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ABSTRACT 

 

This paper projects Enriched Monkey Algorithm (EMA) for solving the Reactive Power problem. The crucial 

feature in this problem is to reduce the real power loss and to keep voltage profiles within limits. This algorithm is 

stimulated from the mountain climbing procedures of monkeys where the monkeys look for the highest mountain by 

climbing up from their present position. The simulation results expose amended performance of the EMA in solving 

an optimal reactive power problem. In order to evaluate up the performance of the proposed algorithm, it has been 

tested on Standard IEEE 57,118 & practical 191 bus systems. It has been compared to other reported standard 

algorithms. Simulation results show that EMA is better than other algorithms in plummeting real power loss and 

voltage profiles also within the limits. 
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I. INTRODUCTION 

 

Optimal reactive power problem plays most significant 

role in the stability of power system operation and 

control. In this paper the key aspect is to reduce the real 

power loss and to keep the voltage variables within the 

limits. Formerly many mathematical methods like 

gradient method, Newton method, linear programming 

[1-7] has been employed to solve the optimal reactive 

power dispatch problem and those approaches have 

many complications in handling inequality constraints. 

Voltage stability and voltage collapse play an imperious 

role in power system planning and operation [8].  Newly 

Evolutionary algorithms like genetic algorithm have 

been already employed to solve the reactive power  flow 

problem [9,10].In [11-20] Genetic algorithm, Hybrid 

differential evolution algorithm, Biogeography Based 

algorithm, fuzzy based methodology, improved 

evolutionary programming has been used to solve   

optimal reactive power flow problem and all the 

algorithm efficaciously handled the reactive power 

problem.In this paper the Enriched Monkey Algorithm 

(EMA) [21], is used to solve the optimal reactive power 

problem. The performance of EMA has been evaluated 

in standard IEEE 57,118& 191 practical test systems 

and the simulation results shows   that our proposed 

method outperforms all approaches investigated in this 

paper. 

II. OBJECTIVE FUNCTION 

 

A. Active power loss 

 

The objective of the reactive power dispatch problem is 

to minimize the active power loss and can be written in 

equations as follows: 

    F = 𝑃𝐿 = ∑   gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij)    (1)              

Where F- objective function, PL – power loss, gk - 

conductance of branch,Vi and Vj  are voltages at buses i,j, 

Nbr- total number of transmission lines in power 

systems.  

B. Voltage profile improvement 

 

To minimize the voltage deviation in PQ buses, the 

objective function (F) can be written as: 

        F = 𝑃𝐿 + ωv × VD             (2)                       
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Where VD - voltage deviation,     ωv - is a weighting 

factor of voltage deviation. 

And the Voltage deviation given by: 

                              VD = ∑ |Vi − 1|Npq
i=1             (3)     

Where Npq- number of load buses                   

C. Equality Constraint  

 

The equality constraint of the problem is indicated by the 

power balance equation as follows:   

                                       PG = PD + PL             (4)               

Where PG- total power generation, PD  - total power 

demand. 

D.  Inequality Constraints  

 

The inequality constraint implies the limits on 

components in the power system in addition to the limits 

created to make sure system security. Upper and lower 

bounds on the active power of slack bus (Pg), and 

reactive power of generators (Qg) are written as follows: 

                            Pgslack
min ≤ Pgslack ≤ Pgslack

max         (5)         

                           Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng   (6)          

Upper and lower bounds on the bus voltage magnitudes 

(Vi) is given by:          

                           Vi
min ≤ Vi ≤ Vi

max , i ∈ N      (7)           

Upper and lower bounds on the transformers tap ratios 

(Ti) is given by: 

                          Ti
min ≤ Ti ≤ Ti

max , i ∈ NT     (8)           

Upper and lower bounds on the compensators (Qc) is 

given by: 

                            Qc
min ≤ Qc ≤ QC

max , i ∈ NC  (9)           

Where N is the total number of buses,  Ng  is the total 

number of generators,  NT is the total number of 

Transformers,  Nc is the total number of shunt reactive 

compensators. 

 

III. Monkey Algorithm 
 

The Monkey Algorithm (MA) is stimulated from the 

mountain climbing procedure of monkeys, where the 

monkeys look for the highest mountain by climbing up 

from their positions. When each monkey gets to the top 

of the mountain, it looks about to find out whether there 

are higher mountains around or not. If yes, it will jump 

toward the mountain from the current position and then 

replicate the climbing until it reaches the top of the 

higher mountain. The MA is based on three main 

process namely as climb process, watch-jump process 

and somersault process. In following the monkey 

algorithm, the proposed EMA for optimal reactive 

power dispatch has been explained. 

