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ABSTRACT 
 

This paper presents an overview on developments of Voronoi hybrid finite element method (FEM). Recent 

developments on Special n-sided Voronoi fiber/matrix elements as well as Voronoi polygonal hybrid FEM with 

boundary integrals are described. Formulations for all cases are derived by means of modified variational 

functional and fundamental solutions. Generation of elemental stiffness equations from the modified variational 

principle is also discussed. Finally, a brief summary of the approach and potential research topics is provided. 
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I. INTRODUCTION 
 

Applications of various numerical methods have been 

attractive by many researchers in recent years [1-4]. 

It should be mentioned that analytical solutions 

which are available only for a few problems with 

simple geometries and boundary conditions [5-18]. 

Therefore, development of efficient numerical 

methods is vital for solving engineering problems [19-

25]. A new method, the so-called hybrid Trefftz FEM  

(or T-Trefftz method) has been developed recently 

[26, 27]. Unlike in the conventional FEM, the T-

Trefftz method couples the advantages of 

conventional FEM [28-31] and BEM [32-34]. In 

contrast to the standard FEM, the T-Trefftz method is 

based on a hybrid method which includes the use of 

an independent auxiliary inter-element frame field 

defined on each element boundary and an 

independent internal field chosen so as to a prior 

satisfy the homogeneous governing differential 

equations by means of a suitable truncated T-

complete function set of homogeneous solutions. 

Since 1970s, T-Trefftz model has been considerably 

improved and has now become a highly efficient 

computational tool for the solution of complex 

boundary value problems. It has been applied to 

potential problems [35-38], two-dimensional elastics 

[39, 40], elastoplasticity [41, 42], fracture mechanics 

[43-45], micromechanics analysis [46, 47], problem 

with holes [48, 49], heat conduction [50-52], thin 

plate bending [53-56], thick or moderately thick 

plates [57-61], three-dimensional problems [62], 

piezoelectric materials [63-67], and contact problems 

[68-70]. 

 

On the other hand, the hybrid FEM based on the 

fundamental solution (F-Trefftz method for short) 

was initiated in 2008 [27, 71] and has now become a 

very popular and powerful computational methods in 

mechanical engineering. The F-Trefftz method is 

significantly different from the T-Trefftz method 

discussed above. In this method, a linear combination 

of the fundamental solution at different points is used 

to approximate the field variable within the element. 

The independent frame field defined along the 

element boundary and the newly developed 

variational functional are employed to guarantee the 

inter-element continuity, generate the final stiffness 

equation and establish linkage between the boundary 

frame field and internal field in the element. This 

review will focus on the F-Trefftz finite element 

method.  
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The F-Trefftz finite element method, newly 

developed recently [27, 71], has gradually become 

popular in the field of mechanical and physical 

engineering since it is initiated in 2008 [27, 72, 73]. It 

has been applied to potential problems [37, 74-76], 

plane elasticity [40, 77, 78], composites [79-83], 

piezoelectric materials [84-86], three-dimensional 

problems [87], functionally graded materials [88-90], 

bioheat transfer problems [91-97], thermal elastic 

problems [98], hole problems [99, 100], heat 

conduction problems [71, 101], micromechanics 

problems [46, 47], and anisotropic elastic problems 

[102-104].  

 

Following this introduction, the present review 

consists of 3 sections. Special n-sided Voronoi 

fiber/matrix elements for clustering thermal effect is 

presented in Section 2. It describes in detail the 

method of deriving element stiffness equations. 

Section 3 focuses on the essentials of Voronoi 

polygonal hybrid finite elements with boundary 

integrals. Finally, a brief summary of the 

developments of the Voronoi element methods is 

provided. 

II. SPECIAL N-SIDED VORONOI 

FIBER/MATRIX ELEMENTS 

 

2.1 Micromechanical model of clustered composite 

For a periodic cement-based composite containing 

clustered hemp fibers, the representative unit cell is 

the smallest repeated microstructure of the composite 

that can be isolated from the composite to estimate 

the composite’s effective properties. It is assumed that 

the unit cell has same thermal properties and fiber 

volume contents as the composite under 

consideration. 

 
Figure 1. Schematic representation of regularly and 

randomly clustered fibers within the cement matrix 

 

Figure 1 shows a representative unit cell containing 

clustered hemp fibers. In Fig. 1, L denotes the cell 

length, D  is the diameter of the hemp fiber, and 1x  

and 2x  are the global coordinate axial directions. 

Under the assumptions that (1) all material 

constituents are isotropic and homogeneous, and (2) 

the hemp fiber and the cement matrix are perfectly 

bonded, the steady-state local temperature fields in 

the matrix and the fiber, denoted by mT  and fT , 

should satisfy the two-dimensional heat conduction 

governing equations respectively, given by 

 

 

2 22 2

2 2 2 2

1 2 1 2

0,     0
f fm m

T TT T

x x x x

  
   

   
  (1) 

and the continuous conditions at the interface 

between the hemp fiber and the matrix 
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m f
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TT
k k
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




 

 (2) 

where n is the unit direction normal to the 

fiber/matrix interface. 

 

According to Fourier’s law of heat transfer in 

isotropic media, we have the following relationship of 

the temperature variable T  and the heat flux 

component iq : 

          ( 1, 2)i

i

T
q k i

x


  


 (2) 
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from which the effective thermal conductivity ek  of 

the homogenized composite can be determined by 

 i
e

i

q
k


  (3) 

where iq  stands for the area-averaged heat flux 

component along the i-direction and i  the 

temperature gradient component along the i-direction. 

