
IJSRSET1734106 | Received : 04 August 2017 | Accepted : 15 August - 2017 | July-August-2017 [(3)5: 391-396]

© 2017 IJSRSET | Volume 3 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

391

Selective Algorithm for Task Scheduling in Cloud Computing
Zonayed Ahmed*1, Tanveer Ahmed2

*1,2Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh

ABSTRACT

The cloud infrastructure is an environment that provide dynamic services using very large scalable and virtualized

resources. However, scheduling these services to the resources to ensure QoS (Quality of Serviec) is an NP-

complete problem. To ensure maximum throughput, it is imperative for the task schedulers to implement an efficient

algorithm. In this paper, a combination of two known algorithms max-min and min-min called selective algorithm is

proposed. Selective algorithm focuses on using the advantages of both the algorithms. Experimental results show

availability of load balancing in a heterogeneous cloud environment. Comparative analysis against other known

scheduling algorithms (FCFS, SJF, Max-Min, Min-Min) also provides a shorter makespan on the cloud resources.

Keywords: Selective Algorithm, Min-Min, Max-Min, Meta Task Scheduling, Makespan, Cloud Computing

I. INTRODUCTION

Task scheduling is a mapping mechanism from user’s

tasks to the appropriate selection of resources and its

execution. Compared with grid computing, cloud

computing has many unique features including

virtualization and flexibility. By using the technology of

virtualization, all physical resources are virtualized and

transparent for users. All users have their own virtual

device, these devises do not interact with each other and

they are created based on users' requirements. In

addition, one or more virtual machines can run on a

single host computer so that the utilization rate of

resources has been effectively improved. The

independence of users' application ensures the system's

security of information and enhances the availability of

service [1]. Supplying resources under the cloud

computing environment is flexible, we increase or

reduce the supplying of resources depends on users'

demand. Because of these new features, grid computing,

the original task scheduling mechanism, can’t work

effectively in cloud computing environments [2].

The task scheduling goals of Cloud computing is

provide optimal tasks scheduling for users, and provide

the entire cloud system throughput and QoS at the same

time. Specific goals are load balance, quality of service

(QoS), economic principle, optimal operation time and

system throughput [3, 4].

Task scheduling algorithm is responsible for mapping

jobs submitted to cloud environment onto available

resources in such a way that the total response time, the

makespan, is minimized [5]. Many task scheduling

algorithms are applied by resources manager in

distributed computing to optimally allocate resources to

tasks [6]. While some of these algorithms try to

minimize the total completion time. Where the

minimization is not necessarily related to the execution

time of each single task, but the aim is to minimize

overall the completion time of all tasks [7].

II. RELATED WORKS

Many heuristics have been proposed to obtain semi-

optimal match. Existing scheduling heuristics can be

divided into two categories: on-line mode and batch-

mode.

In the on-line mode, a task is mapped to a machine as

soon as it arrives at the scheduler. Some heuristic

instances of this category follow:

MET (Minimum Execution Time): MET assigns each

task to the resource that performs it in the least amount

of execution time, no matter whether this resource is

available or not at that time [8].

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 392

OLB (Opportunistic Load Balancing): OLB assigns

each task to the resource that becomes ready next,

without considering the execution time of the task on

that resource. When more than one resource becomes

ready, one resource is arbitrarily chosen [7].

In the batch-mode heuristics, tasks are collected into a

set called meta-task (MT). These sets are mapped at

prescheduled times called mapping events. Some

instances of this category are as follows:

Suffrage: Suffrage [7] is based on the idea that a task

should be assigned to a certain resource and if it does

not go to that resource, the most it will suffer.

Max-Min: Max-Min assigns task with maximum

expected completion time to the corresponding resource

[8].

The Max-Min algorithm is given below:

Assume that we have m Resources Rj (R1, R2, .., Rm) and

we process n tasks Ti(T1, T2, ..., Tn) to be mapped on

these resources. Also expected execution time Eij of task

Ti on resource Rj is defined as required time of resource

Rj to finish task Ti provided that Rj has no load when

assignment occurs.

On the other side, expected completion time Cij of task

Ti on resource Rj is defined as the overall time

consumption till finishing any assigned task previously

assigned. Assume rj denote the beginning of execution

task Ti. From previous mentions, it can be concluded

that Cij = Eij + rj.

The makespan of complete schedule is defined as Max

(Ci) where Ci is the completion time for a task Ti [5].

As shown, task Tm with maximum expected completion

time is chosen to be assigned for corresponding resource

Rj that gives minimum execution time.

Makespan is defined as a measure of the throughput of

the heterogeneous computing system; like the Cloud

Computing environment [8], [10].

