
IJSRSET162322 | 09 April 2017 | Accepted : 19 April 2017 | March-April-2017 [(2)2: 01-05]

© 2017 IJSRSET | Volume 3 | Issue 2 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

1

Bloom Filters : A Content Based Prefiltering Technique In
Publish/Subscribe system

Poonam B. Linghate, Prof. K. R.Ingole
Department of Computer Science and Engineering, Sipna College Of Engineering and Technology,

Maharashtra, India

ABSTRACT

In this paper, we present a content-based publish/subscribe system, called B-PUB/SUB Bloom filter-based pub-sub

system. Pub/Sub is a versatile content-based publish/subscribe system. Publish-Subscribe system, distributed entities,

called participants, communicate with each other by exchanging messages, often referred to as events. Participants

can publish events on the system, or they can subscribe to events of their interest by specifying the type or the

content of events they are interested in Publish/Subscribe systems provide a selective dissemination scheme that

delivers published content only to the receivers that have specified interest in it. Bloom filters are compact data

structures for probabilistic representation of a set in order to support membership queries. This compact

representation is the payoff for allowing a small rate of false positives in membership queries.

Keywords: Bloom Filters , Publish-Subscribe, Content-Based.

I. INTRODUCTION

The publish/subscribe(pub/sub) communication

paradigms is one of the most used paradigms because of

it uses decoupling of publishers from subscribers in

terms of synchronization between publisher and

subscriber. Publisher published the data in the system

and as per subscription, the subscriber received the

information. The information published by the publisher

are routed to the particular subscriber. Content-based

pub/sub is the alternative form that provides the most

useful subscription model, where subscription defines

restrictions on the message information. Publishers and

subscribers do not need to know one another but only

exchange data via some pub/sub middleware.

Subscribers simply inform the system about what new

elements of data they wish to receive by registering a

subscription. Conversely, publishers send new events to

the system in the form of publications. It is then the

responsibility of the pub/sub system to appropriately

route each publication towards all subscribers with

matching interests.

Burton Bloom introduced Bloom filters in the 1970s,

and ever since they have been very popular in database

applications Bloom filters are used to test whether

an element is a member of a set. Elements can be added

to the set, but not removed (though this can be

addressed with a "counting" filter); the more elements

that are added to the set, the larger the probability of

false positives.

Bloom filters are an excellent data structure for

succinctly representing a set in order to support

membership queries. Bloom filters have been around for

ages and are commonly used in Databases and

Linguistic applications. For many applications, the

probability of a false prediction can be made sufficiently

small and the space savings are significant enough that

Bloom filters are useful. Bloom filters have a great deal

of potential for Distributed protocols where systems

need to share information about what data they have

available.

II. METHODS AND MATERIAL

1. Background

Hojjat Jafarpour et al.(2012) [1] has proposed a content-

based publish/subscribe framework that delivers

https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Set_(computer_science)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 586

matching content to subscribers in their desired format.

In our proposed framework, users in addition to

specifying their information needs, also specify their

profile which includes the information about their

receiving context which includes characteristics of the

device used to receive the content.

Alessandro Margara et al.(2014) [2] has proposed

infrastructure is matching the action of filtering that the

core functionality realized by a publish-subscribe each

incoming event notification e against the received

subscriptions to decide the components interested in e.

This is a nontrivial activity, especially for content-based

systems, whose subscriptions filter events based on their

content. In such cases, the matching component may

easily become the bottleneck of the system. For this

need parallel hardware are used but unfortunately,

moving from a sequential to a parallel architecture is not

easy. Often, algorithms have to be redesigned from the

ground to maximize the operations that can be

performed in parallel and consequently to fully leverage

the processing power offered by the platform. This is

especially true for GPUs, whose cores can be used

simultaneously only to perform data parallel

computations.

Christian Esposito et al.(2015)[3] has proposed that

publish/subscribe services have encountered

considerable success in the building of modern large-

scale mission critical systems.

Paolo Bellavista et al.(2014)[4] has proposed a

Publish/Subscribe (PUB/SUB) messaging pattern is

widely considered as a fundamental way to enable

scalable and flexible communication in highly

distributed systems. The most significant and

recognized advantage of this mode of interaction is the

decoupling of communicating parties in space, time, and

synchronization.

