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ABSTRACT 
 

This paper presents an overview on developments of special elements in hybrid finite element method (FEM). 

Recent developments on special elements of the hybrid FEM are described. Formulations for all cases are derived 

by means of modified variational functional and fundamental solutions or Trefftz functions. Generation of elemental 

stiffness equations from the modified variational principle is also discussed. Finally, a brief summary of the 

approach and potential research topics is provided. 
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I. INTRODUCTION 

 

Cellular solids like honeycombs, foams, films, 

cancellous bone, etc., are of considerable interest in 

engineering applications due to their superior thermal 

and mechanical performance [1-6]. It should be 

mentioned that analytical solutions which are available 

only for a few problems with simple geometries and 

boundary conditions [7-21]. Therefore, development of 

efficient numerical methods is vital for solving 

engineering problems [22-28]. The first is the so-called 

hybrid Trefftz FEM  (or H-Trefftz method) [29, 30]. 

Unlike in the conventional FEM, the H-Trefftz method 

couples the advantages of conventional FEM [31-34] 

and BEM [35-37]. In contrast to the standard FEM, the 

H-Trefftz method is based on a hybrid method which 

includes the use of an independent auxiliary inter-

element frame field defined on each element boundary 

and an independent internal field chosen so as to a prior 

satisfy the homogeneous governing differential 

equations by means of a suitable truncated T-complete 

function set of homogeneous solutions. Since 1970s, H-

Trefftz model has been considerably improved and has 

now become a highly efficient computational tool for 

the solution of complex boundary value problems. It has 

been applied to potential problems [38-41], two-

dimensional elastics [42, 43], elastoplasticity [44, 45], 

fracture mechanics [46-48], micromechanics analysis 

[49, 50], problem with holes [51, 52], heat conduction 

[53-55], thin plate bending [56-59], thick or moderately 

thick plates [60-64], three-dimensional problems [65], 

piezoelectric materials [66-70], and contact problems 

[71-73]. 

 

On the other hand, the hybrid FEM based on the 

fundamental solution (F-Trefftz method for short) was 

initiated in 2008 [30, 74] and has now become a very 

popular and powerful computational methods in 

mechanical engineering. The F-Trefftz method is 

significantly different from the T-Trefftz method 

discussed above. In this method, a linear combination of 

the fundamental solution at different points is used to 

approximate the field variable within the element. The 

independent frame field defined along the element 

boundary and the newly developed variational 

functional are employed to guarantee the inter-element 

continuity, generate the final stiffness equation and 

establish linkage between the boundary frame field and 

internal field in the element. This review will focus on 

the F-Trefftz finite element method.  

 

The F-Trefftz finite element method, newly developed 

recently [30, 74], has gradually become popular in the 

field of mechanical and physical engineering since it is 

initiated in 2008 [30, 75, 76]. It has been applied to 

potential problems [40, 77-79], plane elasticity [43, 80, 

81], composites [82-87], piezoelectric materials [88-90], 

three-dimensional problems [91], functionally graded 

materials [92-94], bioheat transfer problems [95-101], 

thermal elastic problems [102], hole problems [103, 
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104], heat conduction problems [74, 105], 

micromechanics problems [49, 50], and anisotropic 

elastic problems [106-109].  

 

Following this introduction, the present review consists 

of 3 sections. Special F-Trefftz elements for plane 

elasticity with circular holes are described in Section 2. 

It describes in detail the method of deriving element 

stiffness equations. Section 3 focuses on the essentials 

of special elliptical hole elements. Section 4 presented 

Special elements for plane elasticity with discontinuous 

loads. Finally, a brief summary of the developments of 

the hybrid methods is provided. 

 

II. METHODS AND MATERIAL 

 

A. Special Circular Elements  

 

1. Basic equations for plane elasticity 

 

For a well-posed plane elastic problem with circular 

cutouts in an arbitrary domain  , as shown in Figure 1, 

the corresponding partial differential governing 

equations under the assumption of small deformation 

are given in matrix form as 

 
Figure 1 Schematic diagram of plane elastic problem 

with circular cutouts and mesh used in the HFS-FEM 
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the differential matrix, in which a comma denotes 

partial differentiation, i.e. 
, /i iX    , and  ( 1,2)iX i   are 

the global Cartesian coordinates. The stress-strain 

matrix is given by 
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with ,  for a plane stress problem and 

,  for a plane strain 

problem.  and  denote respectively the elastic 

modulus and the Poisson’s ratio. 

