
IJSRSET511807 | IRCT18 | March-April-2018 [(5)1 : 32-39]

 National Conference on 'Innovative Research on Robotics, Circuits and Technology' (IRCT 2018)

Organized By : CIrcuit Branches of SCSVMV, (EEE, ECE, EIE & Mechatronics) , Kanchipuram, Tamil Nadu, India

In Assotiation with International Journal of Scientific Research in Science, Engineering and Technology

© 2018 IJSRSET | Volume 5 | Issue 1 | | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

32

Embedded System Design Processor using GAA
J. VinothKumar

Research Scholar, Department of ECE, SCSVMV, Kanchipuram, Tamil Nadu, India

ABSTRACT

Electronics system design is the evolutionary task which is concentrating on the system design for various

things like processor, SoC for real time system, embedded systems, reconfigurable system design and more

where the Processor design is one of them; it may be a single core, or more than one cores depends on the

requirement Specification. There are various hardware description languages used to design and fabricate the

processor, among them Verilog, VHDL, SystemVerilog and Bluespec System Verilog are few of them. Bluespec

is the one of the modern hardware synthesizable language with guarded atomic action(GAA), which has many

advantages over the others. This paper presents the design and implementation of pipeline based 64-bit

processor using bluespec, also presents the analysis of number of clock cycles per instructions, implementation

of RISC V instruction sets and working principle of pipeline processor using bluespec.

Keywords: Processor, Hardware Description Language, bluespec, Pipeline, Register Files, RISC V, Instruction

Set Architecture.

I. INTRODUCTION

Digital electronics circuits design is ever increasing

field in all the technology. In that Integrated

Design(IC) design is the one of the important and

challenging task in the electronics field. The IC’s can

be used in many areas like Digital signal processing,

computer architecture system, SoC, embedded

systems and robotics architecture etc. An important

task of computer architecture is the design of the

instruction sets for the processor [4]. Processor design

is the complex task involving in most of the modern

hardware designer. There are two general types of

instruction set architecture for processor design

perspectives; one is CISC and another is RISC, each

one has its own advantages and disadvantages. CISC

has more number of instruction sets, slower clock

speed, little general purpose register, more addressing

modes and others[2][4]. In today’s technology RISC

processors are playing important role, because of

simple and reduced instruction sets, shorten the

execution time by reducing the clock cycle per

instructions, it can address enormous amount of

memory and more general purpose register in term of

register files[2].

There are number of tools and board could be used to

design a chip. FPGA-Field Programmable Gate Array

is widely used to design the IC’s in an easy ways of

prototyping and verifying the functional design

without fabrication [3]. It supports large number of

gates which are easily inheritable and also can be used

to solve complex hardware design with respect to the

chip dimensions and register level transfer[3][4].

The older versions of hardware description languages

such as Verilog, VHDL and SystemVerilog are few of

them. These hardware description languages are

having many advantages and disadvantages over the

others, but in some point it may not support. Atomic

transaction is the core of the hardware design

technology because the hardware components should

always work concurrently; Bluespec[1] is the only

language support Atomic transactions [1],[6] in much

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 33

more. Processor design using the language like

Verilog, SystemVerilog, and VHDL may have less

flexibility in all aspects for example register files,

loading instructions, pipeline concept implementation

and many more. But in Bluespec, including the above

mentioned and Atomic Transactions Control-

Adaptive Parameterization Modern, High-Level

Language Facilities, Mainstream Technologies are the

key advantages [1][5][6].

 Pipeline processor design is another new

trend to design processor in such a way that to

increases the throughput and efficient handling of

data, instructions. These features could be

implemented efficiently using bluespec[5],[6].

 The proposed work has the following module;

1). Test Bench, 2). Load the instructions in to register

files, 3). Perform all operations through pipeline

concepts, 4). Write the result into data register files.

The working principles will be explained in the later

chapters.

II. RELATED WORKS

In [7] Rakesh M.R has implemented 9 bit RISC

processor using pipeline concepts with various blocks

including fetch, decode, execute and store the data.

He used separate data and instruction memory. He

used Verilog and Modelsim for programming and

simulation respectively. The advantages of this

method are to execute one instruction cycle for 4

stage pipeline.

In [8] Navneet kaur et al, they proposed 64 bit RISC

processor desing using VHDL. VHDL programming

language is used to develop the RISC in Xilinx 14.2

ISE design suit and functionality simulated on

Modelsim 10.1 b simulator. They tested 33

instructions are functionally verified. In device

utilization report the number of slices are 34%,

Number of Slice Flip Flops 3%, Number of 4 input

LUTs 24%, minimum period is found 1.862ns,

maximum frequency 539.913MHz, minimum input

arrival time before 111.930ns, maximum output

required time after clock 9.408ns and it uses 64 bit for

both data bus and address bus. it achieves optimized

result.

