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ABSTRACT 
 

This paper presents an overview of both T-Trefftz and F-Trefftz finite element methods (FEM) and its application in 

various engineering problems. Recent developments on the T-Trefftz finite element formulation of nonlinear 

problems of minimal surface, F-Trefftz methods for composite, skin tissue, and functionally graded materials are 

described. Formulations for all cases are derived by means of a modified variational functional and T-complete 

solutions or fundamental solutions. Generation of elemental stiffness equations from the modified variational 

principle is also discussed. Finally, a brief summary of the approach is provided and future trends in this field are 

identified. 
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I. INTRODUCTION 

 

During the past decades, research into the development 

of efficient finite elements has mostly concentrated on 

the following four distinct types [1-7]. The first is the 

so-called conventional FEM. It is based on a suitable 

polynomial interpolation function which has already 

been used to analyse most physical problems. With this 

method, the solution domain is divided into a number of 

cells or elements, and material properties are defined at 

element level[1, 5]. The second is the natural-mode 

FEM initiated by Argyris et al [2, 8]. In contrast, the 

natural FEM presents a significant alternative to 

conventional FEM with ramifications on all aspects of 

structural analysis. It makes distinction between the 

constitutive and geometric parts of the element tangent 

stiffness, which could lead effortlessly to the non-linear 

effects associated with large displacements. The third is 

the hybrid Trefftz FEM  (or T-Trefftz method) [4, 6]. 

Unlike in the conventional and natural FEM, the T-

Trefftz method couples the advantages of FEM [1, 9] 

and BEM [10]. In contrast to the first two methods, the 

T-Trefftz method is based on a hybrid method which 

includes the use of an independent auxiliary inter-

element frame field defined on each element boundary 

and an independent internal field chosen so as to a prior 

satisfy the homogeneous governing differential 

equations by means of a suitable truncated T-complete 

function set of homogeneous solutions. The final is the 

hybrid FEM based on the fundamental solution, F-

Trefftz method for short [7, 11, 12]. The F-Trefftz 

method is significantly different from the previous three 

types mentioned above. In this method, a linear 

combination of the fundamental solution at different 

points is used to approximate the field variable within 

the element. The independent frame field defined along 

the element boundary and the newly developed 

variational functional are employed to guarantee the 

inter-element continuity, generate the final stiffness 

equation and establish linkage between the boundary 

frame field and internal field in the element. This review 

will focus on the last two methods. 

    It is noted that the T-Trefftz model, originating nearly 

forty years ago [4, 13], has been considerably improved 

and has now become a highly efficient computational 

tool for the solution of complex boundary value 

problems. In contrast to conventional FE models, the 

class of finite elements associated with the Trefftz 

method is based on a hybrid method which includes the 

use of an auxiliary inter-element displacement or 

traction frame to link the internal displacement fields of 

the elements. Such internal fields, chosen so as to a 
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priori satisfy the governing differential equations, have 

conveniently been represented as the sum of a particular 

integral of non-homogeneous equations and a suitably 

truncated T-complete set of regular homogeneous 

solutions multiplied by undetermined coefficients. Inter-

element continuity is enforced by using a modified 

variational principle together with an independent frame 

field defined on each element boundary. The element 

formulation, during which the internal parameters are 

eliminated at the element level, leads to the standard 

force-displacement relationship, with a symmetric 

positive definite stiffness matrix. Clearly, while the 

conventional FE formulation may be assimilated to a 

particular form of the Rayleigh-Ritz method, the HT FE 

approach has a close relationship with the Trefftz 

method [6, 14]. As noted in [6, 15], the main advantages 

stemming from the HT FE model are: (a) the 

formulation calls for integration along the element 

boundaries only, which enables arbitrary polygonal or 

even curve-sided elements to be generated. As a result, it 

may be considered as a special, symmetric, substructure-

oriented boundary solution approach and thus possesses 

the advantages of the boundary element method (BEM). 

In contrast to conventional boundary element 

formulation, however, the HT FE model avoids the 

introduction of singular integral equations and does not 

require the construction of a fundamental solution which 

may be very laborious to build; (b) the HT FE model is 

likely to represent the optimal expansion bases for 

hybrid-type elements where inter-element continuity 

need not be satisfied, a priori, which is particularly 

important for generating a quasi-conforming plate 

bending element; (c) the model offers the attractive 

possibility of developing accurate crack-tip, singular 

corner or perforated elements, simply by using 

appropriate known local solution functions as the trial 

functions of intra-element displacements. 

     Since the first attempt to generate a general-purpose 

T-Trefftz formulation [4] in 1977, the Trefftz element 

concept has become increasingly popular and has been 

applied to potential problems [16-18], two-dimensional 

elastics [19], elastoplasticity [20, 21], fracture 

mechanics [22, 23], micromechanics analysis [24], 

problem with holes [25, 26], heat conduction [27, 28], 

thin plate bending [29-32], thick or moderately thick 

plates [33-37], three-dimensional problems [38], 

piezoelectric materials [39-41], and contact problems 

[42, 43]. On the other hand, the F-Trefftz method, newly 

developed recently [7, 44], has gradually become 

popular in the field of mechanical and physical 

engineering since it is initiated  in 2009 [7, 14]. It has 

been applied to potential problems [18, 45], plane 

elasticity [44, 46], composites [11, 24, 47], piezoelectric 

materials [48-50], three-dimensional problems [51], 

functionally graded materials [12, 52, 53], human eye 

problems [54, 55], Nanocomposites [56], hole problems 

[57, 58], crack problems [59], and skin burn problems 

[60, 61].  

    Following this introduction, the present review 

consists of six sections. T-Trefftz FEM nonlinear 

problems of minimal surface are described in Section 2. 

Section 3 focuses on the essentials of F-Trefftz elements 

for composites based on fundamental solutions and the 

modified variational principle appearing. It describes in 

detail the method of deriving element stiffness equations. 

The applications of F-Trefftz elements to functionally 

graded materials and skin tissues are discussed in 

Sections 4-5. Finally, a brief summary of the 

developments of the Treffz methods is provided and 

areas that need further research are identified. 

 

II. T-Trefftz method for nonlinear problems 

of minimal surface 
 

This section is concerned with the application of the T-

Trefftz to the solution of nonlinear potential flow 

problems. By nonlinear potential problems we mean 

here soap bubble problems, also known as minimal 

surfaces problems or Plateau’s problems, which are 

defined when the mean curvature is identically zero at 

any point on a smooth surface. 

II.1 Statement of minimal surfaces  

The minimal surfaces or soap bubble problem is to find 

a twice continuous differentiable function ( , )u x y  in a 

region constrained by bounding contours which 

minimize the surface area functional: 

 

2 2

, ,1 dx yA u u


      (1)  

where a comma followed by a subscript represents 

differentiation. 

