

In Silico Study of Neurokinin-1 Receptor Antagonists by QSAR Modeling

Neerja Shukla

Department of Chemistry, University of Allahabad, Allahabad, Uttar Pradesh, India

ABSTRACT

QSAR studies were performed on a series neurokinin-1 receptor. neurokinin-1 receptor have been analyzed in relation to their physicochemical and molecular properties. On the basis of QSAR studies presented here, the coefficients of Id, IOR, MR, MW, ST, MV, Pz are positive and therefore it may be suggested that denser, bulkier, more polar substituents with more vertices should have positive influence on the activity of NK₁ receptor. and the positive coefficients of ${}^{0}\chi$, ${}^{1}\chi$, ${}^{2}\chi$, ${}^{3}\chi$, ${}^{4}\chi$, ${}^{5}\chi$, W, W_A, and BAC parameters indicate that compounds, which are sterically hindered, are preferable for the activity of NK₁ receptor. The coefficient of hydrophobic parameter (LogP) was found to be negative and this clearly indicates that this parameter has negative influence in determining the activity , also the presence of $\int_{-\infty}^{+\infty} group$ at X-position causes a substantial decrease in activity. The results are critically discussed on the basis of regression data and cross validation techniques. Poglani factor Q and the results of LOO (leave one out) method confirms the reliability and predictability of the proposed models. **Keywords:** OSAR, BAC, PRESS/SSY

I. INTRODUCTION

Neurokinin (NK) receptors belong to G-protein coupled receptor and can be divided into three subtypes: NK₁, NK₂ and NK₃. They are located on submucosal enterocytes through the release of the both cholinergic and non cholinergic neurotransmitters. These NK1 receptors implicated have been in many pulmonary pathopysiological effects related to dysfunction and many mental disorders such as anxiety and depression1. The current study represents the QSAR analysis of a series of NK₁ receptor antagonists² (Ki which represents NK₁ receptor affinities are reported in the literature) using a number of structural parameters alongwith different indicator parameters at different substitution sites.

II. Experimental

Hansch analysis³ was used for multiparametric regression analysis. The multiparametric regression analysis used to derive the correlation was executed

with the SPSS (7.5) programme. For QSAR studies, different analogues of parent structure and values of biological activity (pKi) are reported in Table1. The structural parameters used are equalized electronegativity $(Xeq)^4$, Polarizability (Pz)as electronic parameters, Partition coefficient $(LogP)^5$ as hydrophobic parameter, Density (D), Index of refraction (IOR), Molar refractivity (MR), Molecular weight (MW), Molar Volume (MV), Parachor (Pc), Surface tension (ST), Information Theoretic Index (Id), Weiner Index (W), Mean Weiner Index (WA), Balaban Index (J), Balaban centric index (BAC) and Conectivity indices $({}^{0}\chi, {}^{1}\chi, {}^{2}\chi, {}^{3}\chi, {}^{4}\chi, {}^{5}\chi)^{6}$ as steric parameters. The structural parameters are calculated with the help of ACD Lab⁶ and DRAGON⁷ software. A total of 21 descriptors were chosen for the QSAR analysis are listed in Table-2.

III. Monoparametric Models

In silico study of neurokinin-1 receptor antagonists by QSAR Modeling

Where n is the number of data points, R^8 is the correlation coefficient, R^2 is coefficient of determination, R^2_A represents adjusted R^2 or explained variance in activity that can be accounted by the equation, SE is the standard error of estimate, F is the variance ratio between observed and calculated activities and data with in parenthesis are confidence interval at 95% level. On the basis of statistical parameters, it can be said that all the above equations in their present form are insignificant. All the physicochemical parameters and their square terms were taken together to check the parabolic relationship which was found to be absent.

The autocorrelation between all the structural parameters is shown in Table-4. A close study of this table makes it clear that there are a number of parameters which are orthogonal and, therefore, can be used together in multiparametric regression studies. Multiparametric Modeling⁹ Using Indicator parameters-

In order to study the role of specific substituents at a particular position, three indicator parameters IR for interim distribution definition of the set of the s

The statistical data listed in table show that all the given equations in Table-5 are significant and the set of physicochemical parameters and indicator parameters used may be useful for the future drug designing.