 

A. Standard Monkey Algorithm 

 

Generally the monkey algorithm [21] works as follows, 

Step 1: Describe the population size of monkeys (M), 

the climb number (Nc), the objective function and the 

decision variables. Give the Input about system 

parameters and the boundaries of the decision variables. 

 The optimization problem can be defined as: 

 

Minimization f(x) 

 

Subject to  

  𝐿 ≤   ≤                   (10) 

 

 

Where (  =1,2,..,n),    𝐿 and     lower and upper 

bounds of decision variables. 

 

Step2 : Initialize a possible position for each monkey, 

where the position of ith monkey is denoted as a vector 

with n dimension: 

  = (  1,   2,   ,    ) ,  = 1,2,   ,           (11) 

 

Step 3. Climb procedure is a step by step procedure to 

change the monkeys' positions from the initial positions 

to new ones that makes an improvement in the objective 

function 

 

The climb process can be explained in three stages  

Stage 1 - Generate a vector randomly  

   = (   1,    2,   ,     ) , = 1,2,  ,       (12) 
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Where  

    = {
+    (+ ) =     

−  𝑃(− ) =     
                             (13) 

 

a – step length of climb process. 

Stage 2 -To calculate the simulated gradient of the 

objective function   at point    

 

   
 =

 (      )  (      )

2    
,  = 1,2,  ,            (14) 

   
 = (  1

 (  ),   2
 (  ),   ,    

 (  ))                (15) 

Stage 3 – Describe the parameter  = ( 1,  2,     ) and 

it can be calculated as follows, 

  =    +       (   
 (  )) ,  = 1,2,   ,         (16) 

 

If   = ( 1,  2,     ) is feasible then    is replaced by  , 

otherwise    remains the same . 

 

Stage 1to 3 are repeated until there is no considerable 

changes on the values of objective function or the climb 

number Nc is reached. 

 

Step 4. After the climb process, each monkey arrives at 

its own mountaintop, therefore; each monkey will look 

around to find a higher mountain. If a higher mountain 

is found, the monkey will jump there (jump process). 

For this a parameter b is defined as eyesight of the 

monkey which is the maximal distance that the monkey 

can watch. 

The jump is based on two stages  

 

Stage 1- A real number y is generated randomly in the 

range of : 

 

 ∈ (   −  ,    +  ) ,  = 1,2,  ,       (17) 

 

Stage 2-If y is feasible and f(y) is better than f(x) for ith 

monkey (f(y) > f(x)), the position is updated; otherwise, 

Stage  1 is repeated. 

 

Step 5. The climb process is repeated by considering y 

as initial position. 

 

Step 6. Somersault procedure: In this step, the monkeys 

find out new penetrating domain. Taking the centre of 

all the monkeys‟ positions as a pivot, each monkey will 

somersault to a new position forward or backward in the 

direction of pointing at the pivot. Based on the new 

position, the monkeys will keep on climbing. The 

somersault procedure is as follows: 

 

Stage 1-First a somersault interval [c, d] is defined 

which the maximum distance that monkeys can 

somersault is. A real number   is generated randomly 

within the somersault interval. 

Stage 2 – parameter y has been defined as follows, 

  =    +  (𝑃 −    )              (18) 

𝑃 =
1

 
∑    

 
 =1   ,  = 1,2,  ,      (19) 

 

Where P is somersault pivot. 

 

Stage 3- If   = ( 1,  2,     )  is feasible then    is 

replaced by  , otherwise    remains the same. 

 

Step 7. Repeat steps 3-6 until the stopping criterion 

(maximum number of iteration) is met. 