     The differential equation of this surface area problem 

is obtained using the Euler-Lagrange condition for 

minimization of the above functional. This yields the 

following nonlinear boundary value problem (BVP) for 

the determination of minimal surface 

 2 2

, , , , , , ,(1 ) 2 (1 ) 0y xx x y xy x yyu u u u u u u    
 
in   (2) 

subjected to the Dirichlet boundary condition 
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 ( , )u u x y    on   (3) 

where   is a strictly two-dimensional convex domain in 

R2 and   is its boundary. It is sufficient to assume that 

the solution to Eq. (2) is unique if ( , )u x y , satisfying the 

bounded slope condition, is the restriction to   of a 

function in the Sobolev space for certain conditions [62]. 

     Eq. (2) is of the elliptic type because its discriminant, 

namely 2 2 2 2

, , , ,(1 )(1 )x y x yu u u u   , is greater than zero. 

     Note that Eq. (2) describes the shape of a uniformly 

stretched membrane in the absence of transverse loads 

when it is bounded by one or more non-intersecting 

skew space contours in structural analysis. When the 

slopes are sufficiently small, their squares and products 

can be neglected and Eq. (2) can reduce to the classical 

Laplace equation 

 
2

, , 0xx yyu u u     (4) 

which is the linearized equation of the unloaded 

membrane.  



u

q

n

s

x

y

o
 

Fig. 1 Geometrical definitions and boundary conditions 

for general nonlinear potential problem  

II.2 Solution procedure  

To make the solution procedure below more popular and 

general, we consider a two dimensional generalized 

nonlinear second order BVP (see Fig. 1) 

 , , , , ,( , , , , , ) ( , )x y xx yy xyu u u u u u g x y 
    

in  (5) 

with the following boundary conditions 

 u u         on u  (6) 

 
u

q q
n


 


   on 
q   (7) 

where ()  denotes the general differential operator 

defined in a plane domain   bounded by the boundary 

  (see Fig. 1), ( , )g x y  is a known function in terms of 

coordinates x and y, n  is the normal to the boundary and 

u  and q  are specified single-value functions on the 

boundary. 

    The solution to the BVP defined by Eqs. (5)-(7) is, in 

general, very complicated due to its nonlinearity. In this 

section, a general T-Trefftz finite element approach with 

radial basis function interpolation is described to solve 

this category of nonlinear problems. The detailed 

process is presented below. 

 

II.2.1 The concept of the analogue equation [63] 

Suppose that ( , )u u x y  is the sought solution to the 

BVP described by Eqs. (5)-(7), which is twice 

continuously differentiable in the domain  . If the 

linear Laplacian operator is applied to this function, that 

is, 

 
2 ( , ) ( , )u x y b x y     in   (8) 

we can see that Eq. (8) implies that a linear equivalent to 

the nonlinear Eq. (5) is produced. The solutions of Eqs. 

(5)-(7) can be established by solving this linear equation 

(8) under the same boundary conditions (6) and (7). 

Obviously, the fictitious source distribution ( , )b x y  is 

related to the unknown function u  and an iterative 

process is described as follows to deal with this obstacle. 

 

II.2.2 The method of particular solution and radial basis 

function approximation 

Since Eq. (8) is linear (if the fictitious source term 

( , )b x y  is viewed as a known function), its 

corresponding solution can be divided into two parts, a 

homogeneous solution ( , )hu x y  and a particular 

solution ( , )pu x y , that is 

 
h pu u u    (9) 

Accordingly, they should respectively satisfy 

 2 ( , )pu b x y   in   (10) 

and 

 2 0hu        in   (11) 

with modified boundary conditions 

 
h h pu u u u        on u  (12) 

 
h h pq q q q        on 

q  (13) 

where h
h

u
q

n





 and 
p

p

u
q

n





. 

      From above equations we can see that, once the 

particular solution ( , )pu x y  fulfilling Eq. (10) is chosen, 

the homogeneous solution ( , )hu x y  is unique. 

For the fictitious source distribution ( , )b x y , we assume 

that [14, 64] 
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1

( , ) ( , )
L

j j

j

b x y f x y


  fα   (14) 

where L  is the number of interpolation points, 
jf  

denotes the basis function used for interpolation, and 
j  

represents the set of interpolating coefficients. 

Theoretically, any basis function can be used for 

interpolation. However, radial basis functions have been 

found to be most suitable for interpolating the fictitious 

source  ,b x y [65, 66]. In most numerical analyses, the 

commonly used RBFs are 

 Linear polynomial: 1j jf r   

 thin plate spline (TPS): 2 lnj j jf r r  

 multiquadric (MQ): 
2 2

j jf r c   

where 
jr  represents the Euclidean distance of the given 

point ( , )x y  from a fixed point ( , )j jx y  in the domain 

of interest. 

At the same time, it is reasonable to assume 

 
1

ˆ ˆ( , )
L

p j j

j

u x y u


  uα   (15) 

 
1

ˆ
ˆˆ ˆ( , )    ( )

L
p j

p j j j

j

u u
q x y q q

n n




 
   
 

 qα   (16) 

if a relationship between 
jf  and ˆ

ju  such as 

 
2 ˆ

j ju f    (17) 

exists. 

Since the fictitious source distribution ( , )b x y  is 

determined by the unknown function u , the particular 

solution and its normal derivative cannot be directly 

determined using the formulation in this section. 

However, this formulation still contributes to 

constructing the approximated expression of the 

unknown function u . 

 

II.2.3 Trefftz finite element method 

In this section, we apply the theory of T-Trefftz FEM [6] 

to the homogeneous linear BVP consisting of Eqs. (11)-

(13). 

      For a particular element, say element e , we assume 

two fields: 

(a) The non-conforming intra-element field 

 1

( , )
m

eh ej ej e e

j

u x y N c


  N c

 

 (18) 

where ec  is a vector of undetermined coefficients and m 

is its number of components. 
ejN  are homogeneous 

solutions to Eq. (11) obtained by a suitably truncated T-

complete solution. For example, 

(2 1) cosn

e n e eN r n  , 
(2 ) sinn

e n e eN r n   ( 1,2, )n   

  (19) 

for a two dimensional problem with a bounded domain. 

With regard to the proper number m  of trial functions 

ejN  for the element, the basic rule used to prevent 

spurious energy modes is analogous to that in the 

hybrid-stress model. The necessary (but not sufficient) 

condition is stated as[6] 

 m k r    (20) 

where k  is the number of nodal DOF of the element 

under consideration and r  represents the discarded rigid 

body motion terms. For instance, 1r   in the Poisson 

equation and 3r   in the 2D linear elastic case. 

    Additionally, the corresponding outward normal 

derivative of ehu  on e  is 

 eh
eh e e

u
q

n


 


T c   (21) 

where e
e

n






N
T . 