On the basis of QSAR studies presented above (Table-5), the coefficients of Id, IOR, MR, MW, ST, MV, Pz are positive and therefore it may be suggested that denser, bulkier, more polar substituents with more vertices should have positive influence on the activity of NK₁ receptor. Further, positive coefficients of ${}^{0}\chi$, ${}^{1}\chi$, ${}^{2}\chi$, ${}^{3}\chi$, ${}^{4}\chi$, ${}^{5}\chi$, W, W_A, and BAC parameters indicate that compounds, which are sterically hindered, are preferable for the activity of NK₁ receptor. The coefficient of hydrophobic parameter (Log P) was found to be negative which clearly indicates that this parameter has negative influence in determining the activity.

A very interesting and striking feature of the QSAR modeling¹⁰⁻¹⁶ presented in this section reveals that everywhere the coefficient of IR and IZ are positive and for IY the coefficient is negative. This can be explained by suggesting that the presence of $rac{1}{2}$ group at R₁-position and (-CH₃) group at Z-position should be preferable and at the same time while some other substituent may be tolerated. The presence of $rac{1}{2}$ group at Y-position definitely causes a substantial decrease in activity.

In order to examine the relative potential of models, predictive correlation coefficient $(R^2_{Pred})^{11}$ were estimated by plotting graphs between observed and calculated pKi values obtained with the help of eqs1and eqs 2. The comparison between observed and predicted activities is listed in Table- 6. Predictive ability was also evaluated by the LOO12 (Leave one out) crossvalidation procedure. This method systematically removes one data point at a time a model is constructed on the basis of this reduce data set and is subsequently used to predict the removed sample. This procedure was repeated for all the points until a complete set of predicted values was obtained. Various cross-validation parameters calculated for the proposed models are presented in Table- 8. PRESS (Predicted residual sum of squares) appears to be the most important crossvalidation parameters accounting for good estimate of the real predictive error of the models. In case its value is less than SSY (Sum of the square of all response value), it will mean that the predictive power of the model is good and is not based upon chance and therefore, can be considered statistically significant.For a reasonable QSAR model¹³⁻¹⁷, PRESS/SSY should be smaller than 0.400. In the present case, the ratio PRESS/SSY ranges between 0.108-0.131 indicating that all the proposed models are reliable. The PSE as well as S_{PRESS} are good parameters to be used for discussing the uncertainty in prediction. The lower the value of these parameters, the better will be the predictive ability of the model.

The indication of the performance of the model was also obtained from R^2_{cv} (the overall predictive ability). The highest R^2_{cv} (0.892) was found for QSAR model 2, indicating that it has an outstanding predictive power.

Table - 1. Biological activities and indicator Parameters of Neurokinin-1 Receptor Antagonists

S.	Substit	tuents			Observed	Indicate	or Parameters	5
No	Ζ	R ₁	R ₂	Y	_ pKi	IZ	IR	IY
1.	Н	Н	\bigcirc		7.2924	0	0	0
2.	CH ₃	Н		- N	7.770	1	0	0
3.	Cl	Н	\bigcirc	- M	7.658	0	0	0
4.	Br	Н	\bigcirc		7.347	0	0	0
5.	Н	Н	\bigcirc	- W	6.530	0	0	0
6.	Н	Н		N N N N N N N N N N N N N N N N N N N	6.250	0	0	0
7.	Н	Н	\bigcirc		7.168	0	0	0
8.	Н	Н	\bigcirc	H N O	5.860	0	0	1
9.	Н	Н			6.140	0	0	0
10.	Н	Н	\bigcirc	H H	6.430	0	0	0
11.	Н	Н	\bigcirc	\sim_0	6.650	0	0	0
12.	CH ₃	Н	\bigcirc	- N N	8.854	1	0	0
13.	CH ₃	Н		N N	8.0710	1	0	0
14.	CH ₃	Н		↓ ↓ ↓	8.469	1	0	0