 

Besides, following boundary displacement and traction 

conditions should be complemented to keep the system 

complete 
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where the overbar represents a given value, and 
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with ni representing the component of the unit 

outward normal to the boundary . 

  Rearranging Eq. (1) leads to the following Cauchy-

Navier equations in terms of displacements 
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(6) 

 

2. Fundamental solutions 

 

For plane elastic problems involving holes, it is 

convenient to express the fundamental solutions in 

terms of complex variables. In plane elastic theory, all 

components of elastic fields including the stresses 

11 22 12, ,   , the displacements 
1 2,u u  and the resultant 

forces 
1 2,P P  along a curve can be expressed in terms of 

two complex analytic functions ( )z  and ( )z  as[110] 
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stress and 3 4    for plane strain, 
1 2Iz x x   is the 

complex coordinate in the zplane with I 1  , the 

overbar denotes complex conjugation, Re  denotes the 

real part of the function and prime denotes 

differentiation with respect to the argument z . 

A point force in an infinite plane 

 

If a concentrated force 
1 2IF F F   is located at the point 

0 1 2Is sz x x   in the infinite plane, the complex functions 

can be written as[110] 
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Obviously, the complex functions in Eq. (8) are singular 

at the point , which can be taken as the basis for 

constructing more complex fundamental solutions. 

 

By substituting Eq. (8) into Eq. (7), the classical 

formation of the Kelvin solution can be obtained. For 

example, for plane strain problems, if  and 

 are the induced displacements and stresses at 

 due to l-direction unit force at , we have[36] 

     Making use of the new variables defined by Eq (8), 

the Laplace operator in Eq (3) becomes 
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(9)  

where r stands for the distance between  and . 

A point force in an infinite plane with circular hole 

Consider a point force 
1 2IF F F  at 

0z  in an infinite 

plane with a centered circular hole of radius a. Using the 

complex variable formalism above, the fundamental 

solution sought can be expressed in the form 
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where where  and  are the singular terms for the 

infinite homogeneous body, which is the Kelvin’s 

solution expressed in terms of complex variable listed 

above, and  and  are regular terms to be 

determined so that the resultant tractions on the surface 

of the circular hole become zero. Furthermore, the 

vanishing stress conditions at infinity should also be 

satisfied. 

    

Using the analytical continuation approach, the regular 

terms (also called imaging terms) can be obtained as 
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where * 2 /z a z , * 2

0 0/z a z . 

 

Substituting the known singular terms and retaining the 

main parts of Eq. (11) gives the following solutions: 
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Having determined the two complex functions, the 

related displacement and stress solutions can be 

obtained using Eq. (7). 

 

3. Hybrid FE Implementation 

 

In this section, the procedure for developing a hybrid 

finite element model with the fundamental solutions as 

the interior trial functions is described for solving the 

boundary value problem (BVP) defined by Eqs. (1), (4), 

and Eq. (13) below. 

 

As in the hybrid Trefftz FEM, the main aim of the 

proposed approach is to establish a hybrid finite element 

formulation whereby intra-element continuity is 

enforced on nonconforming internal displacement fields 

formed by a linear combination of fundamental 

solutions at source points outside the element domain 

under consideration, while auxiliary frame displacement 

fields are independently defined on the element 

boundary to enforce field continuity across inter-

element boundaries. But unlike the hybrid Trefftz FEM, 

the intra-element fields in the HFS-FEM are constructed 

based on the fundamental solutions, rather than a 

truncated T-complete function set. Subsequently, a 

variational functional associated with the new 

displacement trial functions inside the element and 

displacements on the element boundary is required to 
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generate the related stiffness matrix equation. As the 

solution domain is divided into a number of elements 

denoted by  with the element boundary , the 

following inter-element continuity related to 

displacements and tractions is usually required on the 

common boundary  between any two adjacent 

elements ‘e’ and ‘f’ (see Figure 2): 

e f

Ief
 

Figure 2. Illustration of continuity between two 

adjacent elements ‘e’ and ‘f’ in the proposed hybrid FE 

approach. 
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Non-conforming intra-element fields 

 

In the absence of body forces, and motivated by the 

method of fundamental solution (MFS) to remove the 

singularity of the fundamental solution, for a particular 

element shown in Figure 3, say element e , which 

occupies the sub-domain e , we first assume that the 

field variable defined in the element domain is 

approximated by a linear combination of fundamental 

solutions centered at different source points (see Figure 

3) as 
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where  is the number of virtual sources outside the 

element domain,   is an 

unknown coefficient vector (not nodal displacements), 

and the coefficient matrix 
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where x  and yi are the field point and source point 

defined in the local coordinate system (x1,x2): 