For example, for the applied temperature boundary 

conditions below 

 

0
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               on edge AB

               on edge CD

0         on edges AC and BD

m
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m
m
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T
k

n







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 (4) 

the effective thermal conductivity ek  of the 

composite can be calculated by the 1-directional 

average heat flux component 1q  on the surface CD 

and the 1-directional temperature gradient 

component 1  respectively given by 

 
1 1 1 2 2

1
( , )d

AB
q q x x x

L
   (5) 

 1 2
1

( )T T

L



  (6) 

 

2.2 Formulation of special n-sided Voronoi 

fiber/matrix element 

The representative unit cell with the specified 

temperature conditions along the outer boundary of 

the cell is solved by a fundamental-solution-based 

hybrid finite element formulation with special n-

sided Voronoi fiber/matrix elements. To efficiently 

treat regularly and randomly clustered distributions 

of hemp fibers in the unit cell and obtain a mesh with 

relatively high quality, the centroidal Voronoi 

tessellation technique is employed such that the 

generators for the Voronoi tessellation and the 

centroids of the Voronoi regions coincide. The 

centroidal Voronoi tessellation technique can be 

viewed as an optimal partition corresponding to an 

optimal distribution of generators. Fig. 2 displays a 

typical n-sided Voronoi fiber/matrix element division 

for the composite cell including hemp fiber and 

cement material constituents. As an example, in Fig. 2, 

the centroidal Voronoi elements are iteratively 

generated by the matlab source code using 25 random 

points in the cell and the fibers are located at the 

centroids of the Voronoi elements. 

 
Figure 2. Schematic diagram of n-sided Voronoi 

fiber/matrix elements for the case of a random cluster 

 

For a typical n-sided Voronoi fiber/matrix element e, 

with element domain e  and element boundary e , 

the assumed fields include: 

(a) Non-conforming interior temperature field 

 
1

( ) ( , )          
m

sj ej e e e

j

T G c


  x x x N c x  (7) 

(b) Auxiliary conforming frame temperature field 

 ( )            e e eT  x N d x  (8) 

where G is the fundamental solutions satisfying 

equilibrium and continuity within the element, 

1 2( , )x xx  and 1 2( , )s s

sj j jx xx  are the field point and 

source point, respectively, eN  is a row vector of 

fundamental solutions, ec  is a column vector of the 

unknown coefficient ejc , 
eN  represents a row vector 

of the conventional interpolating shape functions, and 

ed  is a column vector of the nodal degree of freedom 

of the element. 

 

Subsequently, the heat flux field in the element can 

be derived by means of Fourier’s law 

 
( )

( )          i ei e e

i

T
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x


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x
x T c x  (9) 

with 
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 e
ei

i

k
x


 



N
T  (10) 

Furthermore, the outward normal heat flux nq  

derived from the interior field eT  can be expressed as 

 1 1 2 2n e eq q n q n   Q c  (11) 

with 

 1 1 2 2e e en n Q T T  (12) 

and  ( 1,2)in i   are components of the outward unit 

normal to the element boundary. 

 

To link the two independent fields above, the 

element variational functional is of the form 

 

 
2 2

2 2

1 2

1
d d d

2 e eq e
me n
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          

  
  

  (13) 

in which eq  is the element heat flux boundary, and 

q  is the specified normal heat flux.  

Application of the divergence theorem to the 

functional (13) yields 

 
1

d d d
2 e qe e

me n nq T qT q T
  

         (14) 

Then, substituting Eqs. (7) and (8) into the 

functional (14) yields 

 T T T1

2
me e e e e e e e e    c H c d g c G d  (15) 

in which 
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  
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Minimization of the functional me  with respect to 

ec  and ed , respectively, yields 

T

T T
,   me e

e e e e e e e

e e

 
      

 
H c G d 0 G c g 0

c d
   (16) 

from which the optional relationship between ec  and 

ed  for enforcing inter-element continuity on the 

common element boundary 

 1

e e e e


c = H G d  (17) 

and the element stiffness equation including the 

element stiffness matrix eK  and the equivalent nodal 

force vector eg  

 e e eK d = g  (18) 

can be obtained. In Eq. (18), T 1

e e e e

K G H G  is 

symmetric. Evidently, evaluation of Ke involves 

inversion of the symmetric square He matrix, and it’s 

advantageous to use a minimum number of source 

points outside the element for improving inversion 

efficiency. In contrast, accuracy is generally improved 

if a large number of source points is used. In this 

study, the number of source points is chosen to be 

same as that of element nodes to balance the 

requirements of efficiency and accuracy. Certainly, 

the rank sufficiency condition in the hybrid finite 

element method is also satisfied. In addition, different 

to the Voronoi cell finite element method, the present 

method is a type of hybrid displacement finite 

element method and all integrals involved are along 

element boundary only. However, the present 

method requires the fundamental solutions of the 

related problem, which are not available for some 

physical problems. 

 

The following two-component heterogeneous 

fundamental solutions satisfying the equilibrium and 

continuity of fiber and matrix domains can be written 

as 

2
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  (19) 

where 1 2z x ix   and 1 2

s s

sj j jz x ix   are the 

complex coordinates of the field point and the source 

point, respectively, R  is the radius of fiber inclusion, 

and 1i    is the imaginary unit. m  and f  are 

respectively the cement matrix domain and the hemp 

fiber domain. In particular, if m fk k k  , Eq. (19) 

reduces to 

 
1

( , ) Re ln( )
2

sj sjG z z z z
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which corresponds to the heat transfer caused by a 

point heat source in an isotropic homogeneous 

medium.
 

 

III. YORONOI POLYGONAL HYBRID FINITE 

ELEMENTS  

 

3.1 Governing Equations for Plane Elasticity 

For simplicity, our attention in this study is restricted 

to the classic linear isotropic elasticity in two 

dimensions, which have been solved by various 

numerical methods, i.e. FEM, BEM and meshless 

methods. As indicated in Fig. 1, a two-dimensional 

(2D) static linear isotropic elasticity domain   is 

bounded by the boundary ,  0u t u t       . u  

and t  are displacement and traction boundaries, 

respectively. Referred to the Cartesian coordinate 

system 1 2( , )x x , the static equilibrium equation for the 

dashed linear elastic element around an arbitrary 

point 1 2( , )x xx  (see Fig. 1) in the absence of body 

force is given in matrix form by 

 T 0L σ   (22) 

where T

11 22 12{ , , }  σ  is the stress vector, and L  is 

the strain-displacement operator matrix 

 1 2T

2 1
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x x
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  
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 

  

L  (23) 

The strain vector T

11 22 12{ , , }  ε  is defined by the 

kinematic relation as 

 ε Lu  (24) 

where T

1 2{ , }u uu  is the displacement vector. 