S.	Substi	tuents			Observed	Indica	tor Paramet	ers
No	Ζ	R ₁	R ₂	Y	pKi	IZ	IR	IY
15.	CH ₃	Н		L M	8.337	1	0	0
16.	CH ₃	Н		N N	4.402	1	0	0
17.	CH ₃	Н	N	↓ ↓	8.420	1	0	0
18.	CH ₃	Н	N		7.776	1	0	0
19.	CH ₃	N		Î,	9.237	1	0	0
20.	CH ₃				9.022	1	0	0
21.	CH ₃	N			8.770	1	0	0
22.	CH ₃	N	N	Ŷ ↓ ↓	8.208	1	0	0
23.	CH ₃	N	N		8.699	1	0	0
24.	CH ₃	N	NN	- 	8.456	1	0	0
25.	CH ₃	N	NN		8.959	1	0	0
26.	CH ₃	N	N		8.770	1	0	0
27.	CH ₃	N	N		9.357	1	0	0
28.	CH ₃				9.699	1	1	0
29.	CH ₃	HO		\sim	9.301	1	0	0
30.	CH ₃				9.097	1	0	0

Γ

Table 2. Physicochemical Parameters for a series of Neurokinin-1 Receptor Antagonists

S.No.	BAC	D	ld	IOR	J	LogP	MW	MR	MV	Pc	Pz	ST	w	WA	°x	¹ χ	² <u>γ</u>	°x	4 X	۶x	Xeq
1	69	1.295	4.832	1.528	1.653	4.690	437.378	103.670	337.700	817.800	41.090	34.300	2724	5.858	22.811	14.484	14.781	10.682	8.195	7.125	2.472
2	88	1.275	4.870	1.525	1.674	5.225	451.404	108.490	354.000	855.400	43.010	34.100	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.456
з	88	1.349	4.870	1.533	1.674	5.285	471.822	108.580	349.600	853.700	43.040	35.500	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.491
4	88	1.458	4.870	1.541	1.674	5.435	518.274	111.380	353.900	868.300	44.140	38.200	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.482
5	105	1.252	4.900	1.517	1.788	5.750	485.431	112.510	371.600	889.200	44.600	32.700	3042	5.761	24.604	15.225	16.009	11.977	8.749	7.430	2.441
6	69	1.309	4.832	1.538	1.653	5.130	437.378	104.280	334.000	814.000	41.330	35.200	2724	5.858	22.811	14.484	14.781	10.682	8.195	7.125	2.472
7	105	1.265	4.900	1.526	1.788	6.190	485.431	113.100	367.900	885.500	44.830	33.500	3042	5.761	24.604	15.225	16.009	11.977	8.749	7.430	2.441
8	88	1.291	4.900	1.532	1.723	5.330	451.404	108.400	349.300	842.300	42.970	33.700	2876	5.798	23.734	14.798	15.595	11.358	8.213	7.218	2.458
9	54	1.248	4.792	1.520	1.592	6.440	423.394	103.190	339.000	809.200	40.900	32.400	2588	5.899	21.941	14.037	14.382	9.918	7.938	6.833	2.440
10	41	1.263	4.792	1.519	1.529	5.710	409.388	98.430	324.000	771.700	39.020	32.100	2414	5.946	21.071	13.643	13.738	9.665	7.533	6.595	2.456
11	41	1.275	4.752	1.512	1.529	6.040	410.352	96.580	321.600	763.400	38.280	31.700	2414	5.946	21.071	13.643	13.738	9.665	7.533	6.595	2.472
12	105	1.258	5.165	1.538	1.457	5.954	549.551	136.970	437.300	1085.100	54.300	37.900	5058	6.826	28.535	18.235	18.618	13.983	10.780	9.410	2.412
13	88	1.302	4.870	1.526	1.674	3.880	452.392	106.590	347.200	849.600	42.250	35.800	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.484
14	128	1.272	4.937	1.526	1.804	5.500	480.445	116.020	377.400	917.300	45.990	34.800	3282	5.850	25.474	15.638	16.537	12.449	9.114	7.687	2.442
