
IJSRSET1841212 | Received : 03 April 2018| Accepted : 15 April 2018 | March-April-2018 [(4) 4 : 1026-1030]

© 2018 IJSRSET | Volume 4 | Issue 4 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section : Engineering and Technology

1026

A Survey on AES (Advanced Encryption Standard) and RSA

Encryption-Decryption in CUDA
Manisha N. Kella*1 and Sohil Gadhiya2

*1Computer Engineering, C.U. Shah University, Wadhwan, Gujarat, India

manishakella111@gmail.com
2Computer Engineering, C.U. Shah University, Wadhwan, Gujarat, India

sohilgadhiya@gmail.com

ABSTRACT

CPUs and GPUs have fundamentally different design philosophies, but combining their characteristics could

avail better performance and throughput. In this paper, we will study the technologies of GPU parallel

computing and its optimized design for cryptography. The advent of the Compute Unified Device Architecture

(CUDA) from NVIDIA Technology has shifted Graphics Processing Units (GPUs) from primarily graphics

enabling devices to general-purpose stream processing devices. Cryptography is the study of techniques focused

on security. Two algorithms are selected for investigation AES and RSA in CUDA. The designs of most

cryptographic algorithms are such that they can benefit considerably from parallel computing, which consumer

GPUs can provide inexpensively and economically. Parallelization of these security algorithms in order to

distribute the complex computational part among the various cores available with the processors today, will

achieve higher performance and also be more energy efficient. Hence, combination of both algorithms will

help to provide better security and efficiency.

Keywords: GPU, CPU, CUDA, AES, RSA, Cryptography

I. INTRODUCTION

Parallel computing involves simultaneous use of

multiple compute resources to solve a large

computational problem. The performance and energy

benefits of parallelism are key drivers for the growth

in parallel computing. Parallelization of security

algorithms in order to distribute the complex

computational part among the various cores available

with the processors today, will achieve higher

performance and also be more energy efficient.

Cryptography is the study of techniques focused on

security. Typically, an implementation of

cryptography is computationally heavy, leading to

performance issues on general purpose system.

General-purpose computing on graphics processing

units (GPGPU) is the use of a graphics processing unit

(GPU), which typically handles computation only for

computer graphics, to perform computation in

applications traditionally handled by the central

processing unit (CPU).

Encryption and decryption are increasingly important.

In order to protect the security of individuals,

corporations and even governments, information

needs to be secured against potential threats. Since

AES on large blocks is computationally intensive and

largely byte-parallel. Certain modes of AES are more

easily parallelizable and these are ideal candidates for

parallelization on GPUs. Also, using GPU resources as

co-processors allows better utilization of the central

mailto:manishakella111@gmail.com
http://gmail.com/

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Manisha N. Kella and Sohil Gadhiya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 1026-1030

 1027

processing unit. Analysis of RSA algorithm is also

discussed.

II. PARALLEL PROGRAMMING WITH CUDA

The Graphics Processing Unit (GPU) has been an

integral part of today’s mainstream computing

systems. The modern GPU is not only a powerful

graphics engine but also a highly parallel

programmable processer featuring peak arithmetic.

And NVIDIA provides CUDA framework which is a

general purpose parallel computing platform and

programming model. With CUDA, programmers can

parallel many computations easily.

III. PERFORMANCE OF GPU OVER CPU

As a kind of computing device, GPU is featured of

parallel computing compared with traditional CPU

that is serial computing. The reason behind the

discrepancy in computing mode between CPU and

GPU is that GPU is specialized for compute-intensive,

highly parallel computation exactly what graphics

rendering is about and therefore designed such that

more transistors are devoted to data processing rather

than data caching and flow control.

For parallel computing, the user can define threads

which run on GPU in parallel using standard

instructions we are familiar with within the field of

general purpose programming. The user declares the

number of threads which must be run on a single SM

by specifying a block size. The user also defines

multiple blocks of threads by declaring a grid size. A

grid of threads makes up a single kernel of work

which can be sent to GPU and when finished, in its

entirety, is sent back to the host and made available to

the application.

Figure 1. CPU Architecture

The processor architecture differs considerably from

that of the GPU because of the CPU main scope. The

CPU has a purpose of multiple tasks and multiple

types of computations. The GPU has a single purpose

of mathematical computation in order to display

graphics.

