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ABSTRACT 

 

This paper discusses the suspension of a two-degree-of-freedom (2-DOF), Linear Quarter Car, vehicle system. 

MATLAB/Simulink environment is used to analyze response of the quarter car. The quarter car model is 

subjected to various inputs like step input, sine, random, saw tooth, ramp etc... To study the system, first the 

governing equations for a linear quarter car model are derived. Then a Differential Equation approach, State 

Space approach and Transfer Function approach was used using Simulink blocks. For all the approaches the 

results matches to each other. 
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I. INTRODUCTION 

 

The automobile is a combination of variety of 

complex systems. Each system has its own functions 

to perform and how good an automobile turns out to 

be depends on the proper synthesis of these systems. 

One such system is the suspension system. Suspension 

system has been widely used, to the vehicles from the 

horse drawn carriages with flexible leaf springs, to the 

modern automobiles with complex control 

algorithms.  

 

The conventional system i.e. passive suspension 

system, which comes as is, is a system of springs, 

shock absorbers, bushings, rods, linkages and arms. 

Vehicles generally have two suspension systems – one 

for the front wheel and other for rear. These two 

systems work together to control driving and 

breaking forces to provide smooth ride for driver and 

passengers. 

 

The passive suspension systems are trade off between 

ride comfort and performance. A case with a nice 

cushy ride usually wallows through the corners 

whereas a car with high performance suspension, like 

F1 cars, will hang on tight through the corners but 

will make the passengers feel very every little dip and 

bump in the road.  

II. VEHICLE MODEL 

 

Modeling of suspension system is done in the vertical 

plane. Longitudinal or transverse deflection of the 

suspension components is considered negligible in 

comparison to vertical deflections. A linear 2-DOF 

system is used as a model for the road vehicle. The 

two masses m1 and m2, of the vehicle model 

represent the wheel (and axle if there is any) and the 

vehicle body (often called the unsprung and the 

sprung mass, respectively). These masses representing 

one half or a quarter of a real car. The spring stiffness 

are k1, k2 and the damper stiffness are c1, c2. 
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Figure 1. 2-DOF (Linear) system with base 

excitation (Quarter Car Model). 

 

III. MATHEMATICAL MODELING 

 

Differential equations (DE) to account for the moving 

base become,  

 

m1x¨1+(c1+c2)x˙1+(k1+k2)x1-c2x˙2-k2x2-c1x˙3-k1x3 = 0 

m2x¨2+c2x˙2+k2x2 - c2x˙1 - k2x1 = 0  ---- (1) 

 

Transfer Function (TF)  

Taking the Laplace transform of the eq.1, we get, 

m1 (s² X1 – sx(o)-x˙(o)) + (c1+c2)  (sX1 – x(o)) + (k1+k2)X1  

= c2 (s X2 –x(o)) + k2X2 +c1 (s X3 – x(o)) + k1X3 

&         

m2 (s² X2 – sx(o)-x˙(o)) + (c2s X2 - c2 x(o)) +   

k2X2 = (c2s X1 - c2 x(o)) + k2X1   

                                    ---- (2) 

Putting initial conditions, x (o) =0 and  

x˙ (o) = 0, 

m1 (s²+ (c1+c2) s + k1+k2) X1 = (c2 s + k2 )X2 + (c1  s + k1)X3 

&      

 (m2s²+c2s+k2)X2=(c2s+k2)X1                            ---- (3) 

The second equation from (3) can be written as, 

X2/X1=(c2s+k2)/(m2s²+ c2s + k2 )          ---- (4) 

The equation, (4), is known as transmissibility 

function. 

eliminating X1 from above equations,  

X1 = (m2 s²  + c2s  + k2 )X2 / (c2s + k2) 

Now, 

m1 (s²+ (c1+c2) s  k1+k2) (m2 s²  + c2s  + k2 )X2 / (c2s + k2) = 

(c2 s + k2 )X2 + (c1 s + k1)X3 

solving and rearranging, we have 

X2 / X3 

= [c1c2s2+(k1c2+k2c1)s+k1k2]  

/{[m1m2s4+[m1c2+m2(c1+c2)]s³+[m2(k1+k2) 

+c1c2+m1k2]s²+(k1c2+k2c1)s+k1k2}          ---- (5) 

 

Similarly we can compute, 

X1 / X3 

= {m2c1 s3+ (c1c2+ m2 k1)s2 + (c1 k2 +c2k1)s + k1k2} 

 /{m1m2s4+[m1c2+m2(c1+c2)]s³+[m2(k1+k2)+c1c2 

+m1k2]s²+(k1c2+k2c1)s+k1k2} [1, 2, 4, 5, 6] ---- (6) 

 

State Space Approach (SS)  

For the given system we define 4 state variables, two 

gives the displacement of the two masses and the 

other two gives the velocities of the respective 

masses. [1, 4, 5, 6, 8] 

We have,  

m1x¨1+(c1+c2)x˙1+(k1+k2)x1 - c2x˙2 - k2x2 - c1x˙3 - k1x3 = 

0 

m2x¨2+c2x˙2+k2x2-c2x˙1-k2x1=0 ----(Refer eq. 1) 