Tania Banerjee et al.(2015) [5] has proposed Pub/Sub

systems are used in diverse applications with varied

performance requirements. In some applications,events

occur at a much higher rate than the posting/removal of

subscriptions while in other applications the

subscription rate may be much higher than the event

rate and in yet other applications the two rates may be

comparable. Optimal performance in each of these

scenarios may result from deploying a different data

structure for the subscriptions or a different tuning of

the same structure. Many commercial applications of

pub/sub systems have thousands of attributes and

millions of subscriptions. So, scalability in terms of a

number of attributes and a number of subscriptions is

critical.

2. Literature Review

Hojjat Jafarpour et al.(2012) [1] has proposed DHT

based publish-subscribe model which is set of stable

nodes as content brokers that are connected through a

structured overlay network. Each client connects to one

of the brokers and communicates through which it

communicates with the system. In DHT-based pub/sub,

content space is partitioned among the set of brokers.

Each broker maintains subscriptions for its partition of

content space and is responsible for matching them

against the publications belonging to the same partition.

In fact, each broker is the Rendezvous Point (RP) for

the publications and subscriptions in its partition. A

broker forwards all subscriptions from his own clients to

the brokers (RP) responsible for the corresponding

content partitions. Similarly, when a broker receives a

published content from its client, it forwards the content

to the appropriate RP. The content is matched with the

list of subscriptions at the RP and the list of brokers

with matched subscriptions is created.

Alessandro Margara et al.(2014) [2] has proposed that

publish-subscribe content-based matching algorithm

designed to run efficiently both on multicore CPUs and

CUDA GPUs. At the same time, the analysis identifies

the characteristic aspects of multicore and CUDA

programming that mostly impact performance.

Christian Esposito et al.(2015)[3] has proposed the logic

tree-based schemes which can reduce the management

costs of group keys (making them increasingly

logarithmic according to the greater group size);

however, the communication overhead and rekeying

delay still remain high in the case of a large-scale

network. In addition, a central key manager has to

monitor the status of all group members and keep a

fully-connected topology of all the trusted members,

implying a high management overhead.

Paolo Bellavista et al.(2014)[4] has proposed a

PUB/SUB middleware is a distributed platform that

allows its participants to exchange information with

each other in the form of events.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 587

Without loss of generality, the middleware assumes an

event to be a set of key-value pairs, whose meaning is

generally application-dependent. A participant enters

information in the system by publishing; it can also

express interest in particular events, by means of

subscriptions. The middleware delivers events to

subscribers according to their subscriptions. In order to

subscribe to events, participants select subspaces of the

space of all possible events by providing one or more

subscription filters, which, in their more general form,

are boolean predicates on the event fields. Whenever an

event is published, the system will dispatch it to a set of

subscribers that have specified a subscription filter that

matches the event(i.e., it evaluates to true when applied

to the event).

Tania Banerjee et al.(2015) [5] has proposed a

PUB/SUB, which is a versatile and scalable, content-

based pub/sub system that may be tuned to provide high

performance for diverse application environments.

PUBSUB is versatile because its architecture supports a

variety of predicate types (e.g., ranges, regular

expressions, string relations) as well as a heterogeneous

collection of data structures for the representation of

subscriptions in order to achieve high throughput. The

performance of a version of PUBSUB that was tuned

for applications in which events occur far more

frequently than subscription posting/deletion is

compared with the performance of the pub/sub systems

BE Tree.

3. Existing Methodologies

In broker less publish-subscribe system approach,

publishers, and subscribers communicate with a key

server. Credentials are assigned to the key server and in

turn, it receives keys which fit the expressed capabilities

in the credentials. Subsequently, these keys are used for

encryption, decryption, and sign relevant messages in

the content-based pub/sub system. The cipher text, are

assigned with credentials and the keys are assigned to

publisher and subscriber. If there is a match between the

identification of the cipher text and the key the

particular message gets decrypted. For each authorized

credential publisher and subscriber are assigned the

private key. The public keys are generated by a string

concatenation of a credential, an epoch for key

revocation, a symbol (SUB: PUB) which distinguished

each publisher from subscribers. There is no need to

contact the key server for generating the keys for the

communicating system. Similarly, it does not require

any middleware for encryption and decryption of event.