15	88	1.302	4.870	1.526	1.674	3.750	452.392	106.590	347.200	849.600	42.250	35.800	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.472
16	128	1.272	4.937	1.528	1.804	4.000	480.445	116.020	377.400	917.300	45.990	34.800	3282	5.850	25.474	15.638	16.537	12.449	9.114	7.687	2.442
17	88	1.302	4.870	1.528	1.674	3.750	452.392	106.590	347.200	849.600	42.250	35.800	2948	5.944	23.681	14.875	15.309	11.135	8.580	7.382	2.472
18	128	1.272	4.937	1.528	1.804	5.250	480.445	116.020	377.400	917.300	45.990	34.800	3282	5.850	25.474	15.636	16.537	12.449	9.114	7.687	2.442
19	105	1.278	5.165	1.539	1.457	4.219	550.539	135.080	430.500	1080.700	53.540	39.600	5058	6.826	28.535	18.235	18.618	13.983	10.780	9.410	2.423
20	149	1.255	5.220	1.539	1.543	5.719	578.592	144.500	480.700	1157.100	57.280	39.700	5530	6.744	30.328	18.996	19.845	15.297	11.335	9.715	2.405
21	149	1.255	5.165	1.539	1.571	4.659	578.592	144.500	480.700	1157.100	57.280	39.700	5432	6.624	30.328	18.996	19.845	15.297	11.326	9.763	2.405
22	105	1.278	5.165	1.539	1.482	2.969	550.539	135.080	430.500	1080.700	53.340	39.600	4974	6.713	28.535	18.235	18.618	13.983	10.771	9.454	2.423
23	149	1.255	5.220	1.539	1.571	5.719	578.592	144.500	480.700	1157.100	57.780	39.700	5432	6.624	30.328	18.996	19.845	15.297	11.326	9.763	2.405
24	105	1.301	5.165	1.540	1.482	4.032	551.527	133.160	423.700	1076.200	52.780	41.600	4974	6.713	28.535	18.235	18.618	13.983	10.771	9.454	2.435
25	149	12.780	4.949	1.540	1.571	4.602	579.58	142.590	453.900	1152.700	58.520	41.500	5432	6.624	30.328	18.996	19.845	15.297	11.328	9.763	2.415
26	105	1.301	5.165	1.540	1.457	3.102	551.527	133.160	423.700	1076.200	52.780	41.600	5058	6.826	28.535	18.235	18.618	13.983	10.780	9.410	2.435
27	149	1.278	5.220	1.540	1.543	4.652	579.58	142.590	453.900	1152.700	58.520	41.500	5530	6.744	30.328	18.996	19.845	15.297	11.335	9.715	2.415
28	128	1.283	5.190	1.537	1.547	5.319	565.55	137.830	440.700	1111.000	54.640	40.300	5127	6.573	29.457	18.602	19.224	14.888	11.184	9.491	2.423
29	149	1.297	5.258	1.550	1.542	4.725	579.577	142.420	446.600	1145.800	58.480	43.200	5530	6.744	30.328	18.996	19.845	15.297	11.335	9.715	2.413
30	174	1.344	5.244	1.547	1.542	5.279	613.615	144.900	456.200	1170.800	57.440	43.300	5935	6.893	31.25	19.309	20.827	15.62	11.471	9.907	2.434

Table 3. Monoparametric Models

S. No.	Equation	n	R	R ²	R ² _A	SE	F _{1,28}
1	pKi=2.385×10 ⁻² (±7.850×10 ⁻³)BAC+5.503	30	0.757	0.573	0.557	0.718	37.534
2	pKi= -0.945 (±10.350)D+9.251	30	0.35	0.001	0.034	1.098	0.035
3	pKi= 5.084 (±1.513)Id-17.389	30	0.793	0.629	0.615	0.670	47.384
4	pKi= 76.381 (±34.162) IOR-109.008	30	0.428	0.408	0.831	0.831	20.975