In [9] Imran Mohammad et al had given a proposal to

implement 64-bit RISC processor design and verified

with Xilinx simulator. It also presents architecture,

data path, and instruction sets of the RISC processor.

It can address up to 16 Exabyte’s. They declared that

it can be used in many applications like robotics

workshop, gaming kits and ATMs.

They tested with 33 instructions and could be

implemented for more number of instructions for

future works.

In [10] P. Devi Pradeep proposed 64 bit RISC

processor design for industry automation and tested

with BUT-Built under test. They used collection of

registers, instruction commands, 64 bit data and

address bus to handle data and addresses. They used

Verilog HDL simulator to implement this processor

and it capable of perform JUMP, SKIP and HALT

instructions. It consumed 18080.18uw.

In [11] Nirav Dave proposed a designing a reorder

buffer using bluespec. it synthesized high level

description in the form of guarded atomic actions

GAA into high quality structural RTL. This paper

explores the design of reorder buffer for an out-of –

order super scalar processor with MIPS I ISA.

III. BLUSEPC AT A GLANCE

Bluespec is the highly level abstract and Object

oriented Hardware Description Language which is

compiled in to RTL. It has package, modules, rules,

states and interfaces. Module is actual unit which gets

compiles in to hardware; each module roughly

corresponds to a verilog module. Module consists of

three things; stages, rules which modify the state, and

interface which allow the communication and

interact with module [11],[1].

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 34

a). Bluespec Syntax

Bluespec has it own syntax; for example module,

rules,registers could be used to represents circuits in

Bluespec. it wraps around an actual verilog module or

a standard module with state elements including

other module, rule and interfaces[11],[1]. All the state

elements such as registers, flip flop, clocks, memories

and others are included in the module. The

behaviours can be represented in the form of rules

which consists of change of state on the hardware

state of the module action and condition required for

the rule to be a valid one[11],[1]. The interfaces

could be used to communicate with outside world to

intereact between modules. Each inteface has guard

which restricts when should the method may be

called and what should not be called. This method

may be any kind of operation like read, write or both.

There are three kind of methods[12],[1] they are

Value, Action and ActionValue; Value which is

return a value to the caller, and have no actions that

is when these methods are called, there is no change

of state, no side-effect. Action which cause actions

that is state changes to occur. ActionValue couples

action and Value methods , causing an action to occur

and they return a value to the caller[12].

Package pack1

// import sytatemtns

Import package2……………

Module mkTb(interfacename)

 Rule rule1(conditions)

rule implementations…

 Endule

 Rule rule2(conditions)

 Rule implementation……………..

 Endule

 ……….

 Method implementation here

 ………

Endmodule

EndPackage

Package pack2

// import sytatemtns

……………

Module mkTb(interfacename)

 Rule rule1(conditions)

 ……………..

 Endule

 Rule rule2(conditions)

 ………….

 Endule

 ……….

 Method implementation here

 ………

Endmodule

EndPackage

b).Guarded Atomic Transactionsin Bluespec

Hardware should work high efficiency in atomic or

independent, an atomic transaction is the core of the

hardware design technology. Atomic transactions

simplify complex concurrency, improve the

communication between modules, and elevate the

description and synthesis of system, control [12].

Bluespec[12][1] is the only technology providing such

a solution and also it provide hardware modeling,

verification and rapid prototype design[13].

The bluespec also has concurrent rule execution and

scheduling rules into clocks [13]. To get maximum

performance of any operations using bluespec, we

might use to execute many rules as possible

concurrently [12]. In BSV, we abstract out the

hardware-specific constraints into a simple semantic

model of scheduling constraints on pairs of methods.

Figure 1. Two atomic rules in a clock, and

their methods

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 35

The above image shows, how more than one rules

executing from many methods concurrently that

means many rules running within a single clock [13].

IV. RISC V INSTRUCTIONS

The following are the RISC V instructions and its

binary code for processor developments [15].

Figure 2. RISC V instruction types [15]

In this work we have used the following instructions

for implementation of the pipeline processors [15].

Instructions Opcode(7)

JAL rd,imm 1101111

LW d,rs1,imm 0000011

SWrs1,rs2,imm 0100011

ADDI rd,rs1,imm 0010011

SLTI rd,rs1,imm 0010011

XORI rd,rs1,imm 0010011

ORI rd,rs1,imm 0010011

ANDI rd,rs1,imm 0010011

SLLI rd,rs1,shamt 0010011

ADD rd,rs1,rs2 0110011

SUB rd,rs1,rs2 0110011

SLL rd,rs1,rs2 0110011

SLT rd,rs1,rs2 0110011

XOR rd,rs1,rs2 0110011

OR rd,rs1,rs2 0110011

AND rd,rs1,rs2 0110011

SD rs1,rs2,imm 0110011

MUL rd,rs1,rs2 0110011

DIV rd,rs1,rs2 0110011

Figure 3. RISC V instruction equivalent codes

DESING AND IMPLEMENTATION OF PIPELINE

PROCESSIR

a).Pipeline Processor Architecture

Figure 4. Five stage pipeline Architecture [14]