In QoS-based services, the involved parties usually

perform a quality agreement process to determine the

exact service level to be needed at runtime. This process,

in the context of PUB/SUB systems, has been often

modeled with a publisher offered – subscribed requested

(PO-SR) pattern: publishers defines a set of quality

properties which they are going to offer for their

publications, while subscribers request to the publisher

for the desired service level for the delivery of their

events. In the view, by concentrating only on

participants, this simple agreement model fails at

capturing the fundamental role that the middleware has

in this process. In fact, in many cases, the middleware

distributed components (e.g., the overlay brokers) must

have and possibly reserve a nonnegligible amount of

computing resources to provision service with

guaranteed quality. When a publisher performs a

publish action, it can also provide a QoS specification

describing the offered QoS. Similarly, advertise actions

allow a publisher to declare beforehand the QoS

properties it intends to offer for its events, and subscribe

actions let a subscriber specify its required quality

level.According to this model, for events to match a

subscription, it is not sufficient that they satisfy the

corresponding subscription filter, but, in addition, the

requested and offered quality properties must be

compatible, and the middleware must confirm the QoS

agreement, possibly allocating the necessary resources.

In Infrastructure-Free content-based Publish/Subscribe,

it maps the pub/sub matching problem to a distributed

multidimensional indexing problem. In particular,

publications and subscriptions are mapped to regions in

a multidimensional b space such that the intersection of

these region simplifies a match of the corresponding

publications and subscriptions. The multidimensional

space is partitioned into regions and indexed by a

search tree, nodes of which are managed by peers in the

network. The indexed regions, as well as subscriptions

and publications, are uniquely labeled with keys, which

serve to identify peers in the network that manage the

corresponding search tree nodes. The keys are designed

to allow a search tree node to easily determine the keys

of its parent and child nodes, which, again, serve as

keys to the underlying DHT to find the relevant peers

for these nodes.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 588

Fig. 1 gives the organization of the subscription

database used in PUBSUB. This database comprises a

collection of level-1 attribute structures A1,,,Am, where

m is the number of attributes. It assumes that the

allowable attributes have been numbered 1 through m

and that the attributes in a subscription are ordered

using this numbering of attributes. The attribute

structure Ai stores all subscriptions that include a

predicate on attribute i but not on any attribute j < i. The

attribute i is associated with the structure Ai. With the

assumptions on attribute ordering within subscriptions,

Ai contains all subscriptions whose first attribute is i. In

practice, many of the A is will be empty and only non-

empty attribute structures are stored in PUBSUB. The

distribution of subscriptions across these buckets is

determined by the attribute i predicates in these

subscriptions and the data structure D used for keeping

the track of the buckets. For uniformity, level-1 attribute

structures are associated with a header bucket that is

always empty.

Figure 1: PUB-SUB Organization

III. ANALYSIS AND DISCUSSION

Pub/Sub is a data dissemination model with two entities:

1) Publisher 2) Subscriber

1) Publisher : Publisher is the data producer, publisher

provides the data to the related subscribers

2) Subscriber : Subscriber is the consumer, subscribers

subscribes to related publisher and receives the data

produced by the publisher.

Pub/sub systems are often classified according to the

expressiveness of the subscriptions they allow. The

model of interest in this paper is content-based filtering

using Bloom filters. Access control in the context of

pub/sub system means that only authenticated

publishers are allowed to disseminate events in the

network and only those events are delivered to

authorized subscribers.

Figure 2 : A content-based pub/sub system.

BLOOM filters are an excellent data structure for

succinctly representing a set in order to support

membership queries. These Bloom filters encode the

values carried by the publications and the equality

constraints of the subscriptions. By testing the Bloom

filters of subscriptions for inclusion in those of

publications, one can efficiently determine the

possibility for a message to match a subscription: if the

test is negative, the message is guaranteed not to match.

Figure 3: Bloom filter use in pub/sub system.

IV. PROPOSED METHODOLOGY

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 589

PUBLISH/SUBSCRIBE, or pub/sub for short is an

appealing communication paradigm for building large-

scale applications composed of dynamic entities that

produce and consume data events according to complex

and unpredictable workflows. It offers an indirect,

decoupled communication model between application

components that act as either publisher of, or

subscribers to, data. Publishers and subscribers do not

need to know one another but only exchange data via

some pub/sub middleware. Subscribers simply inform

the system about what new elements of data they wish

to receive by registering a subscription. Conversely,

publishers send new events to the system in the form of

publications. It is then the responsibility of the pub/sub

system to appropriately route each publication towards

all subscribers with matching interests.

One of the key principles of prefiltering is to quickly

identify subscriptions that are known not to match an

incoming publication. Bloom Filters are embed in

publications and subscriptions, when applicable, and use

simple bit-wise operations to discard non-matching

subscriptions. The prefiltering uses the data structures

shown in Figure 4. We maintain an array (candidates[])

of n + 1 lists of candidate subscriptions, where n is the

number of bits in Bloom filters. The I th list for i 2 f0;

1; : : : ; n � 1g contains subscriptions that have the I th

bit of their Bloom filter set. It follows that each

subscription may belong to several lists. The last list,

called default list, contains subscriptions that have no

equality predicate, i.e., an empty Bloom filter.