 

IV. Enriched Monkey Algorithm (EMA) 

 
To have a high performance search, an essential key is 

having an appropriate transaction between exploration 

and exploitation. Monkey Algorithm may fall into a 

local optimum early in a run on some optimization 

problems. In other words, the algorithm approaches the 

neighbourhood of the global optimum but for some 

reasons it fails to converge to the global optimum. The 

stagnation could be due to the following reason: 

 

Monkeys don‟t share information and learning from 

each other, so this easily makes the algorithm to trap in 

the local optimum solution .Also the improvement in 

the position is in the range of     −  ,    +   and it has 

been done randomly. So the time process will be higher 

one to find better solution .In this EMA rather than 

going randomly by each monkey based on local 

information, the information has been transferred and a 

common decision has been made by obtaining the 

information from other monkeys as below  

 

   =    +    (   −    )         (20) 

 

Where  

 = 1,2,   ,    

 = 1,2,   ,    

 = 1,2,   ,    ,     

 

    - Random number in the range of [-1,1],    −are 

chosen randomly in the range of *1,2,   ,  +.  

 

If the new position is better than previous position then 

the monkey will jump otherwise the position remains 

unchanged. But the monkey will try to improve the 

position by using the step. 

For this step a new counter (  ) and it is repeated until 

the count (  )  reached.  

 

If         
           =    

        (21) 
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           =    

         (22) 

 

EMA for solving reactive power dispatch problem, 

 

Initiate  

Scrutinize the data and identify constraint 

Reset the parameter 

Modernize iteration count up 

Climb technique 

Somersault technique 

Appraise the monkey position using the new-

fangled search operator 

If it meets stopping criterion process stop or go 

again to climb procedure. 

End 

 

V. Simulation Results  

 
Proposed Enriched Monkey Algorithm (EMA) is tested 

in standard IEEE-57 bus power system. The reactive 

power compensation buses are 18, 25 and 53. Bus 2, 3, 

6, 8, 9 and 12 are PV buses and bus 1 is selected as 

slack-bus. The system variable limits are given in Table 

1.  

The preliminary conditions for the IEEE-57 bus power 

system are given as follows: 

 

Pload = 12.328 p.u. Qload = 3.124 p.u. 

The total initial generations and power losses are 

obtained as follows: 

 

∑𝑃  = 12.6716 p.u. ∑   = 3.3412 p.u. 

Ploss = 0.26427 p.u. Qloss = -1.2047 p.u. 

 

Table 2 shows the various system control variables i.e. 

generator bus voltages, shunt capacitances and 

transformer tap settings obtained after EMA based 

optimization which are within the acceptable limits. In 

Table 3, shows the comparison of optimum results 

obtained from proposed EMA with other optimization 

techniques. These results indicate the robustness of 

proposed EMA approach for providing better optimal 

solution in case of IEEE-57 bus system. 

 

 

 

TABLE 1. VARIABLE LIMITS  

 

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgmin -

1.

4 

-

.01

5 

-

.02 

-

0.04 

-

1.3 

-

0.03 

-0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.5

0 

Voltage And Tap Setting Limits 

vgmi

n 

Vgma

x 

vpqmi

n 

vpqma

x 

tkmi

n 

tkma

x 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 

TABLE 2. CONTROL VARIABLES OBTAINED AFTER 

OPTIMIZATION  

 

Control 

Variables  

EMA 

 

V1 1.1 

V2 1.051 

V3 1.057 

V6 1.012 

V8 1.040 

V9 1.021 

V12 1.020 

Qc18 0.0698 

Qc25 0.202 

Qc53 0.0489 

T4-18 1.010 

T21-20 1.059 

T24-25 0.899 

T24-26 0.892 

T7-29 1.079 

T34-32 0.893 

T11-41 1.014 

T15-45 1.040 

T14-46 0.911 

T10-51 1.022 

T13-49 1.061 

T11-43 0.910 

T40-56 0.901 

T39-57 0.951 

T9-55 0.953 
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TABLE 3. COMPARISON RESULTS  

 

S.No. Optimization 

Algorithm 

Finest 

Solution 

Poorest 

Solution 

Normal 

Solution 

1 NLP [22] 0.25902 0.30854 0.27858 

2 CGA [22] 0.25244 0.27507 0.26293 

3 AGA [22] 0.24564 0.26671 0.25127 

4 PSO-w [22] 0.24270 0.26152 0.24725 

5 PSO-cf [22] 0.24280 0.26032 0.24698 

6 CLPSO [22] 0.24515 0.24780 0.24673 

7 SPSO-07 [22] 0.24430 0.25457 0.24752 

8 L-DE [22] 0.27812 0.41909 0.33177 

9 L-SACP-DE 

[22] 