For the case of linear elastic solid body, the stress 

vector is related to the strain vector by the Hooke’s 

law in matrix form 

 σ Dε  (25) 

where D  is the constitutive matrix and has the form 
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D  (26) 

for plane stress cases. 

Besides, the following displacement and traction 

boundary conditions prescribed on the displacement 

boundary 
u  and the traction boundary 

t  

 
           on 

            on 

u

t

 

 

u u

t t
 (27) 

should be augmented to form a complete solving 

system. In Eq. (27), u  and t  are respectively the 

specified displacement and traction constraints. 

According to the equilibrium of the dashed triangle 

shown in Fig. 3, the traction vector T

1 2{ ,  }t tt  is 

expressed by 

 t Aσ  (28) 

where 

 1 2

2 1

0

0

n n

n n

 
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 

A  (29) 

and  ( 1,2)in i   are the unit outward normal 

components. 

 

  
Figure 3. Schematic diagram for plane elastic 

problems 

 

 

3.2 Conventional Finite Element Formulation 

In this section, the finite element formulation with 

polygonal elements is reviewed for the purpose of 

comparison. In the conventional polygonal finite 

element theory, the displacement field at point with 

coordinate ex  is approximated for a typical 

polygonal finite element occupying the domain e  by 

 
1

n

i i e e

i

 u U d U d  (30) 

where n  is the total number of element nodes, 
T

1 2{ , }i i iu ud  is the column vector of nodal degrees of 

freedom related to the ith node, T T T T

2{ }e n 1d d d d  
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is the final nodal displacement vector of the element e, 

and 2[ ]e n 1U U U U  is the resulted finite element 

shape function matrix in which  

 

 
0

0

i

i

i





 
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 

U  (31) 

is the element shape submatrix associated with the ith 

node and usually consists of two-dimensional element 

shape functions i  expressed in the following general 

form  
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( )
( )

( )

i

i n

j

j

w

w









x
x

x

  (32) 

In Eq. (32), ( )iw x  are non-negative weight functions, 

which have differently defined for difference shape 

functions, i.e. Wachspress shape functions and 

Laplace shape functions. 

 

Subsequently, the strain and stress fields defined by 

Eqs. (24) and (25) can be expressed in terms of nodal 

displacement vector ed , that is 

 ,      e e e e   ε Lu B d σ Dε DB d  (33) 

where 

 
2[ ]e e n 

1
B LU LU LU LU  (34) 

The final discrete equations can be formulated 

from the Galerkin weak or variational form 

 T Td d 0
t

e e

 
 

   ε σ u t  (35) 

where   denotes the variational operator and 
t

e e t     is the element traction boundary.  

 

Substituting the variational forms of the strain and 

displacement fields 

 ,       e e e e    u U d ε B d  (36) 

and Eq. (33) into Eq. (34) yields 

    T T T Td d 0
t

e e
e e e e e e 

 
    d B DB d d U t  (37) 

 

Invoking the arbitrariness of nodal variation ed , we 

have 

 
e e eK d f  (38) 

where 

 T Td ,         d
t

e e
e e e e e

 
    K B DB f U t  (39) 

It’s obviously seen that the shape function and its 

derivatives are vital for the implementation of 

conventional finite element. The shape functions are 

defined for the entire element domain to locate and 

relate element nodes, so different shape functions 

bring different element matrices and different degrees 

of precision. For polygonal finite elements with large 

numbers of sides and nodes, it’s very complicated to 

construct suitable weight functions so that the shape 

function satisfies all required properties, especially for 

polygonal elements with curved edges. This is the 

main reason that the topology of conventional finite 

element is usually restricted to triangle and 

quadrilateral for two-dimensional problems or 

tetrahedral and hexahedral for three-dimensional 

problems. Another key issue to be addressed is the 

evaluation of such domain integral in Eq. (39). So far, 

the numerical quadrature rule over arbitrary polygons 

has not yet reached a mature stage and the most 

popular approach is to partition the n-sided polygonal 

finite element (n>4) into n triangles by the centroid of 

the element and then use well-known quadrature 

rules on each triangle. 

 

In this study, a different Voronoi polygonal hybrid 

finite element formulation based on the fundamental 

solutions of the two-dimensional linear elastic 

problem is presented below, which is fully 

independent of the construction of shape functions 

and the polygonal element domain integration. 

 

3.3 Voronoi Polygonal Hybrid FE Formulation 

The implementation of polygonal hybrid finite 

elements involves two important issues: (1) the 

geometrical description and mesh discretization of the 

enclosed computing domain with finite number of 

convex polygons and (2) element-level 

approximations of physical fields to accurately 

compute the design response. 

 

For the first issue, the advanced Voronoi polygon 

meshing technique developed by Talischi et al [105] 

can be utilized to represent flexible mesh generation 

in arbitrary geometries. Mathematically, every 
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common edge of a Voronoi polygonal cell is defined 

as being normal to the line connecting two 

neighboring seed points and has equivalent distance 

to them, so that Voronoi cells can easily possess more 

connected neighbors. Fig. 4(a) shows a Voronoi 

diagram and its Delaunay triangulation generated by 

the Voronoi tessellation technique and a particular 

polygonal Voronoi cell associated with seed point p is 

hatched as an example in the figure. As one of 

Voronoi cells, the centroidal Voronoi tessellation 

possessing the added attribution that the seed points 

are coincident with the cell centroids is employed in 

the study to produce high-quality convex polygonal 

discretization in the computing domain [106]. 

Moreover, to approximate the practical boundary of 

the domain during Voronoi meshing, the signed 

distance function is defined in Paulino’s meshing 

scheme [107] to provide all essential information of 

the domain geometry so that one can flexibly 

construct the desired domain by algebraic 

expressions. 