Min-Min: Min-Min assigns task with minimum

expected completion time to the corresponding

resource.

[8].

QoS Guided Min-Min: QoS Guided Min-Min shown

in [9] adds a QoS constraint (QoS for a network by its

bandwidth) to basic Min-Min heuristic. Its basic idea is

that some tasks may require high network bandwidth,

whereas others can be satisfied with low network

bandwidth, so it assigns tasks with high QoS request

first according to Min-Min heuristic.

QoS priority grouping scheduling: Similar to QoS

guided Min-min, new algorithm called QoS priority

grouping scheduling that is proposed by F. Dong et al

[11]. QoS priority grouping scheduling algorithm

considers deadline and acceptation rate of the tasks and

makespan of the whole system as major factors for task

scheduling. It achieves better acceptance rate and

completion time for submitted tasks compared with

Min-min and QoS guided Min-min.

Segmented Min-Min: In Segmented Min-Min heuristic

described in [12] tasks are first ordered by their

expected completion times. Then the ordered sequence

is segmented and finally it applies Min-Min to these

segments. This heuristic works better than Min-Min

when length of tasks are dramatically different by

giving a chance to longer tasks to be executed earlier

than where the original Min-Min is adopted.

Improved Max-Min: In Improved Max-min algorithm

largest job is selected and assigned to the resource

which gives minimum completion time [13].

Enhanced Max-Min: Here, A task just greater than

average execution time is selected and assigned to the

resource which gives minimum completion time [14].

The organization of this paper is as follows. In Section 3

(Selective Algorithm), detailed explanation of any

modifications of max-min will be provided. In Section 4

Step 1: For all submitted tasks in meta-task Ti

Step 2: For all resource Rj

Step 3: Compute Cij = Eij + rj

Step 4: While meta-task is not empty

Step 5: Find the task Tm consumes maximum

completion time.

Step 6: Assign task Tm to the resource Rj with

minimum execution time.

Step 7: Remove the task Tm from meta-tasks set

Step 8: Update rj for selected Rj

Step 9: Update Cij for all Ti

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 393

(Implementation and Experiments), we will present

the implementation of our algorithm through CloudSim

and analysis of our findings. Discussed in Section

4(Conclusion) a summary of our full work as well as

concerns to address for the future.

III. Selective Algorithm

Max-min algorithm allocates task Ti on the resource Rj

where large tasks have highest priority rather than

smaller tasks. For example, if we have one long task,

the Max-min could execute many short tasks

concurrently while executing large one. The total

makespan, in this case is determined by the execution of

long task. But if meta-tasks contains tasks have

relatively different completion time and execution time,

the makespan is not determined by one of submitted

tasks. It would be similar to the Min-min makespan. For

these cases, original Max-min algorithm losses some of

its major advantages in large scale distributed

environment. We can't use the Max-min and wait

submitted tasks to decide what would be the allocation

map, makespan, load balance, etc. We try to minimize

waiting time of short jobs through assigning large tasks

to be executed by slower resources. On the other hand

execute small tasks concurrently on fastest resource to

finish large number of tasks during finalizing at least

one large task on slower resource.

So, max-min algorithm works better than min-min when

there are many short tasks and few long tasks.

Table 1 is an example where max-min outperforms min-

min. Here makespan of max-min is 40 but makespan of

min-min is 53.

TABLE I

MAX-MIN OUTPERFORMS MIN-MIN

 R0 R1

T1 2 3

T2 3 4.5

T3 8 12

T4 40 60

Here each value indicates a particular task Ti’s expected

time Eij on Resource Rj.

Again, Min-min is perfect in executing shorter tasks and

doesn’t have much advantage in executing larger tasks.

Table 2 is an example where min-min outperforms max-

min.

TABLE IIIII

MIN-MIN OUTPERFORMS MAX-MIN

 R0 R1

T1 4 8

T2 4 8

T3 6 12

T4 6 12

Here makespan of max-min is 28 while makespan of

min-min is 24.

Now, the pseudo code of the selective algorithm is as

follows:

(1) Sort tasks in meta-task MT ascending.

(2) While there are tasks in MT

(3) for all tasks ti in MT

(4) for all machines mj

(5) Calculate CTij

(6) for all tasks ti in MT

(7) Find minimum CTij and resource mj that

finds it

(8) If there is more than one resource that

obtains the resource

(9) Select resource that will have less

CTij after the task

(10) Calculate standard deviation (sd).

(11) Find place p in MT where difference of two

consecutive CTij is more than sd.

