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ABSTRACT 

Model averaging has been developed as an alternative method in regression analysis when number of 

observations is smaller than number of explanatory variables (also known as high-dimensional regression). 

Main concept about this method is weighted average of several candidate models, in order to improve 

prediction accuracy. There are two steps in model averaging: construct several candidate models and determine 

weights for candidate models. Our research proposed partial least squares model averaging (PLSMA) as an 

approach to construct candidate models, while partial least squares (PLS) method was applied during that 

process to reduce and transform original explanatory variables become new variables that called components. 

The evaluation of PLSMA is conducted by measured Root Mean Squared Error of Prediction (RMSEP) with 

simulation data. Compared to other methods, PLSMA has given the smallest RMSEP, so this result indicates 

that this method had yielded more accurate prediction than other existing methods. 
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I. INTRODUCTION 

 

One problem that often found in regression analysis is 

when number of observations is smaller than number 

of explanatory variables. This condition leads to 

multicollinearity among matrix  , which also leads to 

singular (non-invertible) matrix     in multiple linear 

regression. In that case, Ordinary Least Squares (OLS) 

solution becomes non-unique and leads to poor 

prediction performance [1]. 

 

Model averaging is one of such methods that use 

weighted average of several models in order to 

improve prediction accuracy in high-dimensional 

regression through reduce bias and prediction 

variance [2]. There are two steps in model averaging. 

The first step is construct candidate models, which by 

Perrone [3] are taken by choosing the explanatory 

variables randomly, or which by Ando and Li [4] 

based on marginal correlation between the 

explanatory variable and response variable. The 

second step is determine weights of candidate models, 

which are some weights can be chosen based on 

information criterion (AIC and BIC), Mallows’ 

criterion, Cross-Validation criterion, and weights 

based on Unbiased Estimator of Risk [5]. 

 

Model averaging has been applied in many areas. In 

economics, Moral-Benito [6] used model averaging to 

examine deterrent effect of capital punishment. Salaki 

et al. [7] applied model averaging on experimental 

design. In genetics, model averaging was applied by 

Rahardiantoro et al. [8] for predicted the exposure to 

aflatoxin B1, as well as Posada and Buckley [9] applied 

this method in phylogenetics. 

 

Our research tries to give a contribution to construct 

candidate models in model averaging. We propose 

partial least squares model averaging (PLSMA) as 

method to construct candidate models. On that 

process, we apply partial least squares (PLS) to reduce 
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and transform original explanatory variables become 

new variables called components that satisfy three 

conditions: highly correlated with response variable, 

they are have much of the variance among the 

explanatory variables, and uncorrelated with each 

other [10]. 

 

Our method would be evaluated and compared to the 

other methods using simulation study. We evaluated 

these methods by measured root mean squared error 

of prediction (RMSEP) and correlation between 

response variable and prediction. The best method is 

shown by the smallest RMSEP and high-positive 

correlation that indicate the highest prediction 

accuracy. 

 

The reminder of the paper is organized as follows. 

Section 2 describes model averaging, procedure of 

construction candidate models and selection the 

weight. Section 3 presents our methods and the 

algorithm. We presents simulation study to show the 

merits of the proposed method in Section 4 and 

conclusions are given in Section 5. 

 

II.  MODEL AVERAGING 

 

Model averaging is a weighted average of several 

models that developed to improve prediction 

accuracy. Suppose   is     response variable vector 

and   is explanatory variables of dimension    . We 

denote a set of   candidate models, so model 

averaging can be written as the function below 

  ∑     
 
     (1) 

where ∑      
    and candidate models    can be 

expressed as 

               (2) 

with    is set of explanatory variables to be included 

in model    of dimension     where     ) and 

   is regression coefficients vector and   is random 

effect vector. 

 

The regression coefficients    are estimated by 

ordinary least squares method (OLS): 

 ̂         ‖      ‖
  

which leads to  ̂         
       and least-square 

prediction  ̂   ̂  ̂  for          . Then, 

prediction of model averaging defined as 

 ̂  ∑    ̂  ̂ 
 
     (3) 

 ̂  ∑    ̂ 
 
   .  (4) 

 

Construction Candidate Models 

This section presents two methods for constructing 

candidate models. The first method was proposed by 

Perrone (1993). Candidate models are constructed by 

randomly partition of explanatory variables, then we 

called RMA (randomized model averaging). Suppose a 

set of explanatory variables   {         }  By 

randomly partition, each candidate model    

contains    {            }  for          and 

      with      . 

 

The second method is proposed by Ando and Li 

(2014). They constructed candidate models using 

ordered explanatory variables which ordered by its 

marginal correlation with response variable, so 

explanatory variables in each candidate model have 

similar correlation with response variables. We called 

this method as CMA (correlation model averaging). 

Let    {               } is the ordered explanatory 

variables then candidate model    contains    

{                              }. 

 

Determination Weights of Candidate Models 

The second step of model averaging is determine 

weights of candidate models. The weights are 

determined after construction candidate models. We 

denote weight of candidate model as    and 

∑      
   . The higher weight is given to the better 

candidate model. 
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There some weight choices for model averaging. 

