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ABSTRACT 

 

The aim of this paper is to introduce the mathematical modeling of a tire-vehicle suspension system for a 

quarter car model. This paper discusses the 2-DOF system as a quarter car model with base excitation. To study 

the system, first derive the dynamic equations of the vehicle model. The Laplace transform approach is selected 

with assumption that the displacement of the base is a half-sine wave. To analyse the responses, a interactive 

system MATLAB® is used. The simulation results shows that a two degree-of-freedom system with 

appropriately chosen parameters can be an effective isolator of ground vibrations compared to a single degree-

of-freedom system. 

Keywords : Tire-Vehicle Suspension System, Mathematical Modelling, Laplace transform, Two-Degree-of-

Freedom 

 

I. INTRODUCTION 

 

Since the days of horse-drawn spring carriages people 

have strived for making rides com¬fortable by 

isolating the car body from road irregularities. 

Today's "carriage" isolation could consist of passive 

and/or active spring and dashpot elements. The aim of 

this paper is to optimize a passive linear spring-

dashpot road vehicle suspension system with respect 

to both ride comfort and road holding. 

 

Since the 1950s the theory of stochastic processes has 

been applied to road vehicle response problems. The 

road profile is taken as a one-dimensional stationary 

Gaussian stochastic process in space. The road vehicle 

is modeled as a linear two-degree-of-freedom (2-DOF) 

system. The road-induced vehicle responses studied 

will then come out as stochastic processes of the same 

type. Criteria for ride comfort and road holding are 

formulated on the basis of the vertical acceleration 

response of the vehicle and the wheel-road force, 

respectively. The vehicle suspension working space is 

limited and the limitation is formulated in 

probabilistic terms.  

 

The ride comfort criterion is based on the vertical 

acceleration response process pi of the vehicle. This 

process is filtered through the passenger's seat and 

then also weighted in the frequency domain 

according to human sensitivity to vertical 

acceleration. The power spectral density of a process 

so obtained could serve as a base for subjective 

judgment of the ride comfort, or the standard 

deviation of the process could be used. It is supposed 

in what follows here that the largest maxima of a 

weighted stochastic acceleration process are mainly 

responsible for ride discomfort and the comfort 

criterion is based on these maxima only. 
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When studying road holding and limited working 

space (under stochastic excitation) the quantities most 

commonly used hitherto are the standard deviations 

of the road-wheel contact force and of the distances. 

In what follows here, however, optimal road holding 

is defined as a minimum probability that the 

randomly varying part of the road-wheel contact 

force will exceed a given level during a specified time 

period. 

 

The suspension of a two-degree-of-freedom (2-DOF) 

vehicle traveling on a forlornly corrugated road is 

optimized with respect to both road holding and ride 

comfort. [3,6] 

 

Optimal comfort is defined as a minimum mean value 

of the latest maxima of a stationary Gaussian random 

process. This process is the vertical vehicle seat 

acceleration weighted with respect to human 

sensitivity (ISO 2631).  [6] 

 

Optimal road holding is defined as a minimum 

probability that the road-wheel contact force will be 

smaller than a given level. This contact force is 

conceived as another stationary Gaussian random 

process.  [6] 

 

The two criteria are synthesized and the suspension 

system is optimized with respect to the joint criterion 

obtained. One restriction accounted for is the limited 

working space of the vehicle suspension. 

 

II. VEHICLE MODEL 

 

A linear 2-DOF system is used as a model for the road 

vehicle (Refer Fig.1). The two (fixed-base) eigen 

frequencies of the model should represent the lowest 

two eigen frequencies of the Vehicle. The lowest 

eigen frequency of a road vehicle pertains to the 

whole-body vibration. For a medium-size passenger 

car this frequency is about 1.0-1.5 Hz (6-10 radians/s). 

The second lowest eigen frequency is due to wheel 

vibration. Normally this frequency is about 10 Hz (60 

radians/s). 

 

The two masses m1 and m2, of the vehicle model 

represent the wheel (and axle if there is any) and the 

vehicle body (often called the unsprung and the 

sprung mass, respectively). These masses 

(representing one half or a quarter of a real car). The 

spring stiffness are k1, k2 and the damper stiffness are 

c1, c2 . (Refer Fig. 2.1) [1,5,6] 

 

 
Figure 1. 2-DOF system with base excitation. 