b). Implementation steps

The proposed method consists of the following

components

 Test bench

 Main package

 parameter declarations

 Instructions format

 Instructions implementations

Test bench could be used to provide instructions to

the main package through rule which will run atomic

transactions and passing instruction to the main

package. The main package having method to

implement load instructions, return result to test

bench and halt the operations. Pipeline could be

implemented in this package having many rules

running concurrently by passing parameters to each

instruction. All instructions should pass through into

all the stages in the pipeline. The rules can be used to

implement pipelines using FIFO concepts [11], [13].

Fig 5 shows the instruction to be passed from

instruction test bench to main processing units. This

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 36

shows the format in which the input are provided to

the main function, this could be designed in

instruction format unit having syntax as follows.

Figure 5. Instructions given through test bench

The above Figure 5 shows the arithmetic units

having definition of each instruction to be stored.

Here we used enum[13],[12] keyword to design

instructions for example from the above diagram we

can represent binary value for ADD is 00000, SUB is

00001, SLL is 00010 etc.. These values can be used

when we are going to decode the instructions.

Figure 6. Arithmetic instructions type definition

Figure 6. shows the parameter declarations section

which is used to declare all the parameter used for the

entire pipeline processor design for example data

length, address length in terms of bits. This file could

be imported wherever we need it.

Figure 7. Predefined variables

Instruction decode stage will decode the instructions

which is after reading instruction from the FIFO line

based on the instruction you are passed from test

bench. It will read the instruction, extract the bits,

assign into the variables and return the result into the

main FIFO stage, and then this could be used for

input to the next stage through FIFO. For example

the pseudo code used in the FIFO pipeline stage is

shown.

Rule fetch_stage (condition)

 FIFO.first

 Call fetchinstruction

 FIFO1.enq(fetched_instructions)

endrule

 Rule Decode_stage (condition)

 FIFO1.first

 Call decode(fetched_instruction)

 FIFO2.enq(decoded_instructions)

endrule

Rule MemoryAccess_stage (condition)

 FIFO2.first

 Call

MemoryAddress_calculation(decoded_instru

ction)

 FIFO3.enq(calculated_address)

endrule

Rule execute_stage (condition)

 FIFO3.first

 Call Execute (calculated_address)

 FIFO4.enq (executed_value)

Endrule

Rule execute_stage (condition)

 FIFO4.first

 Call write_back(executed_value)

Endrule

b). Pipeline Processor desing and its Stages

In the proposed method have five stages of pipeline

[13]; these are Fetch the instruction (IF), Decode the

instructions (ID), execute stage (EX), memory acces

stage (MEM), write back (WB). The five stage

pipeline can be implemented in main package. It has

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 37

many rules and each rule is to perform certain task.

Here there are five stages of operations were

implemented using FIFO concepts.

 Figure 4 show the five stage processor design

which is having program counter to count the

number of instruction to be performed, clock register

is used to count the number of clock pulse is needed

to complete in one stage. Each pipeline stage has its

own register to store the intermediate result after

each stage to be executed. For example IF register can

be used to store the fetched instruction to be stored,

ID is used for decoded instruction to be stored, MEM

this register can be used to store the calculated

address, EX register can be used to store the executed

result to be stored and finally WB register can be used

to store write the result in to registers.

c). Execution and Simulation result

Figure 8. Execution result

Simulation Results

The following section discuss about the analysis of

pipeline processor execution result in terms of time

taken to load instruction in to the register file, time

taken from the register file to fetch stage, time taken

to decode the each instruction, execution time of each

instruction and write back time. From the table 1. We

can understand that the loading instruction in to the

register files will take 15 ms for every instruction and

for other operation like fetch, decode execute will

take incrementally 15 ms, but for execute to write

back instruction will take some different time

variations, why because there may be falling in

bubbles in between the these instructions. The

bubbling time can be reduced through some different

way. Through the guarded atomic transactions we

could able to reduce the bubbling in the pipeline

stages. If we increase the no of stages will lead the

increase the throughput. But for some instruction

like JUMP, HALT etc will not require execute time so

there is bubble formed the subsequent instruction to

be executed.