(12) If p is in the first half of the sorted MT or sd is

less than average CTij

(13) then assign min-min for next task

(14) else

(15) choose max-min

(15) delete assigned task from MT

(16) End While

So, the cloudlets are sorted first. Then, we calculate

execution time for every cloudlet. As this is batchwise

execution, this is very easy. Then we take waiting time

to consideration and calculate completion time. In the

second for loop, similar to the first phase of Min-Min

and Max-Min, it finds minimum expected completion

time (such that the task ti has earliest expected

completion time on machine mj) of each task in MT, and

the resource that obtains it, lines 6 and 7 in the

algorithm. If there is more than one resource that

obtains this minimum, we choose the resource based on

which resource gives less completion time after the task.

Then we choose between max-min and min-min

algorithm. We calculate sd and see where the

consecutive two place have lesser sd. Or, if such a case

doesn’t happen, to provide a threshold we can assign

average completion time.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 394

There can be two cases:

a. If sd is less than a certain threshold, it means the

length of all tasks are in a small range, so we will select

Min-Min to assign the next task.

b. Otherwise, we will select Max-Min to assign the next

task.

After assignment of a task to a corresponding resource,

this task will be deleted from MT and the process will

be repeated until all tasks will be assigned.

The flow chart of the algorithm is given below:

Figure 1: Flowchart of Selective Algorithm

IV. Implementation and Experiment

To implement the algorithm we take the following

scenario:

We assume that minimum CTij for each task is found

and S.D. is calculated too (i.e. lines 1 to 11 of the

algorithm is executed). There is one short task and five

long tasks:

Figure 2: Example of selective algorithm: where we

choose min-min to select the next task

So, task lengths and completion time are shown in

Figure 2. It can also been understood that both the

parameters of the algorithm were satisfied. So, we

choose min-min algorithm.

A reverse approach can also be seen in the following

Figure 3:

Figure 3: Example of selective algorithm: where we

choose max-min to select the next task

In this case, there exists one long task and five short

tasks. So, Max-Min outperforms Min-Min. As it can be

seen, occurrence of the place of difference is in the

second half, so Max-Min is selected to assign next task.

Now, we have used JAVA language in Netbeans IDE

and CloudSim [15] platform to create simulation

environment.

Now, the resources and cloudlet specifications are given

below:

TABLE IVVVI

PROBLEM SAMPLES RESOURCES

SPECIFICATION

Problem

Sample

Resource MIPS MBBS

P1

R1 50 100

R2 100 5

P2

R1 150 300

R2 300 15

P3

R1 300 300

R2 30 15

TABLE VIIV

PROBLEM SAMPLES TASKS SPECIFICATION

Problem

Sample

Resource MI MB

P1

T1 128 44

T2 69 62

T3 218 94

T4 21 59

P2

T1 256 88

T2 35 31

T3 327 96

T4 210 590

P3

T1 20 88

T2 350 31

T3 207 100

T4 21 50

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 395

TABLE V

MAKESPAN OF DIFFERENT ALGORITHMS

Problem

Sample

FCFS SJF Max-

Min

Min-

Min

Selective

P1 2.88 2.39 5.97 5.97 5.97

P2 5.63 5.47 4.7 3.22 3.22

P3 3.71 5.57 2.59 2.59 2.59

To compare the proposed algorithm with its two basic

heuristics in time complexity measure, we computed the

time complexity of Selective algorithm here.

In Line 1, an array of length s is being sorted. By using

any sorting algorithm, it takes O(s
2
) time in its worst

case.

In lines 3-5, two nested for loops takes O(s.m) time:

internal for loop runs m times (number of machines)

and external for loop runs s times (number of tasks).

Finding minimum CTij takes O(m) time (line 7). Finding

the machine with minimum resource utilization rate in

wits worst case, when all machines have same CTij for

task ti, takes O(m) time. This is done for all tasks (lines

7-9), so it takes O(s.m) time.

Computing standard deviation (line 10) consisted of

calculating the average of s numbers: average of the

array of CTij s and average of the array of (CTij)
2
 s both

with s members. So it takes O(s) time.

Finding the place p in a list with s members (line 11)

needs O(s) time. It is a sequential search.

Selection part of the new algorithm (lines 12-15) takes

O(1) time, because the list is sorted and one should go

to the start (for Min-Min) or the end (for Max-Min) of

the list and no need to find minimum or maximum.

Deleting the assigned task, Line 16, takes O(1), too,

because the list is sorted and the task is deleted from the

start or the end. Therefore, time complexity of lines 3-

16 is the maximum of O(sm), O(sm), O(s), O(s), O(1),

and O(1), that is O(sm).