 
Figure 1. Intra-element fields and frame fields in a 

particular element in the HFS-FEM 

Subsequently, differentiating Eq. (14) and substituting it 

into Eq. (1) yields the corresponding stress fields 

By invoking the divergence theorem 
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Furthermore, the element boundary traction vector { }es  

is evaluated by 
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Auxiliary conforming frame fields 

 

In order to enforce conformity on the displacement 

vector  u along the inter-element boundary, for 

instance    e fu u  on e f  , of any two 

neighboring elements e and f, auxiliary inter-element 

frame fields  eu  are assumed in terms of the nodal 

degrees of freedom (DOF),  ed , as used in the 

conventional FEM. For example, for the element shown 

in Figure 3 containing 10 nodes, the frame fields  eu  

over the second edge consisting of nodes 3, 4, and 5 are 

written as 
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and iN  ( 1,2,3i  ) stands for shape functions in terms 

of the natural coordinate   defined in Figure 4, 

  ( 1,2)k

iu i   denotes the nodal displacement at nodal 

k . 

 
Figure 2. Typical quadratic interpolation for the frame 

fields 

 

B. Special elliptical hole element  

1. Element Formulation 

 

The HT FE model used here is based on simultaneous 

use of two independent displacement fields (Figure 3) 

 

 (a) a non-conforming ‘Trefftz’ field 
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where cej stands for undetermined coefficients and  

and Nej are the particular and homogeneous solutions to 

the governing differential equations. 

(b) an exactly and minimally conforming auxiliary 

frame field 
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being independently assumed along the element 

boundary in terms of nodal degrees of freedom , 

where , while , 

, and is the inter-element boundary, 

are the shape functions (frame functions) defined in 

the customary way as in conventional FEM. The tilde 

above a symbol in Eq. (20) allows the two fields to be 

distinguished. 

 

The corresponding stress field 
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can be readily deduced from  and  

respectively, where  is the differential operator matrix,

contains elastic constants and contains 

components of a unit normal to the element boundary

.  

 

The HT FE formulation for 2D elastic problems may be 

obtained by means of the following modified variational 

principle 
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where is the total complementary energy, the 

overhead bar is used to designate specified values. 

Applying the stationary condition to Eq. (23) 

straightforwardly leads to the symmetric element 

stiffness equation 
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in which eb stand for the body forces. 

 

2. Special Trefftz functions 

 

A key step in constructing an accurate special finite 

element for a region with a hole is to find a special set 

of trail functions which reflect the local stress 

concentration characteristics. To achieve this, the 
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Muskhelishvili’s complex variable formulation is 

utilized herein (see Figure 5). The number of Trefftz 

functions m for elliptical hole elements is suggested 

here to be equal to the number of elemental degrees of 

freedom. The derivation of special Trefftz function can 

be carried out by using following expressions of 

displacements and stresses. 

 

 

 

 

 

 

Figure 5. Conformal mapping for constructing special 

hole element 
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differentiation with respect to z  and    represents 

complex conjugate. The boundary conditions can be 

given in the complex form as 

        )(2 viuGzzzz       on u   (34) 

       dΓ)( yx titizzzz       on t   (35) 

It is tedious to treat structures with holes in arbitrary 

direction. To bypass this difficulty, a rotated mapping 

function 

    ie   (36) 

is introduced into the horizontal conformal 

transformation as (see Figure 5) 

           11 ζζζζζ   mcemcfz i   (37) 

where ,  and  are, 

respectively, the semi-major axis and semi-minor axis, 

 is the angle between the semi-major axis and  axis. 

Substituting the inverse transformation 

    



2221 4
2

1
ζ i

i
meczz

ce
zf  

  (38) 

into Eqs. (31)-(33) produces the displacements and 

stresses in the  -plane as: 
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  (41) 

Here, the sign in Eq. (38) is chosen in the similar way 

with Ref [110]. 

