patch 

selection ahead of time, and fast approximate nearest-

neighbor search, which results in a highly competitive 

overall running time. With stratification, patch match is 

effectively embarrassingly parallel, which results in 

even shorter running times (close to one minute) using a 

computer grid. 

 

The possibility to automatically define precise regions 

of interest in a matter of seconds, using a probabilistic 

model similar to the one proposed for glioma detection, 

with a spatially-varying prior learnt on the training data, 

could be of interest to other medical imaging algorithms. 

The proposed approach could also be incorporated 

within the Modality Prop-agation framework [34], 

therefore opening new perspectives for the application 

of patch-based methods to the simulation of medical 

images including brain pathologies. 

 

V. ACKNOWLEDGEMENTS 
 

Part of this work was funded by the European Research 

Council through the ERC Advanced Grant MedYMA 

2011-291080 (on Biophysical Modeling and Analysis of 

Dynamic Medical Images). 

 

VI. REFERENCES 

 
[1]. E. Eisenhauer, P. Therasse, J. Bogaerts, L. 

Schwartz, D. Sargent, R. Ford, J. Dancey, S. 

Arbuck, S. Gwyther, M. Mooney et al., "New 

response evaluation criteria in solid tumours: 

revised RECIST guideline (version 1.1)," 

European Journal of Cancer, vol. 45, no. 2, pp. 

228–247, 2009. 

[2]. P. Y. Wen, D. R. Macdonald, D. A. Reardon, T. 

F. Cloughesy, A. G. Sorensen, E. Galanis, J. 

DeGroot, W. Wick, M. R. Gilbert, A. B. Lassman 

et al., "Updated response assessment criteria for 

high-grade gliomas: response assessment in 

neuro-oncology working group," Journal of 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  208 

Clinical Oncology, vol. 28, no. 11, pp. 1963–

1972, 2010. 

[3]. E. D. Angelini, O. Clatz, E. Mandonnet, E. 

Konukoglu, L. Capelle, and H. Duffau, "Glioma 

dynamics and computational models: a review of 

segmentation, registration, and in silico growth 

algorithms and their clinical applications," 

Current Medical Imaging Reviews, vol. 3, no. 4, 

pp. 262–276, 2007. 

[4]. E. Mandonnet, S. Wait, L. Choi, and C. Teo, "The 

importance of measur-ing the velocity of diameter 

expansion on MRI in upfront management of 

suspected WHO grade II glioma–Case report," 

Neurochirurgie, vol. 59, no. 2, pp. 89–92, 2013. 

[5]. B. Menze, M. Reyes, K. Van Leemput et al., "The 

Multimodal Brain Tumor Image Segmentation 

Benchmark (BraTS)," Medical Imaging, IEEE 

Transactions on, vol. PP, no. 99, pp. 1–33, 

December 2014. 

[6]. D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, 

C. Demiralp, J. Shot-ton, O. Thomas, T. Das, R. 

Jena, and S. Price, "Decision forests for tissue-

specific segmentation of high-grade gliomas in 

multi-channel MR," in MICCAI 2012. Springer, 

2012, pp. 369–376. 

[7]. N. J. Tustison, K. Shrinidhi, M. Wintermark, C. 

R. Durst, B. M. Kandel, J. C. Gee, M. C. 

Grossman, and B. B. Avants, "Optimal 

Symmetric Multimodal Templates and 

Concatenated Random Forests for Supervised 

Brain Tumor Segmentation (Simplified) with 

ANTsR," Neuroinformatics, pp. 1–17, 2014. 

[8]. B. H. Menze, K. Van Leemput, D. Lashkari, M.-

A. Weber, N. Ayache, and P. Golland, "A 

generative model for brain tumor segmentation in 

multi-modal images," in MICCAI 2010. Springer, 

2010, pp. 151–159. 

[9]. D. Kwon, R. T. Shinohara, H. Akbari, and C. 

Davatzikos, "Combining generative models for 

multifocal glioma segmentation and registration," 

in MICCAI 2014. Springer, 2014, pp. 763–770. 

[10]. J. E. Iglesias and M. R. Sabuncu, "Multi-Atlas 

Segmentation of Biomedical Images: A Survey," 

Medical Image Analysis, 2015. Online]. 

Available: http://arxiv.org/abs/1412.3421 

[11]. T. Rohlfing, D. B. Russakoff, and C. R. Maurer 

Jr, "Extraction and application of expert priors to 

combine multiple segmentations of human brain 

tissue," in MICCAI 2003. Springer, 2003, pp. 

578–585. 

[12]. R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. 

Rueckert, and A. Ham-mers, "Automatic 

anatomical brain MRI segmentation combining 

label propagation and decision fusion," 

NeuroImage, vol. 33, no. 1, pp. 115– 126, 2006. 

[13]. P. Aljabar, R. A. Heckemann, A. Hammers, J. V. 

Hajnal, and D. Rueck-ert, "Multi-atlas based 

segmentation of brain images: atlas selection and 

its effect on accuracy," Neuroimage, vol. 46, no. 

3, pp. 726–738, 2009. 

[14]. M. J. Cardoso, K. Leung, M. Modat, S. 

Keihaninejad, D. Cash, J. Barnes, N. C. Fox, S. 

Ourselin, A. D. N. Initiative et al., "STEPS: 

Similarity and Truth Estimation for Propagated 

Segmentations and its application to hippocampal 

segmentation and brain parcelation," Medical 

image analysis, vol. 17, no. 6, pp. 671–684, 2013. 