This process, lines 3-16, is done for all tasks in MT; i.e.

runs s times. Therefore, lines 2-17 takes O(s
2
m) time.

Consequently, time complexity of the Selective

algorithm is:

max(O(s
2
),O(s

2
m)) = O(s

2
m)

Comparing it to Max-Min and Min-Min, the new

heuristic does not impose any extra load and has the

same time complexity as them.

V. CONCLUSION

Better throughput and load balancing has been achieved

through Selective algorithm compared to different

known batch mode scheduling algorithms. The

algorithm covers all the advantages of both max-min

and min-min while discarding the disadvantages. Here

two heuristics: standard deviation and average

completion time has been used for the algorithm. Other

heuristics such as priority or ending time can be taken to

make the algorithm more efficient.

VI.REFERENCES

[1] Zhexi, Y.A.N.G. and Huacheng, X.U.E. 2012.

Informatization Expectation with Cloud

Computing in China. Indonesian Journal of

Electrical Engineering and Computer Science,

10(4), pp.876-882.

[2] Liu, J., Luo, X.G., Li, B.N., Zhang, X.M. and

Zhang, F., 2013. An intelligent job scheduling

system for web service in cloud computing.

Indonesian Journal of Electrical Engineering and

Computer Science, 11(6), pp.2956-2961.

[3] You, X., Chang, G. and Deng, X., 2006. et. Grid

Task Scheduling Algorithm Based on Merit

Function. Computer Science, 33(6).

[4] Yao, W., Li, B. and You, J., 2002. Genetic

scheduling on minimal processing elements in the

grid. AI 2002: Advances in Artificial Intelligence,

pp.465-476.

[5] Parsa, S. and Entezari-Maleki, R., 2009. RASA:

A new task scheduling algorithm in grid

environment. World Applied sciences journal,

7(Special issue of Computer & IT), pp.152-160.

[6] Chunlin, L. and Layuan, L., 2006. QoS based

resource scheduling by computational economy in

computational grid. Information Processing

Letters, 98(3), pp.119-126.

[7] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen,

D. and Freund, R.F., 1999. Dynamic mapping of a

class of independent tasks onto heterogeneous

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 396

computing systems. Journal of parallel and

distributed computing, 59(2), pp.107-131.

[8] Freund, R.F., Gherrity, M., Ambrosius, S.,

Campbell, M., Halderman, M., Hensgen, D.,

Keith, E., Kidd, T., Kussow, M., Lima, J.D. and

Mirabile, F., 1998, March. Scheduling resources

in multi-user, heterogeneous, computing

environments with SmartNet. In Heterogeneous

Computing Workshop, 1998.(HCW 98)

Proceedings. 1998 Seventh (pp. 184-199). IEEE.

[9] He, X., Sun, X. and Von Laszewski, G., 2003.

QoS guided min-min heuristic for grid task

scheduling. Journal of Computer Science and

Technology, 18(4), pp.442-451.

[10] Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L.,

Maheswaran, M., Reuther, A.I., Robertson, J.P.,

Theys, M.D., Yao, B., Hensgen, D. and Freund,

R.F., 2001. A comparison of eleven static

heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing

systems. Journal of Parallel and Distributed

computing, 61(6), pp.810-837.

[11] Dong, F., Luo, J., Gao, L. and Ge, L., 2006,

October. A grid task scheduling algorithm based

on QoS priority grouping. In Grid and

Cooperative Computing, 2006. GCC 2006. Fifth

International Conference (pp. 58-61). IEEE.

[12] Wu, M.Y., Shu, W. and Zhang, H., 2000.

Segmented min-min: A static mapping algorithm

for meta-tasks on heterogeneous computing

systems. In Heterogeneous Computing Workshop,

2000.(HCW 2000) Proceedings. 9th (pp. 375-

385). IEEE.

[13] Elzeki, O.M., Reshad, M.Z. and Elsoud, M.A.,

2012. Improved max-min algorithm in cloud

computing. International Journal of Computer

Applications, 50(12).

[14] Bhoi, U. and Ramanuj, P.N., 2013. Enhanced

max-min task scheduling algorithm in cloud

computing. International Journal of Application

or Innovation in Engineering and Management

(IJAIEM), 2(4), pp.259-264.

[15] Calheiros, R.N., Ranjan, R., Beloglazov, A., De

Rose, C.A. and Buyya, R., 2011. CloudSim: a

toolkit for modeling and simulation of cloud

computing environments and evaluation of

resource provisioning algorithms. Software:

Practice and experience, 41(1), pp.23-50.