Table 1. instruction running time in five stages

Instructio

ns

Running time for instructions in

Bluespec(ms)

Load

into

memor

y

Fetc

h

Stag

e

Decod

e

Execut

e

Writ

e

back

LW 15 145 155 165 175

LW 25 155 165 175 195

ADD 35 165 185 195 215

LW 45 185 205 215 235

LW 55 205 225 235 255

ADD 65 225 245 255 275

LW 75 245 265 275 295

LW 85 265 285 295 325

ADD 95 285 305 315 335

LW 105 305 325 335 355

LW 115 325 345 355 375

ADD 125 345 365 375 395

The simulation results shows the five stage

instruction execution and the work shown in this

paper is an alternate Hardware design Language other

than Verilog, System Verilog, VHDL which is very

simpler and high level abstraction language than

those development languages that offers

reconfiguring and code reusability which is not

available in Verilog or others. The module design

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 38

reusability often makes more convenient for the

hardware designer to utilize the same modules for

different functionality.

V. CONCLUSION

This work presents the design and implementation of

64-bit RISC V processor using pipeline concepts using

bluespec. In this work we have implemented about 40

instructions and the performance of the processor in

terms of loading time, instruction in each stages and

its execution time were tabulated and analyzed. In

this work we have used RISC V 32 bit and 64- bit

(extended version) instructions, which is simple to

implement. Through the guarded atomic transaction

we have achieved better performance. We are

concentrated on number of clocks to be reduced for

each instruction. We have left some of the work like

reducing bubbles in pipeline stage, reorder buffer,

instruction and data parallelism could be performed

in future.

VI. REFERENCES

[1]. http://www.bluespec.com/technology.html

[2]. Tariquzzaman , Syed Rizwan Ali , Nahid Kausar

FPGA implementation of 64 bit RISC processor

with Vedic multiplier using VHDL, IOSR

Journal of Electrical and Electronics

Engineering (IOSR-JEEE) e-ISSN: 2278-1676,

p-ISSN: 2320-3331 PP 12-16

[3]. Manju Rani Harpreet Vohra Design and

Implementation of 64-Bit Execute Stage for

VLIW Processor Architecture on FPGA

International Journal of Electronics

Communication and Computer Technology

(IJECCT) Volume 2 Issue 4 (July 2012)

[4]. Kirat Pal Singh and Shivani Parmar ”Vhdl

Implementation of a MIPS – 32 Pipeline

Processor” International Journal of Applied

Engineering Research, ISSN 0973 – 4562 vol. 7

No. 11. 2012

[5]. Shankar Kumar Mishra, Dr. Nisha P Sarware

“Review of 5 stage Pipelined Architecture of 8

Bit Pico Processor”, International Journal of

Electronics, Communication & Soft Computing

Science and Engineering, ISSN: 2277-9477,

Volume 3, Issue 4

[6]. Navneet kaur , Adesh Kumar , Lipika Gupta

VHDL Design and Synthesis of 64 bit RISC

Processor System on IOSR Journal of VLSI and

Signal Processing (IOSR-JVSP) Volume 3, Issue

5 (Nov. – Dec. 2013)

[7]. Rishiyur S. Nikhil and Kathy Czeck BSV by

Example, The next-generation language for

electronic system design Revision: November 3,

2010

[8]. Arvind et al,Computer Architecture: A

Constructive Approach Using Executable and

Synthesizable Speci_cations 2012-2013

[9]. Rakesh M.R ,RISC Processor Design in VLSI

Technology Using the Pipeline Technique,

INTERNATIONAL JOURNAL OF

INNOVATIVE RESEARCH IN ELECTRICAL,

ELECTRONICS, INSTRUMENTATION AND

CONTROL ENGINEERING Vol. 2, Issue4, April

2014.

[10]. Navneet kaur , Adesh Kumar , Lipika Gupta

VHDL Design and Synthesis of 64 bit RISC

Processor System on Chip (SoC) IOSR Journal

of VLSI and Signal Processing (IOSR-JVSP)

Volume 3, Issue 5 (Nov. – Dec. 2013)

[11]. Imran Mohammad , Ramananjaneyulu K, FPGA

Implementation of a 64-Bit RISC Processor

Using VHDL International Journal of

Reconfigurable and Embedded Systems (IJRES)

Vol. 1, No. 2, July 2012

[12]. P. Devi Pradeep and D.Srinivasa Rao Design

and Implementation of 64-Bit RISC Processor

for Industry Automation International Journal

of u- and e- Service, Science and Technology

Vol.8, No.1 (2015), pp.427-434

[13]. Nirav Dave, Designing a Reorder Buffer in

Bluespec 0-7803-8509-8/041$20.00 8 2004

IEEE.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 39

[14]. Rishiyur S et al, BSV by Example The next-

generation language for electronic system

design Revision: November 3, 2010

[15]. Arvind et al, Computer Architecture: A

Constructive Approach Using Executable and

Synthesizable Specifications December 31, 2012

[16]. http://cse-

wiki.unl.edu/wiki/index.php/CSE430/830-

2011SpringTeamB

[17]. Andrew Waterman et al, The RISC-V

Instruction Set Manual Volume I: User-Level

ISA Version 2.0 May 6, 2014