 

Secondly, after convex polygonal meshing is obtained, 

the fundamental solution based hybrid finite element 

technique is formulated here to convert the element 

domain integral into element boundary integrals and 

obtain the final solving system of equations. For a 

typical Voronoi polygonal hybrid finite element e 

occupying the domain e , as shown in Fig. 4(b), the 

linear combinations of displacement and stress 

fundamental solutions of the problem are respectively 

used as the approximation functions to model the 

intra-element displacement and stress fields within 

the element domain e  

 1
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with 
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 (41) 

where m is the number of source points  ( 1, , )s

k k mx  

and in practice it can be chosen to be same as the 

number of nodes, as done in literature for general and 

special quadrilateral case. T T T T

1 2{ }e mc c c c  is the 

unknown coefficient vector. 1 2[ ]e mN N N N  

and 2[ ]e m 1T T T T  denote the matrices consisting 

of displacement fundamental solution *( , ) ( , 1,2)s

li ku l i x x  

and stress fundamental solution *  ( , , 1,2)lij l i j   at the 

field point x due to the unit force along the lth 

direction at the source points s

kx , respectively.  

 

It’s evident that the intra-element displacement and 

stress fields (40) can naturally satisfy the linear elastic 

governing equations (43) because of the physical 

definition of fundamental solutions, if a series of 

source points are placed outside the element as they 

are well done in the standard meshless method of 

fundamental solutions (MFS) [108]. 

 

However, the intra-element displacement field given 

by Eq. (40) is non-conforming across the inter-

element boundary, as indicated by the shaded region 

in Fig. 4(b). To deal with such problem, the hybrid 

technique popularly used in the hybrid finite element 

method pioneered by Pian [109] is employed to 

introduce an auxiliary conforming displacement 

frame field which has similar form as that in the 

conventional FEM. Here, the independent 

displacement frame field defined along the element 

boundary 
e  is written as 

 ( ) ( ) ,           e e e u x N x d x  (42) 

where ed  is the nodal displacement vector same as 

that in Eq. (30), and eN  is the standard FE shape 

function matrix with one-dimensional shape 

functions for the two-dimensional problem 

considered in the paper. For example, if there are two 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1432 

nodes on a particular edge for the linear case, the 

shape function matrix over this edge can be written 

by 

 1 2

1 2

0 0

0 0
e

N N

N N

 
  
 

N   (43) 

where 1 2(1 ) / 2,   (1 ) / 2N N      are respectively the 

classic one-dimensional linear shape functions in 

terms of the natural coordinate   varying from -1 to 

1, whose definition can be found in most of books on 

FEM. 

 

To link these two independent fields, the double-

variable weak variational form originally developed 

in literature [20, 27] for traditional eight-node 

quadrilateral elements is employed: 

  T1
d d d

2
t

e e e
me

  
       σ ε tu t u u  (44) 

where t

e e t     and t  is the traction field on the 

element boundary e  and may be approximated by 

considering Eqs. (28) and (40) as 

 
e e e e t ATc Q c  (45) 

 

Due to the natural feature of the intra-element fields, 

Eq. (44) can be further simplified by applying the 

Gaussian theorem to the domain integral in it 

 
1

d d d
2

t
e e e

me
  

       tu tu tu  (46) 

Substituting the intra-element fields (40), (45) and 

the frame field (42) into the functional (46) yields 

 T T T1

2
me e e e e e e e e    c H c d g c G d  (47) 

where 
T T Td ,   d ,   d

t
e e e

e e e e e e e e
  

       H Q N G Q N g N t  (48) 

 

To enforce inter-element continuity on the common 

element boundary, the unknown vector ec  should be 

expressed in terms of nodal degree of freedom ed . The 

minimization of the functional me  in Eq. (47) with 

respect to ec  and ed , respectively, yields 

 T

T T
,     me me

e e e e e e e

e e

 
      

 
H c G d 0 G c g 0

c d
 (49) 

from which we can obtain the element stiffness 

equation 

 
e e eK d = g  (50) 

and the optional relationship of 
ec  and 

ed  

 1

e e e e


c = H G d  (51) 

 
Figure 4. Illustration of Voronoi polygonal hybrid 

finite elements 

 

where the element stiffness matrix T 1

e e e e

K G H G  only 

consists of numerical integrals of the symmetric 

matrix eH  and the matrix eG  over the element 

boundary e . In practice, they can be evaluated by 

the well-known one-dimensional Gaussian 

quadrature rule along the element sides of the 

polygon one by one, without any difficulty, as 

indicated in Reference [27], thus the present hybrid 

strategy is very suitable for constructing n-sided 

polygonal finite elements. Besides, we observe that 

the introduction of conforming frame displacement 

field permits the direct imposition of essential 
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boundary conditions and the direct evaluation of 

effect of traction boundary conditions, as done in the 

classic FEM. 

 

IV. CONCLUSIONS  

 

On the basis of the preceding discussion, the following 

conclusions can be drawn. This review reports recent 

developments on the formulation of Voronoi hybrid 

FEM. It proved to be a powerful computational tool in 

modeling materials and structures with various 

mechanical properties. However, there are still many 

possible extensions and areas in need of further 

development in the future. Among those 

developments one could list the following: 

1. Development of efficient Voronoi FE-BEM 

schemes for complex engineering structures 

containing heterogeneous materials and the 

related general-purpose computer codes with 

preprocessing and postprocessing capabilities. 

2. Generation of various special-purpose elements 

to effectively handle singularities attributable to 

local geometrical or load effects (holes, cracks, 

inclusions, interface, corner and load 

singularities). The special-purpose functions 

warrant that excellent results are obtained at 

minimal computational cost and without local 

mesh refinement.  

3. Development of Voronoi FE in conjunction with 

a topology optimization scheme to contribute to 

microstructure design. 

4. Extension of Voronoi FEM to elastodynamics 

and fracture mechanics of FGMs. 

V. REFERENCES 

 

[1]. Y. Xiao, A. Abdollahi, Q.H. Qin, Quantitatively 

structuring a trabecular network using 

computational geometry techniques, Universal 

Journal of Engineering Science, 2(1) (2014) 30-

37. 

[2]. B.H. Zhao, C.Y. Qu, Q.H. Qin, Bone 

distribution simulation during damage-repair 

bone remodeling in human proximal femur, 

Advanced Materials Research, 634 (2013) 883-

891. 