[15]. F. Rousseau, P. A. Habas, and C. Studholme, "A 

supervised patch-based approach for human brain 

labeling," Medical Imaging, IEEE Transactions 

on, vol. 30, no. 10, pp. 1852–1862, 2011. 

[16]. P. Coupe,´ J. V. Manjon,´ V. Fonov, J. Pruessner, 

M. Robles, and D. L. Collins, "Patch-based 

segmentation using expert priors: Application to 

hippocampus and ventricle segmentation," 

NeuroImage, vol. 54, no. 2, pp. 940–954, 2011. 

[17]. J. E. Romero, J. V. Manjon,´ J. Tohka, P. Coupe,´ 

and M. Rob-les, "NABS: Non-local Automatic 

Brain Hemisphere Segmentation," Magnetic 

resonance imaging, 2015. 

[18]. A. J. Asman, B. Landman et al., "Out-of-atlas 

labeling: A multi-atlas approach to cancer 

segmentation," in Biomedical Imaging (ISBI), 

2012 9th IEEE International Symposium on. 

IEEE, 2012, pp. 1236–1239. 

[19]. M. J. Cardoso, C. H. Sudre, M. Modat, and S. 

Ourselin, "Template-Based Multimodal Joint 

Generative Model of Brain Data," in Information 

Processing in Medical Imaging. Springer 

International Publishing, 2015, pp. 17–29. 

[20]. M. Svensen´ and C. M. Bishop, "Robust Bayesian 

mixture modelling," Neurocomputing, vol. 64, pp. 

235–252, 2005. 

[21]. N. Shiee, P.-L. Bazin, J. L. Cuzzocreo, A. Blitz, 

and D. L. Pham, "Segmentation of brain images 

using adaptive atlases with application to 

ventriculomegaly," in Information Processing in 

Medical Imaging. Springer, 2011, pp. 1–12. 

[22]. J. Mazziotta, A. Toga, A. Evans, P. Fox, J. 

Lancaster, K. Zilles, R. Woods, T. Paus, G. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  209 

Simpson, B. Pike et al., "A probabilistic atlas and 

reference system for the human brain: 

International Consortium for Brain Mapping 

(ICBM)," Philosophical Transactions of the Royal 

Society B: Biological Sciences, vol. 356, no. 

1412, pp. 1293–1322, 2001. 

[23]. C. Liu and D. B. Rubin, "ML estimation of the t 

distribution using EM and its extensions, ECM 

and ECME," Statistica Sinica, vol. 5, no. 1, pp. 

19–39, 1995. 

[24]. C. Wachinger, M. Brennan, G. C. Sharp, and P. 

Gol- land, "On the Importance of Location and 

Features for the Patch-Based Segmentation of 

Parotid Glands," in MICCAI Workshop on 

Image-Guided Adaptive Radiation Therapy, 2014. 

Online]. Available: 

http://hdl.handle.net/10380/3472 

[25]. S. Larjavaara, R. Mantyla, T. Salminen, H. 

Haapasalo, J. Raitanen, J. Jaaskelainen, and A. 

Auvinen, "Incidence of gliomas by anatomic 

location," Neuro-oncology, vol. 9, no. 3, pp. 319–

325, 2007. 

[26]. H. Duffau and L. Capelle, "Preferential brain 

locations of low-grade gliomas," Cancer, vol. 100, 

no. 12, pp. 2622–2626, 2004. 

[27]. S. Parisot, H. Duffau, S. Chemouny, and N. 

Paragios, "Graph based spatial position mapping 

of low-grade gliomas," in MICCAI 2011. 

Springer, 2011, pp. 508–515. 

[28]. W. Bai, W. Shi, D. P. O’Regan, T. Tong, H. 

Wang, S. Jamil-Copley, N. S. Peters, and D. 

Rueckert, "A probabilistic patch-based label 

fusion model for multi-atlas segmentation with 

registration refinement: application to cardiac MR 

images," Medical Imaging, IEEE Transactions on, 

vol. 32, no. 7, pp. 1302–1315, 2013. 

[29]. M. R. Sabuncu, B. T. Yeo, K. Van Leemput, B. 

Fischl, and P. Golland, "A generative model for 

image segmentation based on label fusion," 

Medical Imaging, IEEE Transactions on, vol. 29, 

no. 10, pp. 1714–1729, 2010. 

[30]. Y. Zhang, M. Brady, and S. Smith, "Segmentation 

of brain MR images through a hidden Markov 

random field model and the expectation-

maximization algorithm," Medical Imaging, IEEE 

Transactions on, vol. 20, no. 1, pp. 45–57, 2001. 

[31]. C. Wachinger and P. Golland, "Atlas-Based 

Under-Segmentation," in MICCAI 2014. 

Springer, 2014, pp. 315–322. 

[32]. M. Muja and D. G. Lowe, "Scalable Nearest 

Neighbor Algorithms for High Dimensional 

Data," Pattern Analysis and Machine Intelligence, 

IEEE Transactions on, vol. 36, 2014.    

[33]. N. Cordier, B. Menze, H. Delingette, and N. Ay- 

ache, "Patch-based Segmentation of Brain 

Tissues," in MICCAI Challenge on Multimodal 

Brain Tumor Segmentation, 2013, pp. 6–17. 

[34]. D. H. Ye, D. Zikic, B. Glocker, A. Criminisi, and 

E. Konukoglu, "Modality propagation: coherent 

synthesis of subject-specific scans with data-

driven regularization," in MICCAI 2013. 

Springer, 2013, pp. 606– 613. 