Figure. 4: Data structures used for prefiltering.

A Bloom filter is a simple space-efficient randomized

data structure. Bloom filters allow false positives but the

space savings often outweigh this drawback when the

probability of an error is made sufficiently low. Bloom

filters are probabilistic data structures that allow for

efficient testing of whether or not an item belongs to a

set. A Bloom filter is essentially a bit array. When

adding an item, one or several hash functions h1; : : : ;

hk are used to identify bit(s) of the Bloom filter that

must be set to 1. To test whether an item belongs to the

set, it is hashed again and, if all corresponding bits are

set, it is a likely member the set; otherwise, it is

guaranteed not to be. Therefore, Bloom filters can yield

false positives but no false negatives. The accuracy of

the Bloom filter can be tuned by properly choosing its

size and the number of hash functions.

Figure 5. An example of a Bloom filter.

 The filter begins as an array of all 0s. Each item in

the set xi is hashed k times, with each hash yielding a

bit location; these bits are set to 1.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 590

Figure. 6: Information used for prefiltering: Bloom

filters embedded with subscriptions and publications.

Bloom filters[6] is embed in publications and

subscriptions, when applicable, and use simple bit-wise

operations to discard non-matching subscriptions. When

injecting a publication p in the system, besides

encrypting it, we additionally hash the values of all its

fields and insert them in a non-encrypted Bloom filter

B(p). On the other side, every subscription s also

embeds a Bloom filter B(s) containing the hashed values

of its predicates with equality constraints.

For instance, given a predicate x=2, the value 2 will be

added to the Bloom filter. Figure 6 shows the

information that can be used for prefiltering for a

publication p1. We assume for the illustration filters of

8 bits and two hash functions h1; h2. Upon matching, if

B(s) * B(p),1 we know that s does not match p,

irrespectively of the other (non-equality) predicates, and

we can discard it. This is the case for s2 where two bits

set in B(s2) are not set in B(p1). During prefiltering, we

only need to traverse the candidate lists associated with

the bits set in the publication’s Bloom filter, as well as

the default list. All other subscriptions are discarded.

The number of lists to traverse is therefore function of

the number of fields (i.e., attributes) of the publication,

which is expected to be much smaller than the size of

the Bloom filters.

V. CONCLUSION

By adding Bloom filters that encode publication values

and subscription equality constraints, it can discard a

large fraction of subscriptions before reaching the costly

encrypted filtering operation. Evaluations confirmed

that our mechanisms reduce the number of such costly

operations required to filter an incoming publication by

approximately one order of magnitude. Prefiltering

technique makes use of Bloom filters. This data

structure is also used in other work relating to

confidentiality or security purposes in distributed

systems.

VI. FUTURE SCOPE

From Observation, the scope and planned to be studied

in future work, Compressed Bloom Filters can use. By

using compression can improve Bloom filter

performance, in the sense that it can achieve a smaller

false positive probability as a function of the

compressed size over a Bloom filter that does not use

compression.

VII. REFERENCES

[1]. Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra, and

Nalini Venkatasubramanian “CCD: A Distributed

Publish/Subscribe Framework for Rich Content

Formats “ , Ieee Transactions On Parallel And

Distributed Systems, Vol. 23, NO. 5,PP.844-852 May

2012.

[2]. Alessandro Margara and Gianpaolo Cugola “High-

Performance Publish-Subscribe Matching Using

Parallel Hardware”, Ieee Transactions On Parallel And

Distributed Systems, Vol. 25, No. 1, Pp. 126-

135,January 2014.

[3]. Christian Esposito and Mario Ciampi “On Security in

Publish/Subscribe Services: A Survey”, IEEE

Communication Surveys & Tutorials, Vol. 17, No. 2,

Pp.962-997, May 2015.

[4]. Paolo Bellavista and Andrea Reale “Quality of Service

inWide Scale Publish–Subscribe Systems” IEEE

communications surveys tutorials, vol. 16, no. 3,

PP.1591-1616 third quarter 2014.

[5]. Tania Banerjee and Sartaj Sahni” PUBSUB: An

Efficient Publish/Subscribe System” IEEE

Transactions On Computers, Vol. 64, NO. 4,PP.1119-

1132, April 2015.

[6]. B. H. Bloom, “Space/time trade-offs in hash coding

with allowable errors,” Comm. of the ACM, vol. 13,

no. 7, 1970.