Figure 2. GPU architecture

IV. TRADITIONAL AES ALGORITHM

AES algorithm is a symmetric key cryptography. The

AES standard comprises three block ciphers, i.e. AES-

128, AES-192 and AES-256. The encryption of AES is

carried out in blocks with a fixed block size of 128

bits each. The AES cipher calculation is specified as a

number of repetitions of transformation rounds that

convert the input plaintext into the final output of

cipher text.

Each round consists of several processing steps,

including one that depends on the encryption key. A

set of reverse rounds are applied to transform the

cipher text back into the original plaintext using the

same encryption key. From this figure, we can see

that the AES-algorithm is iterative and several rounds.

The input is a block of data and the initial key. Each

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Manisha N. Kella and Sohil Gadhiya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 1026-1030

 1028

round operates on the intermediate result of the

previous round and is a sequence of the four

transformations, namely Sub Bytes, Shift Rows, Mix

Columns and Add Round-Key. The intermediate

result of any step is called the state. The final round is

slightly different and the output after several rounds

is the block of encrypted data.

1. Key Expansion:

Key expansion takes the input key of 128, 192 or 256

bits and produces an expanded key for use in the

subsequent stages. The expanded key’s size is related

to the number of rounds to be performed. For 128-bit

keys, the expanded key size is 352 bits. For 192 and

256 bit keys, the expanded key size is 624 and 960 bits.

It is the expanded key that is used in subsequent

phases of the algorithm. During each round, a

different portion of the expanded key is used in the

Add Round Key step.

2. Add Round Key:

During this stage of the algorithm, the message is

combined with the state using the

appropriate portion of the expanded key.

3. Sub Bytes:

During this stage, the block is modified by using an 8-

bit substitution, or S-Box. This is a non-linear

transformation used to help avoid attacks based on

algebraic manipulation.

4. Shift Rows:

This stage of the algorithm shifts cyclically shifts the

bytes of the block by certain offsets. Blocks of 128 and

192 bits leave the first 32-bits alone, but shift the

subsequent 32-bit rows of data by 1, 2 and 3 bytes

respectively.

5. Mix Columns:

This stage takes the four bytes of each column and

applies a linear transformation to the data. The

column is multiplied by the coefficient polynomial

c(x) = 3x3+x2+x+2 (modulo x4+1). This step, in

conjunction with the Shift Rows step, provides

diffusion in the original message, spreading out any

non-uniform patterns. At the end of the algorithm,

the original message is encrypted.

The decryption implementation results are similar to

the encryption implementation. The key expansion

module is modified in the reverse order. In which last

round key is treated as the first round and decreasing

order follows.

Figure 3: AES algorithm

V. PRINCIPLE OF AES PARALLELISM

In the traditional implementation of AES, the

computation of data blocks is performed serially in

GPU. Therefore, the efficiency and speed is poor.

Figure illustrates the principle of AES parallelism.

Figure 4. Principle of AES parallelism

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Manisha N. Kella and Sohil Gadhiya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 1026-1030

 1029

From this figure, we can see that in GPU, it includes

three components: the thread execution manager, the

block manager and multiple threads. After CPU calls

the kernel function executed in GPU, GPU will

enable the block manger active through the thread

execution manager. The block manager will then

divide plaintext into multiple blocks. Then, each

block will be computed in individual thread. Finally,

the encrypted block will be outputted to CPU, which

will be assembled into the cipher text. Since GPU

allows the number of thread in parallel to be the

magnitude of one hundred thousand. Therefore, the

AES encryption on GPU has high efficiency of

parallel computing.

VI. EXISTING RSA ALGORITHM

RSA is a algorithm for public-key cryptography

developed by Ronald Rivest, Adi Shamir, and Leonard

Adleman in 1977. It is suitable for both signing and

encryption. Sufficiently long keys and up-to-date

implementation of RSA is considered more secure to

use.

RSA is an asymmetric key encryption scheme which

makes use of two different keys for encryption and

decryption. The public key that is known to everyone

is used for encryption. The messages encrypted using

the public key can only be decrypted by using private

key. The key generation process of RSA algorithm is

as follows:

The public key is comprised of a modulus n of

specified length (the product of primes p and q), and

an exponent e. The length of n is given in terms of

bits, thus the term “8-bit RSA key" refers to the

number of bits which make up this value. The

associated private key uses the same n, and another

value d such that d*e = 1 mod φ (n) where φ (n) = (p -

1)*(q - 1) [3]. For a plaintext M and cipher text C, the

encryption and decryption is done as follows:

C= M^e mod n

M = C^d mod n.