Wang et al. (2009) gives some weight choices, there 

are based on the information criterion (AIC and BIC), 

Mallow’s criterion, Cross-Validation criterion, and 

weight based on the Unbiased Estimator of Risk. 

 

In this paper, we use AIC weights for model 

averaging. AIC weights defined as 

   
            

∑              
   

  (5) 

with 

                  (6) 

where    is the maximized likelihood function under 

 -candidate model and   is the number of parameters. 

 

III. PARTIAL LEAST SQUARES MODEL 

AVERAGING 

 

Our proposed method for constructing candidate 

models is named partial least square model averaging 

(PLSMA). In constructing candidate models, we apply 

partial least squares (PLS) to reduce and transform 

original explanatory variables become new variables 

called components, then these components are used 

to construct candidate models. We choose PLS in 

process of constructing candidate models at least for 

two reasons. First, PLS was developed to handle 

regression analysis in high-dimensional data (number 

of observations is smaller than number of explanatory 

variables) and second, the components that 

constructed from PLS satisfied three conditions: 

highly correlated with the response variables, have 

much of the variance among the explanatory 

variables, and uncorrelated with each other. 

 

There are three main steps in PLSMA method. First 

step, half of data is used to estimate the parameters for 

each candidate model. In the second step, determine 

AIC weights for each candidate model. The third step, 

the remaining half of data is used to predict the 

response variables based on the fitted models, and 

then the predictions of each candidate model are 

combined to get the final predictions. Assume that   

is     matrix of the explanatory variables and   is 

vector of the response variable.  

 

For simplicity, the PLSMA algorithm as follows: 

Step 1. Split the data into two parts,      

                , and      

                  . 

Step 2. Resampling 75% observation of data      

and do the partial least squares (PLS) 

process to get the  -loadings  , this is used 

to reduce dimension of    and transform   

into new variables, components     . 

Note that   is     matrix of  -loadings, 

where   is the number of components in 

each candidate model (   ). 

Step 3. Construct candidate model by regressing   

onto  . 

Step 4. Repeat step 2 and step 3 until   candidate 

models are constructed. 

Step 5. Compute the weights for each candidate 

model 

   
            

∑              
   

 

Step 6. Compute the prediction of each candidate 

model using the remaining half of the data 

    . 

Step 7. Let 

 ̂  ∑    ̂ 

 

   

 

be the final PLSMA prediction. 

 

IV. SIMULATION STUDY 

 

Data Simulation 

Our proposed method, PLSMA is evaluated using data 

simulation. We adopted the settings of Ando and Li 

(2014) with few modifications. We determine the 

number of observations       and generate the 

explanatory variables        from multivariate 

normal distribution with mean   and covariance 

matrix       with      |   |  and set      . The 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1462 

response variable is generated through the regression 

model with intercept 100 and regression coefficient 1. 

We set the significant regression coefficient      

and be spaced evenly                        . 

Random effects are generated from normal 

distribution with mean 0 and standard deviation 4. 

 

V. RESULT AND DISCUSSION 

 

In this simulation study, we set number of candidate 

models      and some number of regressors in 

candidate model   {          }. These settings are 

applied in our method and compared to other 

methods. RMSEP (root mean squared error of 

prediction) is used as an indicator to measure the 

prediction accuracy. The performance measure 

RMSEP after 50 simulation runs shown in Figure 1. 

These results showed that our proposed method 

produced the smallest RMSEP in each condition of  , 

so could be indicated that our method gives the better 

performance than the other methods. 

 

 
Figure 1. Boxplots of the performance measure 

RMSEP 

We showed plots of actual value of the response 

variable and prediction in Figure 2. Both of methods, 

RMA and CMA yielded random pattern, while 

PLSMA yielded linear pattern. This pattern showed 

that PLSMA produced higher correlation between 

actual value and prediction than RMA and CMA. For 

details, we also showed correlations that produced by 

each method in Figure 3. 

 

 
Figure 2. Plot actual and prediction 

 

Figure 3. Boxplot of correlation between actual and 

prediction 

 

In Figure 3. we showed boxplots of correlation value 

between actual and prediction for each method. 

PLSMA produced the highest correlation than RMA 

and CMA for eac  . The correlation produced by 

PLSMA also showed that this method increases the 

prediction accuracy. As an additional, we showed that 

PLSMA has more homogen residual than RMA and 

CMA. We showed it in plots of prediction and 
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residual in Figure 4. 

 
Figure 4. Plot Prediction and Residual 

 

The simulation study had been shown that PLSMA 

produced the highest prediction accuracy than the 

other methods. 

VI. CONCLUSION 

 

Model averaging could be better choice in regression 

analysis when number of observations is much 

smaller the number of explanatory variables. Our 

method, PLSMA was developed to construct 

candidate models in model averaging. The simulation 

study had been shown that PLSMA produced more 

accurate prediction, in terms of some indicators 

evaluated such as RMSEP, correlation value of actual 

and prediction, and homogenity of residuals. 
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