[3]. K. Cai, Q.H. Qin, Z. Luo, A. Zhang, Robust 

topology optimisation of bi-modulus structures, 

Computer-Aided Design, 45(10) (2013) 1159-

1169. 

[4]. Q.S. Yang, Q.H. Qin, T. Liu, Interlayer stress in 

laminate beam of piezoelectric and elastic 

materials, Composite structures, 75(1) (2006) 

587-592. 

[5]. Q.H. Qin, Y.W. Mai, A closed crack tip model 

for interface cracks in thermopiezoelectric 

materials, International Journal of Solids and 

Structures, 36(16) (1999) 2463-2479. 

[6]. S.W. Yu, Q.H. Qin, Damage analysis of 

thermopiezoelectric properties: Part II. 

Effective crack model, Theoretical and Applied 

Fracture Mechanics, 25(3) (1996) 279-288. 

[7]. Q.H. Qin, 2D Green's functions of defective 

magnetoelectroelastic solids under thermal 

loading, Engineering Analysis with Boundary 

Elements, 29(6) (2005) 577-585. 

[8]. Q.H. Qin, General solutions for 

thermopiezoelectrics with various holes under 

thermal loading, International Journal of Solids 

and Structures, 37(39) (2000) 5561-5578. 

[9]. Q.H. Qin, Green's function and boundary 

elements of multifield materials, Elsevier, 

Oxford, 2007. 

[10]. Q.H. Qin, Y.W. Mai, S.W. Yu, Some problems 

in plane thermopiezoelectric materials with 

holes, International Journal of Solids and 

Structures, 36(3) (1999) 427-439. 

[11]. Q.H. Qin, Y.W. Mai, Crack growth prediction 

of an inclined crack in a half-plane 

thermopiezoelectric solid, Theoretical and 

Applied Fracture Mechanics, 26(3) (1997) 185-

191. 

[12]. Q.H. Qin, Fracture mechanics of piezoelectric 

materials, WIT Press, Southampton, 2001. 

[13]. Q.H. Qin, S.W. Yu, An arbitrarily-oriented 

plane crack terminating at the interface 

between dissimilar piezoelectric materials, 

International Journal of Solids and Structures, 

34(5) (1997) 581-590. 

[14]. S.W. Yu, Q.H. Qin, Damage analysis of 

thermopiezoelectric properties: Part I—crack 

tip singularities, Theoretical and Applied 

Fracture Mechanics, 25(3) (1996) 263-277. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1434 

[15]. J.S. Wang, G.F. Wang, X.Q. Feng, Q.H. Qin, 

Surface effects on the superelasticity of 

nanohelices, Journal of Physics: Condensed 

Matter, 24(26) (2012) 265303. 

[16]. J.S. Wang, X.Q. Feng, J. Xu, Q.H. Qin, S.W. Yu, 

Chirality transfer from molecular to 

morphological scales in quasi-one-dimensional 

nanomaterials: a continuum model, Journal of 

Computational and Theoretical Nanoscience, 

8(7) (2011) 1278-1287. 

[17]. J.-S. Wang, G.-F. Wang, X.-Q. Feng, Q.-H. Qin, 

Surface effects on the superelasticity of 

nanohelices, Journal of Physics: Condensed 

Matter, 24(26) (2012) 265303. 

[18]. Y. Wang, Q.H. Qin, A theoretical study of bone 

remodelling under PEMF at cellular level, 

Computer Methods in Biomechanics and 

Biomedical Engineering, 15(8) (2012) 885-897. 

[19]. H. Wang, Q.H. Qin, Y. Xiao, Special n-sided 

Voronoi fiber/matrix elements for clustering 

thermal effect in natural-hemp-fiber-filled 

cement composites, International Journal of 

Heat and Mass Transfer, 92 (2016) 228-235. 

[20]. Q.H. Qin, The Trefftz finite and boundary 

element method, WIT Press, Southampton, 

2000. 

[21]. Q.H. Qin, Trefftz finite element method and its 

applications, Applied Mechanics Reviews, 58(5) 

(2005) 316-337. 

[22]. H. Wang, Q.H. Qin, Y. Kang, A meshless model 

for transient heat conduction in functionally 

graded materials, Computational Mechanics, 

38(1) (2006) 51-60. 

[23]. N. Bavi, Q.H. Qin, B. Martinac, Finite element 

simulation of the gating mechanism of 

mechanosensitive ion channels, in:  Fourth 

International Conference on Smart Materials 

and Nanotechnology in Engineering, 

International Society for Optics and Photonics, 

2013, pp. 87931S-87931S-87937. 

[24]. C. Liu, Y. Zhang, Q.H. Qin, R.B. Heslehurst, 

Numerical Modelling of Glass Fibre Metal 

Laminates Subjected to High Velocity Impact, 

in:  Proceedings of the Composites Australia and 

CRC-ACS, 2013 Composites Conference (Edited 

by Rikard Heslehurst), Melbourne, 4-5 March 

2013, 2013. 

[25]. C.J. Liu, Y. Zhang, Q.H. Qin, R. Heslehurst, 

High velocity impact modelling of sandwich 

panels with aluminium foam core and 

aluminium sheet skins, in:  Applied Mechanics 

and Materials, 2014, pp. 745-750. 

[26]. Z.-J. Fu, Q.H. Qin, W. Chen, Hybrid-Trefftz 

finite element method for heat conduction in 

nonlinear functionally graded materials, 

Engineering Computations, 28(5) (2011) 578-

599. 

[27]. Q.H. Qin, H. Wang, Matlab and C programming 

for Trefftz finite element methods, New York: 

CRC Press, 2008. 

[28]. Q.H. Qin, C.X. Mao, Coupled torsional-flexural 

vibration of shaft systems in mechanical 

engineering—I. Finite element model, 

Computers & Structures, 58(4) (1996) 835-843. 

[29]. H.C. Martin, G.F. Carey, Introduction to finite 

element analysis: Theory and application, 

McGraw-Hill New York, 1973. 

[30]. H. Wang, Y. Xiao, Q.H. Qin, 2D hierarchical 

heat transfer computational model of natural 

ber bundle reinforced composite, Scientia 

Iranica, Transactions B: Mechanical 

Engineering, 23(1) (2016) 268-276. 