VII. PARALLELIZATION OF RSA ALGORITHM

This novel parallelized implement of RSA algorithm

can run parallel in two levels, thread level and the

computer level, as we can see in below figure.

Figure 5. Parallelization of RSA

In the thread level, the parallel RSA algorithm is

realized with CUDA framework. RSA algorithm

divides the plaintext or the cipher text into several

packets with the same length, the same encrypt or

decrypt operation will be done for each packet. Here

we suppose each packet is an array with the same

element number, then the encrypt and the decrypt

process can be done with multiple threads, each

thread only need to gain the elements which are

assigned to it, and run the same encrypt or decrypt

function for these elements. CUDA user can get the

thread and block index of the thread call it in the

function running on device, so we can use the index

to control the offset of the element and assign the

right elements to the certain threads. In this level, the

CUDA Multi-threaded programming model will

dramatically enhanced the speed of RSA algorithm.

CUDA user can get the thread and block index of the

thread call it in the function running on device, so we

can use the index to control the offset of the element

and assign the right elements to the certain threads.

In this level, the CUDA Multi-threaded programming

model will dramatically enhance the speed of RSA

algorithm. And if the plaintext needs to be encrypted

or the cipher text needs to be decrypted is too large to

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Manisha N. Kella and Sohil Gadhiya et al. Int J S Res Sci. Engg. Tech. 2018 Mar-Apr;4(4) : 1026-1030

 1030

be process on single computer, we can use distributed

file system to distribute the text to a cluster system.

Each node of the cluster system will

run this parallel RSA algorithm. This is the computer

level parallel. In this cluster environment, each node

get a part of the plaintext or the cipher text, and then

divides the part into several strings, run the RSA

algorithm function in multiple threads just like the

thread level does.

VIII. CONCLUSION AND FUTURE WORK

In this paper, an efficient way to enhance the

encryption/decryption of AES and RSA using GPU’s is

proposed. This report presents the most efficient,

currently known approaches in encryption and

decryption of text with AES and RSA on

programmable graphics processing units, achieving up

to a great speed on a comparable CPU. If the amount

of data is large, the encryption/decryption time

required is greatly reduced, if it runs on a graphics

processing environment. Future work will explore

this concept and a combination of algorithms will be

applied to setup a more secure environment for data

storage and retrieval.

IX. REFERENCES

[1]. Jason Sanders, Edward Kandrot, "Cuda by

Example" Nvidia.

[2]. J. Nickolls, I. Buck, M. Garland, and K. Skadron,

Mar.2008.-Scalable Parallel Programming with

CUDA.

[3]. Mahajan, Sonam, and Maninder Singh. "Analysis

of RSA algorithm using GPU programming.",

2014.

[4]. National Institute of Standards and

Technology(NIST), "FIPS 197: Advanced

Encryption Standard(AES)," 2001.

[5]. NVIDIA Corp. NVIDIA CUDA Programming

Guide 2.3, 2009.

[6]. J. Daemen, V. Rijmen, "AES Proposal: Rijndael".

Original AES Submission to NIST, 1999.

[7]. GPU Computing By John D. Owens, Mike

Houston, David Luebke, Simon Green, John E.

Stone, and James C. Phillips.

[8]. Best Practice Guide – GPGPU Momme Allalen,

Leibniz Supercomputing Centre Vali Codreanu,

SURFsara Nevena Ilieva-Litova, NCSA Alan Gray,

EPCC, The University of Edinburgh Anders

Sjöström, LUNARC.

[9]. http://www.tomshardware.com/reviews/nvidia-

cuda-gpu,1954-7.html

[10]. The RSA Algorithm R. L. Rivest, A. Shamir,

and L. Adleman. A method for obtaining digital

signatures and publickey cryptosystems.

Communications of the ACM, 21(2):120{126,

1978.

[11]. International Journal of Innovative Research

in Computer and Communication Engineering

Vol. 4, Issue 4, April 2016

http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954-7.html
http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954-7.html