(b) An auxiliary conforming frame field 

In order to enforce on hu  the conformity, for instance, 

eh fhu u  on 
e f   of any two neighboring elements, 

we use an auxiliary inter-element frame field hu  

approximated in terms of the same degrees of freedom 

(DOF), d , as used with the conventional elements. In 

this case, as standard HT element, hu  is confined to the 

whole element boundary, that is, 

 ( , )eh e eu x y  N d   (22) 

which is independently assumed along the element 

boundary in terms of nodal degree of freedom (DOF) 

ed , where 
eN  represents the conventional finite 

element interpolating functions. For example, a simple 

interpolation of the frame field on the side 2-3 of a 

particular element (Fig. 2) can be given in the form 

 
23 1 2 2 3u N u N u    (23) 

where 

 
1

1

2
N


 ,  

2

1

2
N


   (24) 
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element e

4

1 2

3 

1 2

1  1 0 

Nodal point (1 DOF)

 Local coordinate



 


 



 

Fig. 2 Typical two-dimensional 4-node element with 

linear frame function 

(c) Jirousek’s variational principle [4, 6] 

The variational functional   corresponding to the 

whole system can be written as the sum of E  element 

quantities e  as 

 
1

E

e

e

     (25) 

where E  is the total number of elements, and e  is the 

variational functional related to a particular element e , 

which is expressed as [14] 

 

 

2 2

1 2

1
( )d d

2

    d d

e eu

eq eI

e h h

h h h h h

q q q u

q q u q u

 

 

     

   

 

 
  (26) 

where e  stands for the the element sub-domain, 

e eu eq eI    , with eu e u   , 
eq e q    , 

and eI  is the inter-element boundary of element e . 

Integrating the domain integral term in Eq. (23) by parts, 

we obtain 

  

1
d d

2

   d d

e eu

eq eI

e h h h h

h h h h h

q u q u

q q u q u

 

 

   

   

 

 
 (27) 

Substituting Eqs. (18), (21) and (22) into the functional 

(27) produces 

 
T T T T

1 2

1

2
e e e e e e e e e e e     c H c c S d c r d r  (28) 

where 

T d
e

e e e


  H T N  

d
eq eI

e e e
 

  
T

S T N  

 T T

1 1
ˆd d ( )

eu eu
e e h e eu u

 
        r T T uα r α  

 T T

2 2
ˆd d ( )

eq eq
e e h e eq q

 
      r N N qα r α  

For the minimization of the functional  , using the 

necessary conditions 

 
T T T

1 1

E E
e e

e e e 

 
  

  
  0

c c c
  (29) 

 
T T T

1 1

E E
e e

e e e 

 
  

  
  0

d d d
 (30) 

we can obtain 

 1 Hc +Sd +r 0   (31) 

 
T

2 S c r 0  (32) 

where c  and d  are the total coefficients vector of T-

complete functions interpolation and nodal unknowns 

related to the full system, respectively.  

    Eqs. (31) and (32) lead to 

 c = Gd + g   (33) 

 ( )Kd = p α  (34) 

where 
-1

G = H S ,  
1

-1
g = H r , 

T
K = G HG  and 

2 T
p = G Hg r . 

     Consequently, vectors c  and d  are expressed in 

terms of the unknown interpolation coefficient α  by 

means of Eqs. (33) and (34). 

 

(d) Finding the discarded rigid body motion terms 

It suffices to reintroduce the discarded modes in the 

internal field ehu  of a particular element and then to 

calculate their undetermined coefficients by requiring, 

for example, the least squares adjustment of ehu  and ehu . 

In this case, these missing terms can easily be recovered 

by setting for the augmented internal field 

 0( , )eh e eu x y c N c    (35) 

and using a least-square procedure to match ehu  and ehu  

at nodes of the element boundary e : 

  
2

 
1

min
eN

eh eh
node i

i

u u


    (36) 

where eN  is the number of nodes for the element under 

consideration. The above equation finally yields 

  0  
1

0
eN

e e eh node i
i

N c c u


     (37) 

Then, we have 

  0  
1

1 eN

eh e e node i
ie

c u
N 

  N c   (38) 

II.2.4 Final nonlinear equations 

At an arbitrary point ( , )x y  in element e , the full 

solution can be expressed as 
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0( , ) ( , )

ˆ( , ) ( )
x y x y

u x y c   u α N c u α   (39) 

Furthermore, the related derivatives can also be obtained 

 
, , , ,( , ) ( , )

ˆ( , ) ( )x x x xx y x y
u x y   u α N c u α   (40) 

 
, , , ,( , ) ( , )

ˆ( , ) ( )y y y yx y x y
u x y   u α N c u α  (41) 

 
, , , ,( , ) ( , )

ˆ( , ) ( )xx xx xx xxx y x y
u x y   u α N c u α  (42) 

 
, , , ,( , ) ( , )

ˆ( , ) ( )xy xy xy xyx y x y
u x y   u α N c u α   (43) 

 
, , , ,( , ) ( , )

ˆ( , ) ( )yy yy yy yyx y x y
u x y   u α N c u α  (44) 

In order to determine the unknown coefficient α , it 

should be forced to satisfy the governing Eq. (2) at L  

interpolating points, that is 

 
( , )

( ) ( , ),  
i i

i ix y
g x y α  1,2, ,i L   (45) 

from which the unknown coefficients vector α  can be 

determined by means of iterative algorithms.  

     It is clear that once all unknowns are determined, the 

distribution of field u  at any point in the domain can be 

calculated using Eq. (39). 

 

III. F-Trefftz methods for composites 

III.1 Mathematical Model 

A two-dimensional mathematical model of steady-

state heat conduction in the cross-section of the 

unidirectional fiber-reinforced composites is considered 

in this section. The fibers in the composites are assumed 

to be infinite parallel and have a reasonably circular 

shape with a fairly uniform diameter. For the sake of 

convenience, since matrix and fiber occupy different 

regions, the regions occupied by the isotropic matrix and 

fiber inclusions are referred to as regions M  and 
F , 

respectively, and the quantities associated with these 

regions are denoted by the corresponding subscripts M 

or F (see Figure 3).  

It is well known that a representative volume cell 

(RVC) for real composites with the smallest periodic 

repeat volume is usually selected to study the effective 

properties of composites in the micromechanics analysis 

(see Figure 3). Without loss of generality, two-

dimensional heat conduction problems in the square 

RVC with multiple fibers are considered, and the 

governing equations in terms of spatial variable 

1 2( , )X XX  in matrix and fibers can respectively be 

written as 

 
M M, M

F F, F

( ) 0          

( ) 0            

ii

ii

k u

k u

  

  

X X

X X
 (46) 

Figure 3 Geometrical definition for plane heat 

conduction problems in fiber-reinforced composites  

 

with the following boundary conditions applied on the 

outer boundary 
O

M u q c      of the matrix 

 

M

M M M,

M M

                              on  

           on  

( )           on  

u

i i q

env env c

u u

q k u n q

q h u u

  


   


  

 (47) 

and the continuity conditions at the interface ( M F  ) 

between the fiber and the matrix for the case of perfect 

bonding 

 
M F

M F 0

u u

q q




 
 (48) 

where Mu  and Fu  are the temperature fields sought, Mk  

and Fk  are the thermal conductivities and in  is the 

 thi component of the unit outward normal vector to the 

particular boundary. Mq  and Fq  represent the surface 

normal heat flux along the unit outward normal. u  and 

q  are specified functions on the corresponding 

boundaries. envh  is the convection heat-transfer 

coefficient or film coefficient, and envu  is the ambient 

environment temperature. The space derivatives are 

indicated by a comma, i.e. 
, /i iu u X   , and the 

subscript index i  takes values 1 and 2 for the two-

dimensional case. Additionally, the repeated subscript 

indices stand for the summation convention. 

