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ABSTRACT 
 

Scientists have developed mathematical methods to imitate the processing performed by our body and extract the 

frequency information contained in a signal. These mathematical algorithms are called transforms and the most 

popular among them is the Fourier Transform. The method to analyze non-stationary signals is to first filter different 

frequency bands, cut these bands into slices in time, and then analyze them. The wavelet transform uses this 

approach. The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable modulated window solves the 

signal-cutting problem. The window is shifted along the signal and for every position the spectrum is calculated. 

Then this process is repeated many times with a slightly shorter (or longer) window for every new cycle.  
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I. INTRODUCTION 

To overcome the limitation of FT, Short Time Fourier 

Transform (STFT) was proposed. There is only a minor 

difference between STFT and FT. In STFT, the signal is 

divided into small segments, where these segments 

(portions) of the signal can be assumed to be stationary. 

For this purpose, a window function "w" is chosen. The 

width of this window in time must be equal to the 

segment of the signal where it is still be considered 

stationary. By STFT, one can get time-frequency 

response of a signal simultaneously, which can’t be 

obtained by FT. The short time Fourier transform for a 

real continuous signal is defined as: 

X (f, t) = 
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Where the length of the window is (t-) in time such 

that we can shift the window by changing value of t, 

and by varying the value  we get different frequency 

response of the signal segments. 

The basis set of wavelets is generated from the mother 

or basic wavelet is defined as: 
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The variable ‘a’ (inverse of frequency) reflects the scale 

(width) of a particular basis function such that its large 

value gives low frequencies and small value gives high 

frequencies. The variable ‘b’ specifies its translation 

along x-axis in time. The term 1/ a  is used for 

normalization. 

 

II. LITERATURE REVIEW 

 

1-D Discrete wavelet transform  

 

The discrete wavelets transform (DWT), which 

transforms a discrete time signal to a discrete wavelet 

representation. The first step is to discretise the wavelet 

parameters, which reduce the previously continuous 

basis set of wavelets to a discrete and orthogonal / ortho 

normal set of basis wavelets. 

m,n(t) = 2m/2 (2mt – n) ; m, n   such that -  < m, n < 

                                              -------- (2.5) 

The 1-D DWT is given as the inner product of the signal 

x(t) being transformed with each of the discrete basis 

functions. 
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III. THE SIMULATION METHOD 
 

Five types of Wavelet Transform Implemented: 

 

1) Haar Wt 

2) Coiflet-5 Wt 

3) Daubenchies  

4) Bior 

 5) Symlet-5 

In wavelet decomposing of an Signal, the  

decomposition is done row by row and then column by 

column. For instance, here is the procedure for an N x 

M image. You filter each row and then down-sample to 

obtain two N x (M/2) images. Then filter each column 

and subsample the filter output to obtain four (N/2) x 

(M/2) images. 

 

A valid signal model is necessary for accurate Vibration 

detection. Normally, a vibration waveform is 

represented as a sinusoid and normal distribution white 

noise (Gaussian noise) as follows: 

 

1 Haar wavelet 

 

The Haar transform is based on the calculations of the 

averages (approximation co-efficient) and differences 

(detail co-efficient). Given two adjacent pixels a and b, 

the principle is to calculate the average 
2
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s


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the difference bad  . If a and b are similar, s will be 

similar to both and d will be small, i.e., require few bits 

to represent. This transform is reversible, since
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In mathematics, the Haar wavelet is a sequence of 

rescaled "square-shaped" functions which together form 

a wavelet family or basis. Wavelet analysis is similar to 

Fourier analysis in that it allows a target function over 

an interval to be represented in terms of an orthonormal 

function basis. 

IV. EXPERIMENT RESULT  

Tool Used for analysis is Matlab 8.3 

Simulation of the proposed system has been done in 

Matlab software. Simulation results are shown in fig  

 

Analysis by haar wavelet 

 

Figure 1. Input Vibration signal 

 
Figure 2. Output of haar WT 

 

 

1. Analysis by Coiflet wavelet: 

 

Coiflets are discrete wavelets designed by Ingrid 

Daubechies, at the request of Ronald Coifman, to 

have scaling functions with vanishing moments. The 

wavelet is near symmetric, their wavelet functions have 

vanishing moments and scaling functions , 

and has been used in many applications using 

Calderón-Zygmund Operators 

2. Coiflet Coefficients 

Both the scaling function (low-pass filter) and the 

wavelet function (High-Pass Filter) must be normalised 

by a factor . Below are the coefficients for the 

scaling functions for C6-30. The wavelet coefficients 

are derived by reversing the order of the scaling 

function coefficients 

http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Ingrid_Daubechies
http://en.wikipedia.org/wiki/Ingrid_Daubechies
http://en.wikipedia.org/wiki/Ronald_Coifman
http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://en.wikipedia.org/wiki/Wavelet#Scaling_function


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  880 

 

 
Figure 3. Output Result- Coiflets wavelet 

  

3. Analysis by Daubechies wavelet: 

Daubechies wavelet: 

 

The Daubechies wavelets, based on the work of Ingrid 

Daubechies, are a family of orthogonal wavelets 

defining a discrete wavelet transform and 

characterized by a maximal number of vanishing 

moments for some given support. With each wavelet 

type of this class, there is a scaling function (called the 

father wavelet) which generates an orthogonal 

multiresolution analysis. 