[31]. K.Z. Ding, Q.H. Qin, M. Cardew-Hall, A New 

Integration Algorithm for the Finite Element 

Analysis of Elastic-Plastic Problems, in:  Proc. 

of 9th International Conference on Inspection, 

Appraisal, Repairs & Maintenance of Structures, 

Fuzhou, China, 20-21 October, CI-Premier PTY 

LTD, ISBN: 981-05-3548-1, 2005, pp. 209-216. 

[32]. Q.H. Qin, Y.W. Mai, BEM for crack-hole 

problems in thermopiezoelectric materials, 

Engineering Fracture Mechanics, 69(5) (2002) 

577-588. 

[33]. Q.H. Qin, Y. Huang, BEM of postbuckling 

analysis of thin plates, Applied Mathematical 

Modelling, 14(10) (1990) 544-548. 

[34]. Q.H. Qin, Nonlinear analysis of Reissner plates 

on an elastic foundation by the BEM, 

International journal of solids and structures, 

30(22) (1993) 3101-3111. 

[35]. W. Chen, Z.-J. Fu, Q.-H. Qin, Boundary particle 

method with high-order Trefftz functions, 

Computers, Materials & Continua (CMC), 13(3) 

(2010) 201-217. 

[36]. H. Wang, Q.H. Qin, D. Arounsavat, Application 

of hybrid Trefftz finite element method to non‐

linear problems of minimal surface, 

International Journal for Numerical Methods in 

Engineering, 69(6) (2007) 1262-1277. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1435 

[37]. H. Wang, Q.-H. Qin, X.-P. Liang, Solving the 

nonlinear Poisson-type problems with F-Trefftz 

hybrid finite element model, Engineering 

Analysis with Boundary Elements, 36(1) (2012) 

39-46. 

[38]. L.-L. Cao, Q.H. Qin, N. Zhao, A new RBF-

Trefftz meshless method for partial differential 

equations, IOP Conference Series: Materials 

Science and Engineering, 10 (2010) 012217. 

[39]. Q.H. Qin, Dual variational formulation for 

Trefftz finite element method of elastic 

materials, Mechanics Research 

Communications, 31(3) (2004) 321-330. 

[40]. H. Wang, Q.-H. Qin, Numerical 

implementation of local effects due to two-

dimensional discontinuous loads using special 

elements based on boundary integrals, 

Engineering Analysis with Boundary Elements, 

36(12) (2012) 1733-1745. 

[41]. Q.H. Qin, Formulation of hybrid Trefftz finite 

element method for elastoplasticity, Applied 

Mathematical Modelling, 29(3) (2005) 235-252. 

[42]. Q.-H. Qin, Trefftz plane elements of 

elastoplasticity with p-extension capabilities, 

Journal of Mechanical Engineering, 56(1) (2005) 

40-59. 

[43]. Y. Cui, Q.H. Qin, Fracture analysis of mode III 

problems by Trefftz finite element approach, in:  

WCCM VI in conjunction with APCOM, 2004, 

pp. v1-p380. 

[44]. Y.-h. Cui, Q.H. Qin, J.-S. Wang, Application of 

HT finite element method to multiple crack 

problems of Mode I, II and III, Chinese Journal 

of Engineering Mechanics, 23(3) (2006) 104-

110. 

[45]. Y. Cui, J. Wang, M. Dhanasek, Q.H. Qin, Mode 

III fracture analysis by Trefftz boundary 

element method, Acta Mechanica Sinica, 23(2) 

(2007) 173-181. 

[46]. C. Cao, Q.H. Qin, A. Yu, Micromechanical 

Analysis of Heterogeneous Composites using 

Hybrid Trefftz FEM and Hybrid Fundamental 

Solution Based FEM, Journal of Mechanics, 

29(4) (2013) 661-674. 

[47]. C. Cao, A. Yu, Q.H. Qin, Evaluation of effective 

thermal conductivity of fiber-reinforced 

composites by boundary integral based finite 

element method, International Journal of 

Architecture, Engineering and Construction, 

1(1) (2012) 14-29. 

[48]. M. Dhanasekar, J. Han, Q.H. Qin, A hybrid-

Trefftz element containing an elliptic hole, 

Finite Elements in Analysis and Design, 42(14) 

(2006) 1314-1323. 

[49]. Q.H. Qin, X.-Q. He, Special elliptic hole 

elements of Trefftz FEM in stress concentration 

analysis, Journal of Mechanics and MEMS, 1(2) 

(2009) 335-348. 

[50]. J. Jirousek, Q.H. Qin, Application of hybrid-

Trefftz element approach to transient heat 

conduction analysis, Computers & Structures, 

58(1) (1996) 195-201. 

[51]. L. Cao, Q.H. Qin, N. Zhao, Application of 

DRM-Trefftz and DRM-MFS to Transient Heat 

Conduction Analysis, Recent Patents on Space 

Technology (Open access), 2 (2010) 41-50. 

[52]. N. Zhao, L.-L. Cao, Q.-H. Qin, Application of 

Trefftz Method to Heat Conduction Problem in 

Functionally Graded Materials, Recent Patents 

on Space Technology, 1(2) (2011) 158-166. 

[53]. Q.H. Qin, Hybrid Trefftz finite-element 

approach for plate bending on an elastic 

foundation, Applied Mathematical Modelling, 

18(6) (1994) 334-339. 

[54]. Q.H. Qin, Postbuckling analysis of thin plates 

by a hybrid Trefftz finite element method, 

Computer Methods in Applied Mechanics and 

Engineering, 128(1) (1995) 123-136. 

[55]. Q.H. Qin, Transient plate bending analysis by 

hybrid Trefftz element approach, 

Communications in Numerical Methods in 

Engineering, 12(10) (1996) 609-616. 

[56]. Q.H. Qin, Postbuckling analysis of thin plates 

on an elastic foundation by HT FE approach, 

Applied Mathematical Modelling, 21(9) (1997) 

547-556. 

[57]. F. Jin, Q.H. Qin, A variational principle and 

hybrid Trefftz finite element for the analysis of 

Reissner plates, Computers & Structures, 56(4) 

(1995) 697-701. 