 

III.2 Fundamental solutions 

Fundamental solutions play an important role in the 

derivation of the F-Trefftz FEM formulation. The 

fundamental solution represents the material response at 

an arbitrary point when a unit point source is applied at a 
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source point in an infinite domain. With the proposed F-

Trefftz FEM, for plane heat conduction problems in 

fiber-reinforced composites, two types of fundamental 

solution are used. One is the temperature response in an 

infinite matrix region 
M  ( 0z  ) in the absence of 

fibers (see Figure 4a), and the other is the temperature 

response in an infinite matrix region 
M  ( z R ) 

containing a circular fiber 
F  ( z R ) (Figure 4b), 

where 
1 2z x x i   is a complex number defined in a 

local coordinate system 
1 2( , )x xx  with its origin 

coincident with the fiber center, and = 1i   denotes the 

unit imaginary number. 

 

Fig. 4 Fundamental solutions for plane heat conduction 

problems in fiber-reinforced composites  

III.2.1 Fundamental solution without fiber 

For the case of an infinite domain without fibres, 

assuming that a unit heat source is located at point 0z  in 

the infinite matrix domain M  (Figure 4a), the 

temperature response MG  at any field point z  is given 

in the form [67] 

  M 0 0

M

1
( , ) Re ln( )

2
G z z z z

k
    (49) 

where Re  denotes the real part of the bracketed 

expression. Clearly, the expression (49) shows 

singularity as 0z z , which is the inherent feature of 

the fundamental solution. 

 

III.2.2Fundamental solution with fiber 

For the case of an infinite domain with a centered 

circular fiber, consider a unit heat source located at the 

source point 0z  in the infinite matrix M  (Figure 4b). 

Then the temperature responses MG  and FG  at any field 

point z  in matrix and fiber regions are respectively 

obtained as [67] 

 

M F
0

M F

M M2
M

0

F 0 F

M F

Re[ln( )]
1

 
2

Re[ln( )]

1
Re[ln( )]             

( )

k k
z z

k k
G z

k R
z

z

G z z z
k k





  
   

    
  

   
 


   



 

  (50) 

using the complex potential theory  and introducing the 

continuity condition (48) in the interface z R . 

Similarly, the induced temperature MG  in the matrix 

shows a proper singular behavior at the source point 0z , 

while FG  in the fiber is regular because the source point 

0z  is outside the fiber. Additionally, it is worth noting 

that since the fundamental solutions already include the 

presence of interface between the fillers and matrix, it’s 

not necessary to model the temperature and heat flux 

continuity condition on the interface and then the 

analysis will become simpler. This is one of advantages 

of the proposed approach stated below. 

 

III.3 The hybrid finite element formulation 

In this section, the formulation of the hybrid finite 

element model with fundamental solution as an interior 

trial function is presented for heat analysis of two-

dimensional fiber-reinforced composites. 

 

III.3.1 Non-conforming intra-element field 

Applying the method of fundamental solution (MFS) 

[68] to remove the singularity of the fundamental 

solution, for a particular element, say element e , 

occupying a sub-domain e  embedded with a centered 

circular fiber of radius R   and defined in a local 

reference system 1 2( , )x xx  whose axis remains 

parallel to the axis of the global reference system 

1 2( , )X XX  (see Figure 5), the temperature field at 

any point x  within the element domain is assumed to be 

a linear combination of fundamental solutions centered 

at different source points sjx , that is, 

 

     
1

,   
sn

e e sj ej e e

j

u G c


 x x x N x c  (51) 

where 
ejc  represents undetermined coefficients, sn  is 

the number of virtual sources outside the element e , and 
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( , )e sjG x x  represents the corresponding fundamental 

solution, which can be conveniently expressed using a 

unified form 

 
M M

F F

( , )       
( , )

( , )        

sj

e sj

sj

G
G

G


 



x x x
x x

x x x
 (52) 

In practice, the location of sources affects the final 

accuracy [69-71] and can usually be determined by 

means of the formulation [72] 

  s b b c  x x x x  (53) 

where   is a dimensionless coefficient, bx  is the 

elementary boundary point and cx  the geometrical 

centroid of the element. For a particular element as 

shown in Figure 5, we can use the nodes of element to 

generate related source points using the relation (8). 

 

Fig. 5 Intra-element field, frame field in a particular 

element in HFS-FEM, and the generation of source 

points for a particular inclusion element 

 

The corresponding outward normal derivative of eu  on 

e  is defined by 

 e
e M e e

u
q k

n


  


Q c  (54) 

where 

 e
e M M ek k

n


   



N
Q AT  (55) 

with 

  1 2n nA ,    

T

1 2

e e
e

x x

  
  

  

N N
T  (56) 

III.3.2 Auxiliary conforming frame field 

In order to enforce conformity on the field variable u , 

for instance, 
e fu u  on 

e f   of any two 

neighboring elements e and f, an auxiliary inter-element 

frame field u  independent of the intra-element field is 

introduced in terms of the same nodal degrees of 

freedom (DOF), d , as used in conventional finite 

element methods. In this case, u  is confined to the 

whole element boundary, that is 

    e e eu x N x d  (57) 

where 
eN  represents the conventional finite element 

interpolating functions. For example, a simple 

interpolation of the frame field on any side of a 

particular element (Fig. 6) can be given in the form 

 
1 1 2 2 3 3u N u N u N u    (58) 

where 
iN  ( 1,2,3i  ) stands for shape functions in 

terms of natural coordinate   defined in Fig. 6. 

 

Fig. 6 Typical quadratic interpolation for the frame field 

 

III.4 Modified variational principle and stiffness 

equation 

For the boundary value problem defined in Eqs (1)-(2), 

since the stationary conditions of the traditional potential 

or complementary variational functional cannot 

guarantee the satisfaction of the continuity condition on 

the inter-element boundary, which is required in the 

proposed hybrid finite element model, a modified 

potential functional [7] is developed as follows 
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 m me

e

    (59) 

with 

  , ,

1
d d d

2 e qe e
me i iku u qu q u u

  
          

  (60) 

in which the governing equation (46) is assumed to be 

satisfied, a priori, due to the use of the fundamental 

solution in the F-Trefftz FE model. The boundary e  of 

a particular element consists of the following parts 

 
e ue qe Ie      (61) 

where Ie  represents the inter-element boundary of the 

element ‘e’. 