 

III. DYNAMIC EQUATIONS OF VEHICLE MODEL 

 

Another way to determine the efficacy of a two 

degree-of-freedom isolation system is to compare the 

magnitude of the peak (maximum) displacement of  

m2 to the magnitude of the peak displacement of the 

ground. To analyze this type of situation, we consider 

the base supporting the two degree-of-freedom 

system to be a moving base as shown in Figure1. In 

analyses of such systems, one usually assumes that the 

masses are initially at rest and that there are no 

applied forces directly on the inertial elements, and 

x3(t) is given. Eqs. to account for the moving base 

become,  

 

m1x¨1+(c1+c2)x˙1+(k1+k2)x1 - c2x˙2 

 –k2x2  - c1x˙3 - k1x3 = 0                                     ------1 
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m2x¨2+c2x˙2+k2x2 - c2x˙1 - k2x1  = 0 

 

After using the nondimensional quantities, Eqs.(1) are rewritten as 

x¨1+(2ζ1 + 2ζ2mrωr)x˙1+(1+ mrωr2)x1 –  

2ζ2mrωr x˙2 - mrωr2x2  - 2ζ1x˙3 - x3 = 0   

                                                                       ---------2 

x¨2+2ζ2ωr x˙2+ ωr2 x2 - 2ζ2mr x˙1 - ωr2 x1  = 0 

 

Then, taking the Laplace transform of Eqs. (2) and solving for X1 (s) 

and X2(s), which are the transforms of x1() and x2(), respectively, we find that 

 

X1(s) = K3(s)E2(s) / D2(s) 

                                                             ----------3 

X2(s) = K3(s)C(s) / D2(s) 

 

Where, 

K3(s) = (2ζ1s + 1) X3(s) - 2ζ1X3(0) 

E2(s) = s² + 2ζ2ωrs + ωr²                             -------- -4 

C(s) = 2ζ2ωrs + ωr² 

 

D2(s) = s4 + [2ζ1+ 2ζ2ωr mr+ 2ζ2ωr ] s³ + [1+ mrωr2 +ωr2  + 4ζ1ζ2ωr ] s² + [2ζ2ωr + 2ζ1ωr²] s + ωr² 

 

To compare the responses of the single degree-of-freedom system with a moving base to that of a two degree-

of-freedom system with a moving base, we assume that the displacement of the base is a half-sine wave. [1] 

x3() = Xo sin(Ωo)[u() – u( - o)]       ---------5 

where, Ωo = ωo / ωn1  

            o = ωn1 to  & to = П /ωo 

Assuming that, x3(o) = 0 ---- for convenience [1] 

Taking Laplace Transform of x3(),  

x3(s) = Xo Ωo( 1 + e – Пs/ Ωo) / (s² + Ωo²)        --------6 

 K3(s) = (2ζ1s + 1) X3(s) - 2ζ1X3(0) 

     = Xo Ωo (2ζ1s + 1) ( 1 + e – Пs/ Ωo) / (s² + Ωo²) 

                                                                ---------7                                             

putting this value in X2(s),  

X2(s) = K3(s)C(s) / D2(s) 

 X2(s) = Xo Ωo (2ζ1s + 1) ( 1 + e – Пs/ Ωo) / (s² +     Ωo²) D2(s) 

 X2(s) / Xo = Ωo (2ζ1s + 1) ( 1 + e – Пs/ Ωo) / (s² + Ωo²) D2(s)  -------8 

Taking Laplace Transform of above equation, we can find the response of the mass m2.  [1] 

 

IV.  SIMULATION USING MATLAB 

 

4.1 Introduction: 

The name MATLAB® stands for matrix laboratory. 

MATLAB® is a high-performance language for 

technical computing. It integrates computation, 
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visualization, and programming in an easy-to-use 

environment where problems and solutions are 

expressed in familiar mathematical notation. Typical 

uses includes – 

 

 

 Math and computation  

 Algorithm development  

 Data acquisition  

 Modeling, simulation, and prototyping  

 Data analysis, exploration, and visualization  

 Scientific and engineering graphics 

 Application development, including graphical 

user interface building 

 MATLAB is an interactive system whose basic data 

element is an array that does not require 

dimensioning. This allows you to solve many 

technical computing problems, especially those with 

matrix and vector formulations. 

 

This is a vast collection of computational algorithms 

ranging from elementary functions, like sum, sine, 

cosine, and complex arithmetic, to more sophisticated 

functions like matrix inverse, matrix eigenvalues, 

Laplace, inverse Laplace and Fourier transforms.  

 

MATLAB has extensive facilities for displaying 

vectors and matrices as graphs, as well as annotating 

and printing these graphs. It includes high-level 

functions for two-dimensional and three-dimensional 

data visualization, image processing, animation, and 

presentation graphics. [7] 

 

4.2 MATLAB Functions:  

syms : Construct symbolic numbers, variables and 

objects. 

poly2sym :  returns a symbolic representation of the 

polynomial whose coefficients are in the numeric 

vector c. The default symbolic variable is x. 

vpa : uses variable-precision arithmetic (VPA) to 

compute each element  to decimal digits of accuracy. 

Each element of the result is a symbolic expression.  

ilaplace : is the inverse Laplace transform of the scalar 

symbolic object  with default independent variable s. 