0.27915 0.36978 0.31032 

10 L-SaDE [22] 0.24267 0.24391 0.24311 

11 SOA [22] 0.24265 0.24280 0.24270 

12 LM [23] 0.2484 0.2922 0.2641 

13 MBEP1 [23] 0.2474 0.2848 0.2643 

14 MBEP2 [23] 0.2482 0.283 0.2592 

15 BES100 [23] 0.2438 0.263 0.2541 

16 BES200 [23] 0.3417 0.2486 0.2443 

17 Proposed EMA 0.22198 0.23101 0.23089 

 
Then  Enriched Monkey Algorithm (EMA) has been 

tested in standard IEEE 118-bus test system [24] .The 

system has 54 generator buses, 64 load buses, 186 

branches and 9 of them are with the tap setting 

transformers. The limits of voltage on generator buses 

are 0.95 -1.1 per-unit., and on load buses are 0.95 -1.05 

per-unit. The limit of transformer rate is 0.9 -1.1, with 

the changes step of 0.025. The limitations of reactive 

power source are listed in Table 4, with the change in 

step of 0.01. 

TABLE 4. LIMITATION OF REACTIVE POWER SOURCES 

 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have 

been list in Table 5 and the results clearly show the 

better performance of proposed EMA algorithm. 

TABLE 5. COMPARISON RESULTS  

Active power 

loss (p.u) 

BBO 

[25] 

ILSBBO/ 

strategy1 

[25] 

ILSBBO/ 

strategy1 

[25] 

Proposed 

EMA 

Min 128.77 126.98 124.78 117.61 

Max 132.64 137.34 132.39 121.59 

Average  130.21 130.37 129.22 118.99 

 

Finally Enriched Monkey Algorithm (EMA) has been 

tested in practical 191 test system and the following 

results has been obtained 

In Practical 191 test bus system – Number of Generators 

= 20, Number of lines = 200, Number of buses = 191 

Number of transmission lines = 55. 

Table 6 shows the optimal control values of practical 

191 test system obtained by EMA method. And table 7 

shows the results about the value of the real power loss 

by obtained by Enriched Monkey Algorithm (EMA). 

TABLE 6. OPTIMAL CONTROL VALUES OF PRACTICAL 191 

UTILITY (INDIAN) SYSTEM BY EMA METHOD 

 

VG1 1.11  VG 11 0.90 

VG 2 0.81 VG 12 1.00 

VG 3 1.02 VG 13 1.01 

VG 4 1.01 VG 14 0.91 

VG 5 1.10 VG 15 1.01 

VG 6 1.14 VG 16 1.03 

VG 7 1.10 VG 17 0.90 

VG 8 1.01 VG 18 1.00 

VG 9 1.10 VG 19 1.11 

VG 10 1.02 VG 20 1.10 

 

T1 1.00  T21 0.90  T41 0.90 

T2 1.04 T22 0.91 T42 0.90 

T3 1.01 T23 0.92 T43 0.91 

T4 1.10 T24 0.90 T44 0.91 

T5 1.00 T25 0.90 T45 0.91 

T6 1.01 T26 1.00 T46 0.90 

T7 1.00 T27 0.91 T47 0.92 

T8 1.02 T28 0.90 T48 1.00 

T9 1.00 T29 1.03 T49 0.90 
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T10 1.00 T30 0.90 T50 0.91 

T11 0.90 T31 0.91 T51 0.90 

T12 1.01 T32 0.91 T52 0.90 

T13 1.02 T33 1.03 T53 1.00 

T14 1.01 T34 0.92 T54 0.90 

T15 1.01 T35 0.90 T55 0.90 

T19 1.02 T39 0.94   

T20 1.03 T40 0.90   

 

TABLE 7. OPTIMUM REAL POWER LOSS VALUES 

OBTAINED FOR PRACTICAL 191 UTILITY (INDIAN) 

SYSTEM BY EMA METHOD. 

 

Real power Loss 

(MW) 

EMA 

Min 146.592 

Max 149.712 

Average 147.989 

 

VI. CONCLUSION 

 
In this Enriched Monkey Algorithm (EMA) approach 

efficiently solved optimal reactive power problem. The 

performance of the proposed Enriched Monkey 

Algorithm (EMA) has been demonstrated by testing it in 

IEEE 57,118 & practical 191 test bus systems. 

Simulation results shows that Real power loss has been 

considerably reduced and voltage profiles are within the 

specified limits. 
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