      Appling the divergence theorem 

 
2

, , ,d d di i i if h hf n h f
  

       (62) 

for any smooth functions f  and h  in the domain, we 

can eliminate the domain integral from Eq. (60) and 

obtain following functional for the F-Trefftz model 

 
1

d d d
2 e qe e

me qu qu qu
  

         (63) 

Then, substituting Eqs. (51), (54) and (57) into the 

functional (63) produces 

 
T T T1

2
e e e e e e e e e    c H c d g c G d  (64) 

in which 

T T Td , d , d
e e eq

e e e e e e e e q
  

       H Q N G Q N g N  

 

Fig. 7 Micro-mechanical model (RVC) and effective 

homogeneous model 

 

III.5 Effective thermal conductivity 

The effective thermal conductivity is a very important 

parameter for engineering applications of composites. 

Usually the RVC approach is utilized in micro-

mechanical model development. In this paper, a general 

square RVC with random multiple inclusions is used to 

investigate the effect of fiber size and to evaluate the 

effective thermal properties for the case of two-

dimensional heat conduction (see Fig. 7a). The side 

length of the RVC is taken to be L . Meanwhile, an 

effective homogeneous model with the same geometry 

as the RVC is assumed with constant effective thermal 

conductivity 
Ck . 

According to Fourier’s law, the thermal conductivity 

along the i  direction is defined as 

 
( / )

i
i

i

q
k

u x
 

 
 (65) 

Therefore the effective thermal conductivity of the 

equivalent homogeneous model (Fig. 7b) can be 

computed by applying appropriate boundary conditions. 

For example, in the homogeneous model, if (a) a 

uniform heat flux 
0q  is horizontally applied on the left 

side of the square; (b) the temperature on the right side 

remains  zero, (c) both the top and bottom sides are 

insulated, then, the temperature distribution in the model 

is linear in the horizontal direction; and the heat flux 

component in the body is constant, subsequently, the 

effective thermal conductivity 
ck  in the horizontal 

direction can be evaluated by the following formula 

 0 0 0

1 1( / ) ( / ) ( / )
C

left

q q q
k

u x u x u L
     

   
 (66) 

where u  is the temperature difference between the left 

and right surfaces and 
leftu  represents the temperature on 

the left surface. 

On the basis of the above discussion, the effective 

thermal conductivity can be estimated from the real 

RVC with multiple fibers by applying the same 

boundary conditions as those applied in the effective 

model, and using the temperature results on the left and 

right, two data-collection sides, that is, 

 0

( / )
C

left

q
k

u L
   (67) 

where leftu  is the average temperature on the left data-

collection surface, which can be evaluated from nodal 

temperatures obtained by the presented hybrid finite 

element formulation. 

 

IV. F-Trefftz methods for functionally graded 

materials 
IV.1 Basic formulations 

Consider a two-dimensional (2D) heat conduction 
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problem defined in an anisotropic inhomogeneous media: 

 
2

, 1

( )
( ( ,u) )=0       ij

i j i j

u
K

X X

 
 

 


X
X X  (68) 

For an inhomogeneous nonlinear functionally graded 

material, we assume the thermal conductivity varies 

exponentially with position vector and also be a function 

of temperature, that is 

 
~

( , ) ( ) exp(2 )ij ijK u u K X β X  (69) 

where ( ) 0u   is a function of temperature which may 

be different for different materials, the vector 

1 2( , ) β  is a dimensionless graded parameter and 

matrix
1 , 2[ ]ij i jK  K  is a symmetric, positive-definite 

constant matrix 

(
2

12 21 11 22 12,det 0K K K K K K    ). 

The boundary conditions are as follows: 

－Dirichlet boundary condition 

                                         on  uu u   (70) 

－Neumann boundary condition 

 
2

, 1

                   on  ij i q

i j j

u
q K n q

X


   


  (71) 

where
~

ijK denotes the thermal conductivity which is the 

function of spatial variable X  and unknown 

temperature field u . q  represents the boundary heat 

flux. 
jn  is the direction cosine of the unit outward 

normal vector n  to the boundary 
u q    . u  and 

q  are specified functions on the related boundaries, 

respectively.  

 

IV.2 Kirchhoff transformation and iterative method 

  Two methods are employed here to deal with the 

nonlinear term ( )u , one is Kirchhoff transformation 

[73] and another is the iterative method. 

(1) Kirchhoff transformation  

 ( ) ( ( )) ( )u u u du   X     (72) 

Making use of Eq.(5), Eq.(1) reduces to 

 
2

*

, 1

( )
( ( ) )=0   ij

i j i j

K
X X

 
 

 


X
X X  (73) 

where 

                     
*( ) exp(2 )ij ijK K X β X    (74) 

Substituting Eq.(74) into Eq.(73) yields 

 
22

, 1

( )
2 ( ( )) exp(2 ) 0ij

i j i j

K
X X

  
     

   


X
β K X β X  (75) 

where 

 
1( )u     (76) 

It should be mentioned that the inverse of  in Eq.(76) 

exists since ( ) 0u  . 

  The fundamental solution to Eq.(75) in two dimensions 

can be expressed as [73, 74] 

 0 ( )
( , ) exp{ ( )}

2 det
s

K R
N




    

s
X X β X X

K
 (77) 

where  β Kβ , R is the geodesic distance defined 

as ( )R R   -1

sX,X r K r  and sr = X - X  in which X  

and 
sX  denote observing field point and source point in 

the infinite domain, respectively. 0K  is the modified 

Bessel function of the second kind of zero order. For 

isotropic materials, 12 21 0K K  , 11 22 0 0K K k   , 

then the fundamental solution given by (77) reduces to 

 0

0

( )
( , ) exp{ ( )}

2

K R
N

k




   

s s
X X β X+X  (78) 

which agrees with the result in [75].  

   Under the Kirchhoff transformation, the boundary 

conditions (70)-(71) are transformed into the 

corresponding boundary conditions in terms of  .  

 ( )    on  uu    (79) 

 
2 2

*

, 1 , 1

  on  ij i ij i q

i j i jj j

u
p K n K n q q

X X 

 
      

 
 

  (80) 

Therefore, by Kirchhoff transformation, the original 

nonlinear heat conduction equation (68), in which the 

heat conductivity is a function of coordinate X and 

unknown function u , can be transformed into the linear 

equation (73) in which the heat conductivity is just a 

function of coordinate X . At the same time, the field 

variable becomes in Eq.(73), rather than u  in Eq.(68). 

The boundary conditions (70)-(71) are correspondingly 

transformed into Eqs.(79)-(80). Once  is determined, 

the temperature solution u can be found by the reversion 

of transformation (76), i.e. 
1( )u    .  