      The transformed boundary conditions along the hole 

surface can be expressed as 

    viuG
f

f  2ζ 


    on u   (42) 

       dζ yx titi
f

f 


    on t   (43) 

  In general, it is impossible to find a closed form 

formulation for   and    for arbitrary geometry 

and boundary conditions. By expanding the two 

holomorphic functions in the general expressions of 

elasticity solutions into two complex Laurent series 

respectively we have 
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where jjj ibac   are complex coefficients, M  and 

N  are the upper and lower limits of the Laurent series 

and M  is generally set to be N  for symmetry, Eq. (45) 

is obtained according to the traction-free condition 

along the hole boundary. Therefore, the displacement 

and stress fields are given in the following form 
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where 

 
jj  ζζ1    (49) 
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    From Eqs. (39)-(41) the special Trefftz functions  

and may be written as follows 
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where 

 21  jU   (58) 

  21   iU jNM   (59) 

 54321,1  jS   (60) 

 54321,1   jNMS   (61) 

 54321,2  jS   (62) 

 54321,2   jNMS   (63) 

 543,3  jS   (64) 

 543,3   jNMS   (65) 

Frame functions  

Here we use the 16- and 32-node hole elements 

(RHOL16 and RHOL32 for short), as shown in Figure 

6, to conduct the contact analysis. 

For each side of RHOL16 element, the frame 

functions are of the form 
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  (66) 

Analogously, for each side of RHOL32 element, the 

frame functions may be written as 
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(a) RHOL16                   (b) RHOL32 

Figure 6. New special Trefftz hole element 

C. Special elements for discontinuous loads  

 

1. Basic equations of plane elasticity 

 

In this section, the plane elasticity is briefly reviewed 

for establishing notation and formulation used in later 

sections. Let us consider a well-posed elastic problem in 

a domain denoted by  bounded by its boundary .  

The corresponding partial differential governing 

equations and boundary conditions are given by 

   (68) 

and 

   (69) 

where  is the stress tensor,  is the body force 

component, a comma denotes partial differentiation and 
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the Einstein summation convention over repeated 

indices is used.  denotes the elastic strain tensor,  

is the displacement field component and   is 

Kronecker’s delta,  and  are respectively the Lame 

elastic constants and usually can be expressed in terms 

of Young’s modulus  and Poisson ratio  as 

   (70) 

with  for plane strain state and 

 for plane stress state  and  are 

imposed boundary displacement and traction 

components, respectively,  is the boundary 

of the solution domain .  represents the 

component of outward normal vector to the boundary 

. 

 

Eq. (68) can be written in one equation as 

  (71) 

which is the classic Navier-Cauchy equations in terms 

of displacement fields. 

 

When the body force becomes a unit concentrated force 

applied at point  in an infinite domain, the solutions 

of Eq. (71) is known as fundamental solutions or 

Green’s functions.. This physical definition of 

fundamental solution can be used in the present hybrid 

finite element model to construct local solutions 

employed in the proposed special elements to 

effectively deal with internal discontinuous forces. 

2. Local solutions of discontinuous loads 

 

We focus on local solutions induced by internal point, 

line and patch loads, as displayed in Figure 7. All these 

internal loads can be regarded as generalized body 

forces from the view point of mechanics such that their 

effects can be represented by the fundamental solutions 

as follows. 

 
Figure 7. Sketch of plane elastic domain under internal 

discontinuous loads 

Local solutions due to point loads 

 

Let’s consider a plane elastic problem in an infinite 

domain subjected to a pair of internal concentrated 

forces , as shown in Figure 8. In this case, the 

concentrated force can be regarded as the generalized 

body forces with intensity  at the 

point , thus the Navier-Cauchy equation 

(71) can be written as 
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Figure 8. Concentrated forces in an infinite plane 

 

Using the physical definition of fundamental solutions, 

the general solutions of Eq. (72) at any point 

 can be expressed as
 

  (73) 

in which the kernel functions 

  (74) 

are the fundamental solutions of the problems. In 

Eq.(74),  is the distance between the points  and , 

i.e. 

  (75) 

The substitution of Eq. (73) into the strain-

displacement relation, and then into the constitutive 

equation given in Eq. (68) yield the following local 

stress fields induced by the imposed point loads 
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with the stress fundamental solutions in the form as 
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and  respectively parallel to x1 and x2 axis, the 

resultant forces on the differential element of arc length 

 are given by 

  (78) 

which leads to the generalized boy forces as 

  (79) 

 

Figure 9. Effect of local line loads in an infinite plane 

 

Hence, the induced displacement, strain and stress fields 

can be obtained by integrating the point-load solutions 

given in Eqs. (73)-(76) along the curved line segment 

 and this leads to the following line integrals with 

respect to arc length along the curve 
 

  (80)
 

  (81) 

If the smooth curve  LAB can be expressed in the form 

  (82) 

then the differential element of arc length dL can be 

written as 

  (83) 

where 

  (84) 

Consequently, the line integrals above can be 

converted into general integrals in terms of single 

variable  

  (85) 

  (86) 

which can be evaluated by numerical integration 

techniques. 