Table 4. Correlation Matrix demonstrating correlation between physicochemical parameters with indicator

	parameters																							
	IZ	R	IY	BAC	D	k	IOR	J	LogP	MR	MV	WW	Pc	Pz	ST	w	WA	°γ	'γ	zγ	'n	ţγ	°γ	Xeq
ız	1.000																							
IR	0.131	1.000																						
ľY	-0.263	-0.034	1.000																					
BAC	0.670	0.110	-0.111	1.000																				
D	-0.213	-0.026	0.011	-0.095	1.000																			
k	0.022	0.079	0.008	0.275	0.033	1.000																		
KOR	0.477	0.095	-0.007	0.681	0.320	0.317	1.000																	
J	-0.286	-0.012	0.182	-0.084	0.063	-0.220	-0.501	1.000																
LogP	-0.532	0.081	0.063	-0.127	-0.143	-0.109	-0.289	0.190	1.000															
MR	0.674	0.180	-0.150	0.865	-0.148	0.347	0.817	-0.540	-0.186	1.000														
MV	0.682	0.186	-0.162	0.867	-0.195	0.341	0.780	-0.528	-0.172	0.998	1.000													
MW	0.646	0.184	-0.162	0.862	0.041	0.355	0.871	-0.525	-0.212	0.981	0.972	1.000												
Pc	0.690	0.187	-0.167	0.862	-0.150	0.348	0.811	-0.552	-0.211	0.999	0.997	0.980	1.000											
Pz	0.674	0.180	-0.150	0.865	-0.148	0.347	0.817	-0.540	-0.185	1.000	0.998	0.981	0.999	1.000										
ST	0.681	0.172	-0.180	0.759	0.112	0.344	0.904	-0.611	-0.414	0.910	0.890	0.937	0.921	0.910	1.000									
w	0.680	0.179	-0.162	0.820	-0.134	0.350	0.823	-0.627	-0.231	0.990	0.986	0.974	0.994	0.990	0.938	1.000								
WA	0.630	0.141	-0.197	0.625	-0.091	0.325	0.792	-0.819	-0.275	0.913	0.905	0.902	0.921	0.913	0.913	0.954	1.000							
xٌ	0.633	0.604	-0.132	0.777	-0.124	0.315	0.704	-0.449	-0.149	888.0	0.889	0.877	0.892	0.888	0.824	0.880	0.788	1.000						
'χ	0.490	0.193	-0.107	0.534	-0.003	0.241	0.592	-0.434	-0.164	0.650	0.642	0.659	0.658	0.650	0.685	0.674	0.668	0.624	1.000					
ίχ	0.753	0.161	-0.145	0.855	-0.131	0.347	0.729	-0.390	-0.290	0.903	0.903	0.890	0.907	0.903	0.851	0.895	0.802	0.819	0.607	1.000				
χ	0.698	0.204	-0.132	0.912	-0.157	0.348	0.797	-0.449	-0.208	0.991	0.990	0.972	0.991	0.991	0.904	0.976	0.870	0.902	0.652	0.918	1.000			
χ	0.714	0.212	-0.189	0.852	-0.138	0.341	0.817	-0.558	-0.253	0.995	0.992	0.978	0.998	0.995	0.933	0.993	0.925	0.903	0.671	0.911	0.989	1.000		
γ	0.701	0.188	-0.167	0.817	-0.127	0.341	0.830	-0.611	-0.274	0.991	0.986	0.975	0.994	0.991	0.941	0.996	0.947	0.885	0.671	0.900	0.977	0.997	1.000	
Xeq	-0.548	-0.099	0.104	-0.794	0.300	-0.274	-0.584	0.434	-0.045	-0.848	-0.855	-0.808	-0.846	-0.848	-0.706	-0.848	-0.768	-0.731	-0.548	-0.777	-0.843	-0.825	-0.817	1.000