(2) Iterative method  

Since the heat conductivity depends on the unknown 

function u , an iterative procedure is employed for 

determining the temperature distribution. The algorithm 
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is given as follows: 

1. Assume an initial temperature 
0u .  

2. Calculate the heat conductivity in Eq.(69) using 
0u . 

3. Solve the boundary value problem defined by 

Eqs.(68)-(71) for the temperature u 

4. Define the convergent criterion 

0u u  (=10-6 in our analysis). If the 

criterion is satisfied, output the result and 

terminate the process. If not satisfied, go to next 

step. 

5. Update 
0u  with u  

6. Go to step 2. 

 

IV.3 Generation of graded element  

In this section, an element formulation is presented to 

deal with materials with continuous variation of physical 

properties. Such an element model is usually known as a 

hybrid graded element which can be used for solving the 

boundary value problem (BVP) defined in Eqs.(73) and 

(79)-(80). 

The proposed approach is based on a hybrid finite 

element formulation in which fundamental solutions are 

taken as intra-element interpolation functions [7]. 

Similar to HT-FEM, the main idea of HFS-FEM is to 

establish an appropriate hybrid FE formulation whereby 

intra-element continuity is enforced on a nonconforming 

intra-element field formed by a linear combination of 

fundamental solutions at points outside the element 

domain under consideration, while an auxiliary frame 

field is independently defined on the element boundary 

to enforce the field continuity across inter-element 

boundaries. But unlike in the HT FEM, the intra-element 

fields are constructed based on the fundamental solution, 

rather than T-functions. Consequently, a variational 

functional corresponding to the new trial function is 

required to derive the related stiffness matrix equation. 

As was done in conventional FEM, the solution domain 

is divided into sub-domains or elements. For a particular 

element, say element e, its domain is denoted by e  and 

bounded by e . Since a nonconforming function is used 

for modeling intra-element field, additional continuities 

are usually required over the common boundary 
Ief  

between any two adjacent elements ‘e’ and ‘f’ (see 

Figure 8)[39]: 

  (conformity)
 on  

0  (reciprocity)

e f

Ief e f

e fp p

  
   

  
 (81) 

in the proposed hybrid FE approach. 

 

e f

Ief
 

Figure 8 Illustration of continuity between two adjacent 

elements ‘e’ and ‘f’ 

 

IV.3.1 Non-conforming intra-element field 

For a particular element, say element e, which occupies 

sub-domain e , the field variable within the element is 

extracted from a linear combination of fundamental 

solutions centered at different source points (see 错误!

未 找 到 引 用 源 。 5), 

that

     
1

,  ,
sn

e e j ej e e e j e

j

N c


     x x y N x c x y (82) 

where 
ejc  is undetermined coefficients and sn  is the 

number of virtual sources outside the element e. 

 ,e jN x y  is the required fundamental solution 

expressed in terms of local element coordinates 1 2( , )x x , 

instead of global coordinates 1 2( , )X X  (see Fig.5). 

Obviously, Eq (51) analytically satisfies the heat 

conduction equation (75) due to the inherent property 

of  ,e jN x y . 

     The fundamental solution for FGM ( eN  in Eq.(51)) 

is used to approximate the intra-element field in FGM. It 

is well known that the fundamental solution represents 

the filed generated by a concentrated unit source acting 

at a point, so the smooth variation of material properties 

throughout an element can be achieved by this inherent 

property, instead of the stepwise constant approximation, 

which has been frequently used in the conventional FEM. 

For example, 错误!未找到引用源。9 illustrates the 

difference between the two models when the thermal 

conductivity varies along direction X2 in isotropic 

material.  

   Note that the thermal conductivity in Eq. (74) is 

defined in the global coordinate system. When 
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contriving the intra-element field for each element, this 

formulation has to be transferred into local element 

coordinate system defined at the center of the element, 

the graded matrix 
*

K  in Eq. (74) can, then, be 

expressed by  

 
*( ) exp(2 )e C K x K β x  (83) 

for a particular element e, where 
C

K  denotes the value 

of conductivity at the centroid of each element and can 

be calculated as follows: 

 exp(2 )C c K K β X  (84) 

where cX  is the global coordinates of the element 

centroid. 

     Accordingly, the matrix CK  is used to replace K (see 

Eq.(77)) in the formulation of fundamental solution for 

FGM and to construct intra-element field in the 

coordinate system local to element.  

 
Figure 9 Comparison of computational cell in the 

conventional FEM and the proposed HFS-FEM 

 

In practice, the generation of virtual sources is usually 

done by means of the following formulation employed 

in the MFS [70] 

  b b c  y x x x  (85) 

where   is a dimensionless coefficient (  =2.5 in our 

analysis [7]), bx  and cx  are, respectively, boundary 

point and geometrical centroid of the element. For a 

particular element shown in Fig. 5, we can use the nodes 

of element to generate related source points. 

The corresponding normal heat flux on e  is given 

by 

 
* e

e e i e e

j

p n
X


  


K Q c  (86) 

where 

  
* *e

e e i e e

j

n
X


   



N
Q K AK T  (87) 

with 

 
T

,1 ,2e e e
   T N N           1 2n nA  (88) 

IV.3.2 Auxiliary conforming frame field 

In order to enforce the conformity on the field variable 

u , for instance, 
e f   on 

e f   of any two 

neighboring elements e and f, an auxiliary inter-element 

frame field   is used and expressed in terms of nodal 

degrees of freedom (DOF), d , as used in the 

conventional finite elements as 

    e e e x N x d  (89) 

which is independently assumed along the element 

boundary, where 
eN  represents the conventional FE 

interpolating functions. For example, a simple 

interpolation of the frame field on the side with three 

nodes of a particular element can be given in the form 

 
1 1 2 2 3 3N N N        (90) 

where 
iN  ( 1,2,3i  ) stands for shape functions in 

terms of natural coordinate   defined in 错误!未找到

引用源。6. 

 

IV.4 Modified variational principle and stiffness 

equation 

IV.4.1 Modified variational functional 

For the boundary value problem defined in Eqs.(73) and 

(79)-(80), since the stationary conditions of the 

traditional potential or complementary variational 

functional can’t guarantee the satisfaction of inter-

element continuity condition required in the proposed 

HFS-FE model, a modified potential functional is 

developed as follows [7] 

 
 

*

, ,

1
[ d

2

               d d ]

e

qe e

m me ij i j

e e

K

q p



 

       

      

  

 
 (91) 

in which the governing equation (73) is assumed to be 

satisfied, a priori, in deriving the HFS-FE model (For 

convenience, the repeated subscript indices stand for 

summation convention). The boundary e  of a 

particular element consists of the following parts 

 
e ue qe Ie      (92) 

where Ie  represents the inter-element boundary of the 

element ‘e’ shown in Fig. 1. 