 
Figure 4. Output: Daubechies wavelets  

 

4. Analysis by Biorthogonal wavelet: 

Bior Wavelet 

It is well known that bases that span a space do not have 

to be orthogonal. In order to gain greater flexibility in 

the construction of wavelet bases, the orthogonality 

condition is relaxed allowing semi -orthogonal, 

biorthogonal or non orthogonal wavelet bases. 

Biorthogonal Wavelets are compactly supported 

symmetric wavelets. The symmetry of the filter 

coefficients is often desirable since it results in linear 

phase of the transfer function . In the biorthogonal case, 

rather than having one scaling and wavelet function, 

there are two scaling functions that may generate 

different multiresolution analysis, and accordingly two 

different wavelet functions.The dual scaling and 

wavelet functions have the following properties: 

 

1. The y are zero outside of a segment. 

2. The calculation algorithms are maintained, and thus 

very simple. 

3. The associated filters are symmetrical.  

4. The functions used in the calculations are easier to 

build numerically than those used in the Daubechies 

wavelets. 

 

 
Figure 5. Output Result- Bior wavelet 

 

5. Analysis by Symlet wavelet: 

Symlet wavelet 

 In applied mathematics, symlet wavelets are a family of 

wavelets. They are a modified version of Daubechies 

wavelets with increased symmetry. 

The symlets are nearly symmetrical wavelets proposed 

by Daubechies as modifications to the db family. The 

properties of the two wavelet families are similar. Here 

are the wavelet functions psi.You can obtain a survey of 

the main properties of this family by typing wave 

info('sym') from the MATLAB command line. See 

Symlet Wavelets: symN for more detail. 

http://en.wikipedia.org/wiki/Ingrid_Daubechies
http://en.wikipedia.org/wiki/Ingrid_Daubechies
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Moment_%28mathematics%29
http://en.wikipedia.org/wiki/Support_%28mathematics%29
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Figure 6. Output Result Symlet wavelet 

V. Mathematical Analysis by Wavelet 

Transform 
  

Filter bank is the building block of discrete-time 

wavelet transform 

For 1-D signals, two-channel filter bank is depicted 

below 

 

 
 

 It converts an input series x0, x1, ..xm, into one high-

pass wavelet coefficient series and one low-pass 

wavelet coefficient series (of lengthn/2 each) given 

by: 

 where sm(Z) and tm(Z) are called wavelet filters, K is 

the length of the filter, and i=0, ..., [n/2]-1.  

 

Calculation of Peak Signal to Noise Ratio 

And Mean Square Error: 

 

 
 

Where R(row=255) is the maximum fluctuation in the 

input signal.  

 

 

Where, M and N are the number of rows and columns in 

the input signal respectively. 

I1(m , n) and I2(m , n) are the two input signal.  

 

Tabular form PSNR: 

 

 
 

Tabular form MSE: 

 

 

 

VI. Graphical PSNR comparison 

 

 
Figure 7. PSNR for band0 signal 
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Figure 8. PSNR for band1 signal 

 
Figure 9. PSNR for band2 signal 

 

 
Figure 10. PSNR for band3 signal 

  

VII. Graphical MSE comparison 

 

 
Figure 11. PSNR for band0 signal 

 
Figure 12. PSNR for band1 signal 

 
Figure 13. PSNR for band2 signal 

 
Figure 14. PSNR for band3 signal 

 

VIII. CONCLUSION 

 

Analysis of vibration signal and the results of the 

investigation demonstrate the components of signal. The 

results of testing various popular types of the WT show 

different values of PSNR and MSE. From the rsult we 

conclude that, 

 

 In this project work, five wavelets are 

implemented . From result we conclude that 

  Peak signal to noise ratio is better in Haar 

wavelet transform as compared to other 

wavelets 

 Mean Square Error is also less in Haar wavelet 

transform  

 Wavelet Transform method is better to analyze 

over conventional method . 
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IX. Applications 

 
 Fault Detection In Auto-industry 

  Bearing Fault Detection 

  Applications In Petrochemical Industry 

 System Monitoring 

 Noise Reduction 
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