[58]. J. Jirousek, A. Wroblewski, Q.H. Qin, X. He, A 

family of quadrilateral hybrid-Trefftz p-

elements for thick plate analysis, Computer 

Methods in Applied Mechanics and 

Engineering, 127(1) (1995) 315-344. 

[59]. Q.H. Qin, Hybrid-Trefftz Finite-Element 

Method for Reissner Plates on an Elastic-

Foundation, Computer Methods in Applied 

Mechanics and Engineering, 122(3-4) (1995) 

379-392. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1436 

[60]. Q.H. Qin, S. Diao, Nonlinear analysis of thick 

plates on an elastic foundation by HT FE with 

p-extension capabilities, International Journal 

of Solids and Structures, 33(30) (1996) 4583-

4604. 

[61]. Q.H. Qin, Nonlinear analysis of thick plates by 

HT FE approach, Computers & Structures, 61(2) 

(1996) 271-281. 

[62]. C.-Y. Lee, Q.H. Qin, H. Wang, Trefftz functions 

and application to 3D elasticity, Computer 

Assisted Mechanics and Engineering Sciences, 

15 (2008) 251-263. 

[63]. Q.H. Qin, Variational formulations for TFEM of 

piezoelectricity, International Journal of Solids 

and Structures, 40(23) (2003) 6335-6346. 

[64]. Q.H. Qin, Solving anti-plane problems of 

piezoelectric materials by the Trefftz finite 

element approach, Computational Mechanics, 

31(6) (2003) 461-468. 

[65]. Q.H. Qin, Mode III fracture analysis of 

piezoelectric materials by Trefftz BEM, 

Structural Engineering and Mechanics, 20(2) 

(2005) 225-240. 

[66]. Q.H. Qin, Fracture Analysis of Piezoelectric 

Materials by Boundary and Trefftz Finite 

Element Methods, WCCM VI in conjunction 

with APCOM’04, Sept. 5-10, 2004, Beijing, 

China,  (2004). 

[67]. Q.H. Qin, Trefftz Plane Element of 

Piezoelectric Plate with p-Extension 

Capabilities, IUTAM Symposium on Mechanics 

and Reliability of Actuating Materials,  (2006) 

144-153. 

[68]. Q.H. Qin, K.-Y. Wang, Application of hybrid-

Trefftz finite element method fractional contact 

problems, Computer Assisted Mechanics and 

Engineering Sciences, 15 (2008) 319-336. 

[69]. K. Wang, Q.H. Qin, Y. Kang, J. Wang, C. Qu, A 

direct constraint‐Trefftz FEM for analysing 

elastic contact problems, International Journal 

for Numerical Methods in Engineering, 63(12) 

(2005) 1694-1718. 

[70]. M. Dhanasekar, K.Y. Wang, Q.H. Qin, Y.L. 

Kang, Contact analysis using Trefftz and 

interface finite elements, Computer Assisted 

Mechanics and Engineering Sciences, 13(3) 

(2006) 457-471. 

[71]. H. Wang, Q.H. Qin, Hybrid FEM with 

fundamental solutions as trial functions for heat 

conduction simulation, Acta Mechanica Solida 

Sinica, 22(5) (2009) 487-498. 

[72]. C. Cao, Q.-H. Qin, Hybrid fundamental solution 

based finite element method: theory and 

applications, Advances in Mathematical 

Physics, 2015 (2015). 

[73]. Q.H. Qin, Fundamental Solution Based Finite 

Element Method, J Appl Mech Eng, 2 (2013) 

e118. 

[74]. Z.-J. Fu, W. Chen, Q.H. Qin, Hybrid Finite 

Element Method Based on Novel General 

Solutions for Helmholtz-Type Problems, 

Computers Materials and Continua, 21(3) (2011) 

187. 

[75]. Y.-T. Gao, H. Wang, Q.-H. Qin, Orthotropic 

Seepage Analysis using Hybrid Finite Element 

Method, Journal of Advanced Mechanical 

Engineering, 2(1) (2015) 1-13. 

[76]. H. Wang, Q.H. Qin, Fundamental solution-

based hybrid finite element analysis for non-

linear minimal surface problems, Recent 

Developments in Boundary Element Methods: 

A Volume to Honour Professor John T. 

Katsikadelis, 309 (2010). 

[77]. H. Wang, Q.-H. Qin, Fundamental-solution-

based hybrid FEM for plane elasticity with 

special elements, Computational Mechanics, 

48(5) (2011) 515-528. 

[78]. H. Wang, Q.H. Qin, W. Yao, Improving 

accuracy of opening-mode stress intensity factor 

in two-dimensional media using fundamental 

solution based finite element model, Australian 

Journal of Mechanical Engineering, 10(1) (2012) 

41-51. 

[79]. Q.H. Qin, H. Wang, Special Elements for 

Composites Containing Hexagonal and Circular 

Fibers, International Journal of Computational 

Methods, 12(04) (2015) 1540012. 

[80]. H. Wang, Q.H. Qin, Special fiber elements for 

thermal analysis of fiber-reinforced composites, 

Engineering Computations, 28(8) (2011) 1079-

1097. 

[81]. H. Wang, Q.H. Qin, A fundamental solution 

based FE model for thermal analysis of 

nanocomposites, in:  Boundary elements and 

other mesh Reduction methods XXXIII', 33rd 

International Conference on Boundary 

Elements and other Mesh Reduction Methods, 

ed. CA Brebbia and V. Popov, WIT Press, UK, 

2011, pp. 191-202. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1437 

[82]. H. Wang, Q.H. Qin, Implementation of 

fundamental-solution based hybrid finite 

element model for elastic circular inclusions, in:  

Proceedings of the Asia-Pacific Congress for 

Computational Mechanics, 11th-14th Dec, 

2013. 

[83]. C. Cao, Q.H. Qin, A. Yu, Modelling of 

Anisotropic Composites by Newly Developed 

HFS-FEM, in:  Proceedings of the 23rd 

International Congress of Theoretical and 

Applied Mechanics, Yilong Bai , Jianxiang 

Wang , Daining Fang (eds), SM08-016, August 

19 - 24 , 2012, Beijing, China, The International 

Union of Theoretical and Applied Mechanics 

(IUTAM), 2012. 