 

3. Hybrid finite element and special elements  

 

If an arbitrary polygonal element e is taken into 

consideration, as shown in Figure 10, the hybrid 

variational functional me  at element level based on 

two-field approximations is given by 

(87) 

where  is the element domain under consideration 

and  is its boundary, and 

 (88) 

 

Figure 10. Schematic of arbitrary polygonal element 

 

In Eq. (88), u,  and  are respectively displacement, 

stress, and strain column vectors defined within the 

element domain e, while u  is an independent 

displacement vector defined along the element boundary 

e . s denotes the element traction vector, and s  is the 

specified value of it applied on the portion 
s

e  of the 

element boundary. Besides, in Figure 10, 
I

e  and 
u

e  

are common boundaries of adjacent elements, for 

instance, elements e and f or g, and the boundary with 

specified displacement constraint. For a well-posed 

element, we have 
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If the interior element approximation is required to 

satisfy exactly the governing Eq. (71), then applying the 

Gaussian theorem to the functional above we have the 

following simplified expression of the functional  

2p

dL

 
T

1 2d ( ) ( ) ( , )ds s sp p LP x x x x

 
T

1 2( ) ( ) ( ) ( , )d
AB

s s s

L
p p L b x x x x x

ABL

ABL

     * , d
AB

s s

i li l
L

u U p L x x x x

     * , d
AB

s s

ij lij l
L
S p L  x x x x

2 1 1( )     for s s sx f x a x b  

 2 2

1 2 1d (d ) (d ) ds s s sL x x x    x

 
2

1

d
1

d

s

s

f

x

 
    

 
x

1x

        *

1, d
b

s s s s

i li l
a

u U p x x x x x x

        *

1, d
b

s s s s

ij lij l
a
S p x  x x x x x

 T T T T1
d d d d

2
s

e e e e
me

   
         σ ε b u s u s u u

e

e

     

     

T T T

1 2 1 2 1 2

T T T

11 22 12 11 22 12 1 2

,     ,      

,    ,    

u u u u b b

s s     

  

  

u u b

σ ε s

u s I

e e e e    



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  391 

T T T T1 1
d d d d

2 2
s

e e e e
me

   
           u s b u s u s u (90) 

Here, two types of elements are discussed. One is the 

general hybrid element established with fundamental 

solution approximation in the absence of body forces, 

and the other is the special hybrid element in which the 

fundamental solution approximations used in general 

elements are augmented with the suitable local solutions 

to accurately capture the local effects due to the 

discontinuous loads and then to avoid the troublesome 

of mesh refinement near the region over which the 

discontinuous loads are applied. In what follows, 

detailed derivation of the special element is presented. 

The generalized body forces corresponding to point 

and line loads are rewritten in a unified form as 

 

 

T

1 2 0

T

1 2

( , )                         for point-load
( )

( ) ( ) ( , )d   for line-load
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x x
b x

x x x x (91) 

Subsequently, the second integral in the variational 

functional (90) can be written 

 

(92) 

where the properties of the delta function have been 

employed. 

      If the load intensity of a line load is assumed to be 

constant, that is,  are constant, then Eq. (92) can be 

reduced to 

T

0 0
T

T

0

( )             for point-load case
d

( )d    for line-load casee

AB

s

s

L
L


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P u x
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where 

 
  (94) 

for the case of concentrated forces, and 

 
  (95)  

For the case of line loads 

 

 

III. CONCLUSION 

 
Based on the preceding discussion, the following 

conclusions can be drawn. This review reports recent 

developments on special hybrid H-Trefftz and F-Trefftz 

FEM. It proved to be a powerful computational tool in 

modeling materials and structures with various 

mechanical properties. However, there are still many 

possible extensions and areas in need of further 

development in the future. Among those developments 

one could list the following: 

 

1. Development of efficient F-Trefftz FE-BEM 

schemes for complex engineering structures 

containing heterogeneous materials and the related 

general purpose computer codes with preprocessing 

and postprocessing capabilities. 

2. Generation of various special-purpose elements to 

effectively handle singularities attributable to local 

geometrical or load effects (holes, cracks, inclusions, 

interface, corner and load singularities). The special-

purpose functions warrant that excellent results are 

obtained at minimal computational cost and without 

local mesh refinement.  

3. Development of F-Trefftz FE in conjunction with a 

topology optimization scheme to contribute to 

microstructure design. 

4. Extension of the F-Trefftz FEM to elastodynamics 

and fracture mechanics of FGMs. 
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