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

S.	Equation	n	R	R ²	R _A	SE	F _{5.24}
INO.							- 1
1.	pKi= 3.754 (±3.601) D + 2.377 (±1.156) ld + 1.313 (± 0.419) IZ	30	0.950	0.903	0.883	0.370	44.595
	- 1.078 (±0.809) IY + 0.789 (±0.795) IR - 9.557						
2.	pKi= -8.39 × 10 ⁻² (±4.342) D + 39.466 (±21.259) IOR + 1.415	30	0.946	0.894	0.872	0.386	40.667
	(± 0.413) IZ - 1.225 (±0.854) IY + 1.001 (±0.817) IR - 53.269						
3.	pKi= 4.005 (±4.481) D - 1.433 (±1.675) J + 1.796 (± 0.405) IZ	30	0.922	0.849	0.818	0.460	27.078
	- 0.827 (±1.009) IY + 0.996 (±0.979) IR + 3.986						
4.	pKi= $3.409 (\pm 4.383) D + 8.853 \times 10^{-2} (\pm 8.353 \times 10^{-2}) \chi + 1.655 \pm$	30	0.926	0.858	0.828	0.447	29.012
	0.437) IZ - 0.960 (±0.974) IY + 0.915 (±0.958) IR + 1.109						
5.	pKi= 1.102 (±1.763) ld + 26.638 (±26.896) IOR + 1.282(± 0.418) IZ -	30	0.949	0.901	0.881	0.373	43.817
	1.210 (±0.819) IY + 0.894 (±0.808) IR - 39.138						

Table 5. Multiparametric Models Using Indicator Parameters

 Table 6. Comparison between observed and predicted values for proposed models

PKi					
S No	Observed	Equation – 1		Equation - 2	
5.INU.	Observed	Predicted	Residual	Predicted	Residual
1.	7.292	6.790	0.502	6.847	0.446
2.	7.770	8.119	-0.350	8.226	-0.457
3.	7.658	7.084	0.574	7.122	0.536
4.	7.347	7.493	-0.146	7.436	-0.889
5.	6.530	6.791	-0.261	6.493	0.037
6.	6.250	6.843	-0.592	7.239	-0.989
7.	7.168	6.840	0.327	6.847	0.321
8.	5.860	5.860	.000	5.860	0.000
9.	6.140	6.520	-0.380	6.611	-0.471
10.	6.430	6.577	-0.147	6.572	-0.143
11.	6.650	6.526	0.124	6.297	0.353
12.	8.854	8.750	0.104	8.736	0.117
13.	8.071	8.221	-0.150	8.265	-0.195
14.	8.469	8.267	0.202	8.265	0.203
15.	8.337	8.221	0.117	8.265	0.072
16.	8.402	8.267	0.135	8.265	0.136
17.	8.420	8.221	0.200	8.265	0.155
18.	7.796	8.267	-0.471	8.265	-0.469
19.	9.237	8.833	0.404	8.776	0.461
20.	9.022	8.876	0.146	8.776	0.247
21.	8.770	8.746	0.023	8.776	-0.006
22.	8.208	8.833	-0.625	8.776	-0.568
23.	8.699	8.876	-0.177	8.776	-0.077
24.	8.456	8.919	-0.483	8.815	-0.359
25.	8.959	9.312	0.647	8.815	0.144
26.	8.770	8.919	-0.149	8.815	-0.045
27.	9.357	8.955	0.401	8.815	0.542
28.	9.699	9.699	0.000	9.699	0.000
29.	9.301	9.124	0.177	9.208	0.093
30.	9.097	9.267	-0.170	9.090	0.007

 Table 7. Some Statistical techniques prove predictive ability for proposed models

S.No.	Model No.	Q	Κ	E	PE	6PE
1.	1	2.503	0.326	67.4	0.013	0.078
2.	2	2.568	0.311	68.9	0.012	0.072
3.	3	2.451	0.326	67.4	0.013	0.078
4.	4	2.544	0.315	68.5	0.012	0.072
5.	5	2.327	0.341	65.9	0.014	0.084

 Table 8. Cross validation parameters for proposed models

S.No.	Model No.	PRESS	SSY	PRESS/SSY	R^2_{cv}	PSE	SPRESS
1.	1	3.568	30.224	0.118	0.882	0.345	0.378
2.	2	3.284	30.501	0.108	0.892	0.331	0.370
3.	3	3.567	30.224	0.118	0.882	0.345	0.386
4.	4	3.336	30.456	0.110	0.890	0.333	0.373
5.	5	3.908	29.884	0.131	0.869	0.361	0.404

IV. CONCLUSION

On the basis of above discussions, it becomes evident that multiparametric models represented by QSAR equations are statistically significant models and they are reliable and have good predictive ability and therefore it can be concluded that the coefficients of Id, IOR, D are positive and therefore denser, bulkier should have positive influence on the activity of NK₁ receptor whereas the positive coefficient of ¹ χ parameter indicate that compounds, which are sterically hindered, are preferable for the activity of NK₁ receptors.