  The stationary condition of the functional (59) can lead 

to the governing equation (Euler equation), boundary 
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conditions and continuity conditions, details of the 

derivation can refer to Ref. [7]. 

 

IV.4.2 Stiffness equation 

Having independently defined the intra-element field 

and frame field in a particular element (see Fig. 2), the 

next step is to generate the element stiffness equation 

through a variational approach and to establish a linkage 

between the two independent fields. 

     The variational functional 
e  corresponding to a 

particular element e of the present problem can be 

written as 

  

*

, ,

1
d

2

          d d

e

qe e

me ij i jK

q p



 

     

     



 
 (93) 

  Appling the Gauss theorem to the above functional, we 

have the following functional for the HFS-FE model 

  

*
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1
d ( ) d

2

          d d

e e

qe e

me ij i jp K u

q p

 
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  

     

 

 
 (94) 

   Considering the governing equation (73), we finally 

have the functional defined on the element boundary 

only 

 
1

d d d
2 e qe e

me p q p
  

            (95) 

which yields by substituting Eqs (51), (54) and (57) into 

the functional (95) 

 
T T T1

2
e e e e e e e e e    c H c d g c G d  (96) 

with 

T T Td , d , qd
e e qe

e e e e e e e e
  

       H Q N G Q N g N  (97) 

 

V.F-Trefftz method for skin burn problems 
 

V.1 Skin tissue under laser heating 

The two-dimensional skin model used in [76] is 

chosen here, in which the skin material is assumed to be 

homogeneous and isotropic. In the model displayed in 

Fig. 10, the outer surface of the skin tissue is subjected 

to the convention condition and the inner boundary is 

distant from the skin surface, where the temperature 

remains at the constant core temperature. The upper and 

lower surfaces are treated as adiabatic by assuming that 

tissue remote from the area of interest is not affected by 

the imposed thermal disturbance. A Gaussian type laser 

beam is introduced as the internal spatial heat source and 

the Beer-Lambert law is used to model the exponential 

decay of heat generation by laser heating inside the 

tissue. 

    Due to the symmetry of the skin model, only half of 

the model is taken into consideration in the analysis, say 

the upper half shaded region displayed in Fig. 10 in 

which x  denotes the tissue depth from the skin surface, 

y  is the distance along the skin surface, and a 

rectangular domain of 4cm length and 3cm width is 

employed as the solution domain [76]. The thermal 

properties of skin tissues used in the analysis are listed 

in  

Table 1 [77]. 

 
Figure 10 Simplified skin model of two-dimensional 

skin tissue 

 

Table 1 Thermal properties of skin tissue 

Thermal properties of skin Value 

Thermal conductivity k  (Wm-1K-1) 0.5 

Density ρ  (kgm-3) 1000 

Specific heat c  (Jkg-1K-1) 4200 

Blood perfusion rate ωb  (m
3s-1m-3) 0.0005 

Density of blood ρb  (kgm-3) 1000 

Specific heat of blood cb  (Jkg-1K-1) 4200 

Metabolic heat Qm  (Wm-3) 4200 

 

 

As shown in Fig. 10, the laser beam, assumed to be 

produced from a CO2 laser with scanner head and beam 

expander, injects directly onto the middle point (0, 0) of 

the skin surface. In the present work, the pattern of the 
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laser beam is that of Gaussian distribution with 2.85mm 

standard deviation [78]. The Beer-Lambert law is used 

to model the laser heat absorption in the two 

dimensional skin model, and thus the spatial heat source 

Qr caused by laser heating is described by 

    

2

22* 1
, ,

2

a

y

x

r in aQ x y t P e e
 


 

 
      (98) 

where Pin represents the laser power setting, µa the 

absorption coefficient of the skin tissue determined by 

the wave length of the laser, and σ is the standard 

deviation of the laser beam profile. 

 

V.2 General mathematical equations 

Referring to the Cartesian coordinate system shown 

in Fig. 10, the bioheat transfer in a biological tissue is 

adequately described by the well-known Pennes 

equation in the following general form: 

  
*

* 2 * * * * * * * * *

*b b b a t

T
k T c T T Q c

t
  


    


 (99) 

with the boundary conditions 
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 (100) 

where 
2  represents the Laplacian operator, 

* *( , )T tx  

is the sought temperature field variable, 
*t  denotes time 

(
* 0t  ). 

*k  is the thermal conductivity dependent on 

the special variables x ; 
*  is the mass density and 

c  is the specific heat. 
* * *

t m rQ Q Q   stands for the 

general internal heat generation per unit volume due to 

metabolic heat and the laser beam. 
*q  represents the 

boundary normal heat flux defined by 

 

*
* * * * T

q k T k
n


     


n  (101) 

n  is the unit outward normal to the boundary  . A 

variable with over-bar denotes the variable being 

specified on given boundary. The constant 
*

aT  is artery 

temperature. The constant 
*h  is the convection 

coefficient and 
*T
 is the environmental temperature. For 

a well-posed problem, we have 321  . 

Finally, the initial condition is defined as 

  * * *

0( , 0)T t T x x  (102) 

To avoid the potential numerical overflow of the 

present algorithm, the following dimensionless variables 

are employed in the analysis [79]: 

 * * *
0
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 (103) 

where 0L  is the reference length of the biological body, 

0k , 0 , 0c , and 0Q  are respectively reference values of 

the thermal conductivity, density, specific heat of tissue, 

and heat source term. 

From Eq. (103) we derive  
2 2* *

0 0 0 0

0 0 0 0

2 22 * 2 2 * 2

0 0 0 0

2 2 2 2 2 2

0 0 0 0
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0 0 0

* 2
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1 1
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   
 

   

 

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 (104) 

Substitution of Eq. (102) and Eq. (104) into Eq. (99) 

yields 

2 ( , )
( , ) ( , ) ( )b b b t

T t
k T t c T t Q c

t
  


   



x
x x x (105) 

where 

 

* * * 2

0

0

b b b
b b b

c L
c

k

 
    (106) 

Correspondingly, the boundary conditions are 

rewritten as 

 

1

2

3

( , ) ( , )         

( , ) ( , )          
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 (107) 

with 
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 (108) 

and 

 
T

q k
n


 


 (109) 

V.3 Transient T-Trefftz FEM formulation 

V.3.1 Direct time stepping 

Making use of finite difference method, the 

derivative of temperature can be written as 
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1( , ) ( ) ( )n nT t T T

t t

 


 

x x x
 (110) 

where t  is the time-step, 
1 1( ) ( , )n nT T t x x  and 

( ) ( , )n nT T tx x  represent the temperature at the time 

instances 
1nt 
 and 

nt , respectively. 