The default return is a function of t. The inverse 

Laplace transform is applied to a function of s and 

returns a function of t. [7] 

 

 

 

 

4.3 MATLAB Program:  

4.3.1 For specific input: (mr = 0.1, ζ1 = ζ2 = 0.1,  ωr = 0.05, 0.2 and Ωo = 0.05,0.1,0.2,0.4) 

clear 

clc 

syms s 

mr=0.1;  

wr1=[0.05 0.2]; 

Om=[0.05 0.1 0.2 0.4];  

z1=0.1; z2=0.1;  

time=150; 

for n=1:2 

 wr=wr1(n); 

 D2=poly2sym([1 2*(z1+z2*mr*wr+z2*wr) 1+mr*wr^2+4*z1*z2*wr+wr^2 2*(z2*wr+z1*wr^2) wr^2],s); 

    for k=1:4 

        fact=wr*Om(k); 

        x1sn=(2*z2*s+wr)*(2*z1*s+1); 

        xsd=(s^2+Om(k)^2)*D2; 
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        fbase=vpa(ilaplace(x1sn/xsd),5); 

        X1t=inline(vectorize(fbase),'t'); 

        t=linspace(0,time,250); 

        pfun=fact*real(X1t(t))+fact*real(X1t(t-pi/Om(k))).*(t>=pi/Om(k)); 

         subplot(4,2,2*(k-1)+n) 

         ts=linspace(0,pi/Om(k),50); 

        plot(t,pfun,'-',ts,sin(Om(k)*ts),'--',[0 time],[0 0],'-'); 

ylabel('x_2(\tau)/X_o'); 

if k==4 

xlabel('\tau'); 

end 

az=axis; az(2)=time; 

axis(az); 

text(.7*az(2),.7*az(4),['\Omega_o=' num2str(Om(k))] ); 

    end 

end 

--------------------------------------------------------------------------------------------------------------------------- 

4.3.2 A general program:  

clear 

clc 

syms s 

mr=input('Enter mr : '); 

wr=input('Enter wr : '); 

Om=input('Enter Omega : '); 

z1=input('Enter Zeta1 : '); 

z2=input('Enter Zeta2 : '); 

time=150; 

D2=poly2sym([1 2*(z1+z2*mr*wr+z2*wr) 1+mr*wr^2+4*z1*z2*wr+wr^2 2*(z2*wr+z1*wr^2) wr^2],s); 

fact=wr*Om; 

x1sn=(2*z2*s+wr)*(2*z1*s+1); 

xsd=(s^2+Om^2)*D2; 

fbase=vpa(ilaplace(x1sn/xsd),5); 

X1t=inline(vectorize(fbase),'t'); 

t=linspace(0,time,250); 

pfun=fact*real(X1t(t))+fact*real(X1t(t-pi/Om)).*(t>=pi/Om); 

ts=linspace(0,pi/Om,50); 

plot(t,pfun,'-',ts,sin(Om*ts),'--',[0 time],[0 0],'-'); 

ylabel('x_2(\tau)/X_o'); 

xlabel('\tau'); 

az=axis; az(2)=time; 

axis(az); 

text(.85*az(2),.85*az(4),['\Omega_o=' num2str(Om)] ); 

--------------------------------------------------------------------------------------------------------------------------- 

Here user can enter the user defined values of mr , ζ1, ζ2, and ωr and Ωo. 
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V. RESULTS & DISCUSSION 

  

      

Figure 2. The response of the system for mr = 0.1, ζ1 = ζ2 = 0.1,  ωr = 0.05, 0.2 and Ωo = 0.05,0.1,0.2,0.4 

 

 
Figure 3. The response of the system for  mr = 0.1,ζ1= 0.1, ζ2= 0.1, ωr = 0.05and Ωo=0.1 

 

VI. CONCLUSIONS AND FUTURE WORK 

 

The numerically obtained inverse Laplace transforms 

is shown in Figure 2 and 3. We see that as the 

duration of the half-sine wave pulse decreases, the 

amplitude of m2 decreases. This behavior is opposite 

to what takes place during the base excitation of a 

single degree-of- freedom system. Where as the pulse 
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duration decreased the peak displacement of the mass 

increased. We see, then, that the interposition of m1 

and its spring and damper act as a mechanical filter, 

decreasing the amount of relatively high frequency 

energy generated by the half-sine wave pulse from 

being transferred to m2. Thus, a two degree-of-

freedom system with appropriately chosen parameters 

can be an effective isolator of ground vibrations 

compared to a single degree-of-freedom system. 

 

In future, SIMULINK can be used for the different 

approaches for the analysis of a Model. Here non-

linearity is not considered so that model and its 

equations become simpler. In the practical case every 

system is non-linear and hence will be used for the 

further work. In reality the road disturbances are 

random in nature and hence if available the actual 

road load data will be utilized MATLAB can be used 

to make a program to make the system more 

generalized. For the sake of simplicity, the simple 

numeric values of the parameters are used. Once the 

generalized mathematical model is prepared any 

values can be tasted and hence the optimized design 

can be obtained. 
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