Let, 

x1(t) = x2        x2(t) = x1 

x3(t)  = x1˙(t)                    x4(t)  = x2˙(t) 

x3˙(t)  = x1¨(t) = x¨2 x4˙(t)  = x2¨(t) = x¨1    ----(7) 

 

Putting equation (6) in equation (1), we can get  

x4˙(t) = (c2/m1)x3(t) + (k2/m1)x1(t)   + (c1/m1)x˙3 +( 

k1/m1)x3–[(c1+c2)/m1] x4(t)  – [(k1+k2)/m1] x2(t) 

 

x3˙ (t) = (c1/m2)x4(t) + (k2/m2)x2(t) – (c2/m2)x3(t)  

 – (k2/m2) x1(t) 

And 

x1˙(t)     =  x3(t)                      

x2˙(t)   =  x4(t)   

Finally re-arranging above equations in the following 

form of equation 

x˙(t) = Ax (t)+ B u(t) 

y(t)  = Cx (t) + D u(t)               

   ---- (8) 

 

where x˙(t), x(t), y(t), A, B, C and D are the matrices 

of various order. 
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Here matrix A is called the State Matrix, B is the 

Input Matrix, C is the Output Matrix and D is the 

Direct Transmission Matrix. 

 

 

 
 

IV. RESULTS  

 

Simulation using Simulink 

Simulink® is a software package for modeling, 

simulating, and analyzing dynamic systems. It 

supports linear and nonlinear systems, modeled in 

continuous time, sampled time, or a hybrid of the 

two. Systems can also be multirate, i.e., have different 

parts that are sampled or updated at different rates. 

 

Simulink is a graphical extension to MATLAB for 

modeling and simulation of systems. In Simulink, 

systems are drawn on screen as block diagrams. Many 

elements of block diagrams are available, such as 

transfer functions, summing junctions, etc., as well as 

virtual input and output devices such as function 

generators and oscilloscopes. Simulink is integrated 

with MATLAB and data can be easily transferred 

between the programs. Here, Simulink is used to 

model the simple linear spring mass 2 DOF base 

excitation systems, and is used to simulate the system. 

Simulink is supported on UNIX, Macintosh, and 

Windows environments; and is included in the 

student version of MATLAB for personal computers. 

[4, 7] 

 

 

Input Data – Quarter Car Model  

m1 = 40kg            m2 = 240kg 

c1 = 49KN s/m             c2 = 7 KN s/m 

k1 = 140 KN/m             k2 = 20KN/m [2] 

 

Frequency Response Function (FRF) plot 

 
Figure 2. Frequency Response plot for Linear quarter 

car model. 

 

Transmissibility Function plot 

 
Figure 3. Transmissibility Function plot for Linear 

quarter car model. 

 

The sprung and unsprung mass frequency responses 

are shown here, when input is known. The FRF are 

computed for x1/x2 and x2/x3. If input is not known, 

generally transmissibility is computed between 

sprung and unsprung mass. 

The peak gains are as follows: 

 

FRF: 

For x1/x3, maximum gain is 1.85(absolute) which 

occurs at 0.0414 Hz.  

For x2/x3, maximum gain is 10.08(absolute) at 0.0428 

Hz frequency. 

 

Transmissibility Function: 

Maximum gain is 9.96 (absolute) at 0.0458 Hz. 
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MATLAB/Simulink Results for Linear Quarter Car 

Model: 

Step Input: (Step = 3units) 

 
Figure 4. Step response for SS, TF, DE approach. 

 

Sine Input: 

 
Figure 5. Sine response for SS, TF, DE approach. 

 

 

 

 Random Input: 

 

 
Figure 6. Random response – SS, TF, DE approach. 

 

Saw Tooth Input: 

 
Figure 7. Saw Tooth response – SS, TF, DE 

approach. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1648 

V. CONCLUSION 

 

Here, MATLAB/Simulink environment is used to 

simulate the Linear Quarter Car Model. 

Mathematically obtained FRFs are simulated using 

MATLAB. When input is known, the FRFs are 

computed for x1/x2 and x2/x3. If input is not known, 

generally transmissibility is computed between 

sprung and unsprung mass. There is only one peak in 

transmissibility function. This peak occurs near the 

sprung mass resonance, but it is not natural mode of 

system because the transmissibility only indicate how 

the sprung mass is responding relative to the 

unsprung mass (the inverse shows the opposite 

relation). 

 

In SIMULINK, three different approaches, 

Differential Equation (DE), Transfer Function (TF) 

and State Space (SS) are used for the analysis of a 

Linear Quarter Car Model. Responses obtained shows 

that the approaches used give same results. 

 

Here only standard test signals (i.e. Unit Step, 

Sinusoidal and Random etc.) are used to obtain the 

system responses. In reality the road disturbances are 

random in nature and hence if available the actual 

road load data, will be utilized. Simulink can be 

proved to be the best tool from the analysis and the 

interpretation point of view. 
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