[84]. C. Cao, Q.H. Qin, A. Yu, Hybrid fundamental-

solution-based FEM for piezoelectric materials, 

Computational Mechanics, 50(4) (2012) 397-

412. 

[85]. C. Cao, A. Yu, Q.-H. Qin, A new hybrid finite 

element approach for plane piezoelectricity 

with defects, Acta Mechanica, 224(1) (2013) 41-

61. 

[86]. H. Wang, Q.H. Qin, Fracture analysis in plane 

piezoelectric media using hybrid finite element 

model, in:  International Conference of fracture, 

16-21 June, 2013, Beijing, China, 2013. 

[87]. C. Cao, Q.-H. Qin, A. Yu, A new hybrid finite 

element approach for three-dimensional elastic 

problems, Archives of Mechanics, 64(3) (2012) 

261-292. 

[88]. L.-L. Cao, Q.-H. Qin, N. Zhao, Hybrid graded 

element model for transient heat conduction in 

functionally graded materials, Acta Mechanica 

Sinica, 28(1) (2012) 128-139. 

[89]. L. Cao, H. Wang, Q.-H. Qin, Fundamental 

solution based graded element model for 

steady-state heat transfer in FGM, Acta 

Mechanica Solida Sinica, 25(4) (2012) 377-392. 

[90]. H. Wang, Q.-H. Qin, Boundary integral based 

graded element for elastic analysis of 2D 

functionally graded plates, European Journal of 

Mechanics-A/Solids, 33 (2012) 12-23. 

[91]. H. Wang, Q.H. Qin, FE approach with Green’s 

function as internal trial function for simulating 

bioheat transfer in the human eye, Archives of 

Mechanics, 62(6) (2010) 493-510. 

[92]. H. Wang, Q.H. Qin, Computational bioheat 

modeling in human eye with local blood 

perfusion effect, Human Eye Imaging and 

Modeling,  (2012). 

[93]. H. Wang, Q.-H. Qin, A fundamental solution-

based finite element model for analyzing multi-

layer skin burn injury, Journal of Mechanics in 

Medicine and Biology, 12(05) (2012) 1250027. 

[94]. Z.-W. Zhang, H. Wang, Q.-H. Qin, Transient 

bioheat simulation of the laser-tissue 

interaction in human skin using hybrid finite 

element formulation, Molecular & Cellular 

Biomechanics, 9(1) (2012) 31-53. 

[95]. Z.W. Zhang, H. Wang, Q.H. Qin, Analysis of 

transient bioheat transfer in the human eye 

using hybrid finite element model, in:  Applied 

Mechanics and Materials, Trans Tech Publ, 

2014, pp. 356-361. 

[96]. J. Tao, Q.H. Qin, L. Cao, A Combination of 

Laplace Transform and Meshless Method for 

Analysing Thermal Behaviour of Skin Tissues, 

Universal Journal of Mechanical Engineering, 

1(2) (2013) 32-42. 

[97]. Z.W. Zhang, H. Wang, Q.H. Qin, Method of 

fundamental solutions for nonlinear skin 

bioheat model, Journal of Mechanics in 

Medicine and Biology, 14(4) (2014) 1450060. 

[98]. C. Cao, Q.-H. Qin, A. Yu, A novel boundary-

integral based finite element method for 2D and 

3D thermo-elasticity problems, Journal of 

Thermal Stresses, 35(10) (2012) 849-876. 

[99]. Q.H. Qin, H. Wang, Special circular hole 

elements for thermal analysis in cellular solids 

with multiple circular holes, International 

Journal of Computational Methods, 10(04) 

(2013) 1350008. 

[100]. H. Wang, Q.-H. Qin, A new special element for 

stress concentration analysis of a plate with 

elliptical holes, Acta Mechanica, 223(6) (2012) 

1323-1340. 

[101]. Q.H. Qin, H. Wang, Fundamental solution 

based FEM for nonlinear thermal radiation 

problem, in:  12th International Conference on 

Boundary Element and Meshless Techniques 

(BeTeq 2011), ed. EL Albuquerque, MH 

Aliabadi, EC Ltd, Eastleigh, UK, 2011, pp. 113-

118. 

[102]. C. Cao, A. Yu, Q.-H. Qin, A novel hybrid finite 

element model for modeling anisotropic 

composites, Finite Elements in Analysis and 

Design, 64 (2013) 36-47. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  1438 

[103]. C. Cao, A. Yu, Q.H. Qin, Mesh reduction 

strategy: Special element for modelling 

anisotropic materials with defects, Boundary 

Elements and Other Mesh Reduction Methods 

XXXVI, 56 (2013) 61. 

[104]. H. Wang, Q.-H. Qin, Fundamental-solution-

based finite element model for plane 

orthotropic elastic bodies, European Journal of 

Mechanics-A/Solids, 29(5) (2010) 801-809. 

[105]. C. Talischi, G.H. Paulino, A. Pereira, I.F. 

Menezes, PolyMesher: a general-purpose mesh 

generator for polygonal elements written in 

Matlab, Structural and Multidisciplinary 

Optimization, 45(3) (2012) 309-328. 

[106]. Q. Du, V. Faber, M. Gunzburger, Centroidal 

Voronoi tessellations: Applications and 

algorithms, SIAM review, 41(4) (1999) 637-676. 

[107]. C. Talischi, G.H. Paulino, A. Pereira, I.F. 

Menezes, PolyTop: a Matlab implementation of 

a general topology optimization framework 

using unstructured polygonal finite element 

meshes, Structural and Multidisciplinary 

Optimization, 45(3) (2012) 329-357. 

[108]. G. Fairweather, A. Karageorghis, The method of 

fundamental solutions for elliptic boundary 

value problems, Advances in Computational 

Mathematics, 9(1-2) (1998) 69. 

[109]. T.H. Pian, C.-C. Wu, Hybrid and incompatible 

finite element methods, CRC Press, 2005. 