As a result, Eq. (105) at the time instance 
1nt 
 can 

be rewritten as 

 

2 1 1

1

( ) ( ) ( )

( ) ( )
        

n n

b b b t

n n

k T c T Q
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x x x
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Rearranging Eq. (111) gives 

 
2 1 2 1( ) ( ) ( )n nT T b   x x x  (112) 

with 

 b b bcc

k t k

 
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
 (113) 

and 
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c
b Q T
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
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Accordingly, the boundary conditions at time 

instance 
1nt 
 can be represented as 
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 (115) 

The linear system consisting of the governing 

partial differential equation (112) and boundary 

conditions (115) is a standard inhomogeneous modified 

Helmholtz system, which will be solved by means of the 

present HFS-FEM and the dual reciprocity technique 

based on radial basis function interpolation described in 

the following sections. 

 

V.3.2 Particular solution obtained using radial basis 

functions 

Let 
1n

pT 
 be a particular solution of the governing 

equation (112), we have 

 
2 1 2 1( ) ( ) ( )n n

p pT T b   x x x  (116) 

but does not necessarily satisfy boundary condition 

(115). 

Subsequently, the system consisting of Eq. (112) 

and Eq. (115) can be reduced to a homogeneous system 

by introducing two new variables as follows: 
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where 
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Substituting Eq. (117) into Eq. (112), we obtain the 

following homogeneous equation 

 
2 1 2 1( ) ( ) 0n n
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where 
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x x  

The above homogeneous system can be solved 

using the hybrid finite element model described in the 

next section.  

 In what follows, we describe the solution 

procedure for the particular solution part 
1( )n

pT 
x . For 

the arbitrary right-handed source term ( )b x , the 

particular solution 
1( )n

pT 
x  can be determined 

numerically by the dual reciprocity technique, in which 

it is essential to approximate the source term by a series 

of basis functions, i.e. radial basis functions (RBFs). 

Let   be a radial basis function. Then the source 

term ( )b x  in Eq. (116) can be approximated as follows 

[14, 80]: 

 
1

( ) ( )
M

j j

j

b r 


x  (121) 

where 
j jr  x x  denotes the Euclidean distance 

between the field point x and source point xj, and 
j  are 

unknown coefficients. 

Making use of Eq. (121), the particular solution can 

be obtained as 

 
1

1

( ) ( )
M

n

p j j

j

T r



 x  (122) 

where the function is governed by 

 
2 2( ) ( ) ( )j j jr r r       (123) 
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Taking the thin plate spline (TPS)  

 
2( ) ln( )j j jr r r   (124) 

as an example, the approximate particular solution 

( )jr  can be obtained by the annihilator method as [81] 
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 (125) 

where  =0.5772156649015328 is Euler's constant. 

 

V.3.3 Homogeneous solution using the hybrid finite 

element model 

To perform the hybrid finite element analysis in a 

convenient way, the boundary conditions given in Eq. 

(120) are rewritten as 
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with 
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  (127) 

Then, the following hybrid variational functional 

expressed at element level can be constructed as [14] 
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 (128) 

in which T  is the temperature field defined inside the 

element domain e  with the boundary e , T  denotes 

the frame field defined along the element boundary, and 

2 2e e    , 3 3e e    . Note that in Eq. (128), 

the superscript ‘n+1’ and subscript ‘h’ are discarded for 

the sake of simplicity. 

By invoking the divergence theorem and assuming 

that T  satisfies the specified temperature boundary 

condition (the first equation of Eq. (126)) and the 

compatibility condition on the interface between the 

element under consideration and its adjacent elements as 

prerequisites, variation of Eq. (128) can be written as 
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 (129) 

from which it can be seen that the third integral enforces 

the equality of T  and T  along the element boundary 

e . The first, second and fourth integrals enforce 

respectively the governing equation (119), flux, and 

convection boundary conditions (the second and third 

equations in (126)). 

If the internal temperature field T  satisfies the 

homogeneous modified Helmholtz equation, i.e. 

 
2 2 0T T    (130) 

pointwise, then applying the divergence theorem again 

to the functional (128), we have 
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 (131) 

which involves boundary integrals only. 

In the proposed HFS-FEM, the variable T  is given 

as a superposition of fundamental solutions 
*( , )jG P Q  

at sn  source points to guarantee the satisfaction of Eq. 

(130) 

1 *

1

( , ) ( ) ,    ,
sn

n

h j ej e e e j e

j

T G P Q c P P Q



    N c  (132) 

where 
ejc  is undetermined coefficients and sn  is the 

number of virtual sources 
jQ  applied at points outside 

the element. 

The free-space fundamental solution of the 

modified Helmholtz operator can be obtained as the 

solution of 

 
2 * 2 *( , ) ( , ) ( , )j j jG P Q G P Q P Q      (133) 

and is given by [82] 

 
*

0

1
( , ) ( )

2
j jG P Q K P Q


    (134) 

where ( , )jP Q  is the Dirac delta function and 0K  

denotes the modified Bessel function of the second kind 

with order 0. 

Simultaneously, the independent frame variable on 

the element boundary can be defined by the standard 

shape function interpolation 
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where n is the number of nodes of the element under 

consideration, 
iN  is the shape function and eid  is nodal 

temperature. Their descriptions can be found in standard 

finite element texts and are not repeated here. 

By substitution of Eq. (132) and Eq. (135) into Eq. 

(131) we obtain 
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in which 
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and 

 e
e

n






N
Q  (138) 

 

VI.Conclusions and future developments 

 

On the basis of the preceding discussion, the 

following conclusions can be drawn. In contrast to 

conventional FE and boundary element models, the 

main advantages of the Trefftz model are: (a) the 

formulation calls for integration along the element 

boundaries only, which enables arbitrary polygonal or 

even curve-sided elements to be generated; (b) the 

Trefftz  FE model is likely to represent the optimal 

expansion bases for hybrid-type elements where inter-

element continuity need not be satisfied, a priori, 

which is particularly important for generating a quasi-

conforming plate bending element; (c) the model 

offers the attractive possibility of developing accurate 

functionally graded elements.  

        It is recognized that the Trefftz FEM has become 

increasingly popular as an efficient numerical tool in 

computational mechanics since their initiation in the 

late seventies. However, there are still many possible 

extensions and areas in need of further development 

in the future. Among those developments one could 

list the following: 

1  Development of efficient Trefftz FE-BEM schemes for 

complex engineering structures and the related general 

purpose computer codes with preprocessing and 

postprocessing capabilities. 

2 Generation of various special-purpose elements to 

effectively handle singularities attributable to local 

geometrical or load effects (holes, cracks, inclusions, 

interface, corner and load singularities). The special-

purpose functions warrant that excellent results are 

obtained at minimal computational cost and without 

local mesh refinement. 3 Development of HT FE in 

conjunction with a topology optimization scheme to 

contribute to microstructure design. 

3 Extension of the Trefftz-FEM to elastodynamics, fluid 

flow, dynamics of thin and thick plate bending and 

fracture mechanics, soil mechanics, deep shell 

structure, and rheology problems. 

4 Development of multiscale framework across from 

continuum to micro- and nano-scales for modeling 

heterogeneous and functional materials.  
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