V. REFERENCES

- Mata D. A., Ramos M. A., Bansal N., Khan R., Guille C., Di Angelantonio E., Sen S., "Prevalence of Depression and Depressive Symptoms Among Resident Physicians: A Systematic Review and Meta-analysis", JAMA, 2015, 314, 2373–2383.
- [2]. Hoffmann T., Bos M., Stadler H., Schnider P., Hunkeler W., Godel T., Galley G., Ballard T.M., Higgins G.A., Poli S.M., Sleight A.J., Bioorg. Med. Chem. Letts, 2006, 16, 1362-1365. (a) Lucic B. and Trinajstic N.J., J. Chem. Inf. Comput. Sci., 1999, 39, 121. (b) Lucic B.and Trinajstic N.J., J. Chem. Inf. Comput. Sci., 1999, 30, 610.
- [3]. G.C.Nys and R.F.Rekker, Chem. Therap., 1973, 8, 52.

- [4]. Srivastava A.K., Shukla N., Quantitative Structure Activity Relationship (QSAR) Studies on a series of imidazole derivatives as novel ORL1 receptor antagonists, J. Saudi Chem. Soc., 2013, 17,321-328.
- [5]. www.acdlabs.com, Chem Sketch program of ACD Labs Software
- [6]. DRAGON Software for calculation of topological indices: www.disat unimib. it.
- [7]. Srivastava A. K., Shukla N. and Pathak V. K., Quantitative Structure Activity Relationship (QSAR) Studies on a series of off-target ion channel selective diltiazem sodium derivatives., J. Indian Chem. Soc., 2010, 87,1-7.
- [8]. Srivastava A.K., Shukla N., Pandey A. and Srivastava A., QSAR Based Modeling on a series of alpha-Hydroxy amides as a novel class of Braykinin B1 selective antagonists. J. Saudi Chem. Soc., 2011, 15,215-220.
- [9]. Srivastava A.K., Pandey A., Srivastava A.and Shukla N.,QSAR based modeling of hepatitis C virus NS5B inhibitors . J. Saudi Chem. Soc., 2011, 15, 25-28
- [10]. Srivastava A. K., Shukla N., QSAR based modeling on a series of lactam fused chroman derivatives as selective 5-HT transporters, , Journal of Saudi Chemical Society, 2012, 16 (4), 405-412
- [11]. Shukla N. , Srivastava A. K.QSAR based modeling on a novel series of 2-chlorobenzamide derivatives as potent P2X (7) receptor antagonist, Oxidation Communications, 2014, 37 (1), 290-300

- [12]. Srivastava A. K., Shukla N., Pathak V. K. Quantitative Structure ActivityRelationship(QSAR) Studies on a series of carbamate appended N-alkylsulfonamides as inhibitors of peptide amyloid- β (A β), , Oxidation Communications, 2013, 36 (4), 1090-1101
- [13]. Shukla N., Srivastava A. K., QSAR studies on a novel cyclohexanamine class of human serotonin transporter (hSERT) inhibitory activities , Oxidation Communications, 2013, 36 (1), 133-142
- [14]. Srivastava A. K., Shukla N., QSAR-based Modelling on a Novel Series of Pyrimidine-4carboxamides as Antagonists of the Human A1 Receptor, , Oxidation Communications 35 (2), 423-437
- [15]. Shukla N., QSAR studies on a series of 9-THC analogues as cannabinoid receptor modulators, 2014, 2, 29-36,
- [16]. Diudea, M.V., 2000. QSPR/QSAR Studies for Molecular Descriptors. Nova Science, Huntington, New York.