
IJSRSET511808 | IRCT18 | March-April-2018 [(5)1 : 40-43]

 National Conference on 'Innovative Research on Robotics, Circuits and Technology' (IRCT 2018)

Organized By : CIrcuit Branches of SCSVMV, (EEE, ECE, EIE & Mechatronics) , Kanchipuram, Tamil Nadu, India

In Assotiation with International Journal of Scientific Research in Science, Engineering and Technology

© 2018 IJSRSET | Volume 5 | Issue 1 | | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

40

Mathematical Modeling for Software Defined Networks
S. Chandramohan

Assistant Professor, Department of ECE, SCSVMV, Kanchipuram, Tamil Nadu, India

ABSTRACT

Software-defined networking (SDN) makes it possible to control an entire network in software, by writing

programs that tailor network behavior to suit specific applications and environments. Unfortunately,

developing correct SDN programs is easier said than done. SDN programmers today must deal with several

complications. Our goal is to provide a mathematical foundation for software-defined networking that can be

used to build and verify high-level SDN tools.

Keywords: SDN, Open flow architecture, COQ

I. INTRODUCTION

Two-tiered architecture

An SDN “program” has two distinct components: the

controller program itself and the packet-processing

rules installed on switches. These pieces have

intricate dependencies that make reasoning

difficult—e.g., installing or removing a rule can

prevent the controller from receiving future network

events. Hence, a programmer must reason about the

behavior of the controller program, the rules on

switches, and the interactions between the two via

asynchronous messages.

Low-level operations

SDN platforms such as Open Flow force programmers

to use a low-level API to express high-level intentions,

which makes reasoning about SDN unnecessarily hard.

Recent revisions of Open Flow expose even more

hardware details, such as multiple typed tables, port

groups, and vendor-specific features, which makes

the problem worse.

II. EVENT REORDERING

Hardware switches employ a number of techniques to

maximize performance, including reordering

controller messages. This makes the semantics of SDN

programs highly non-deterministic, further

complicating reasoning. For example, in the absence

of barriers, a switch may process messages from the

controller in any order.

A programmer who uses these tools will be assured

that certain specified formal guarantees will not be

violated. To this end, we have developed a low-level

model of SDN, called Featherweight OpenFlow. This

model is based on the informal OpenFlow

specification, but has a precise mathematical

definition that makes it suitable for formal reasoning.

We have implemented Featherweight OpenFlow in

the COQ theorem prover as an executable artifact

that can be used to build practical, high-level tools.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 41

Figure 1. Flowchart of SDN

Our vision is a mathematical foundation for SDNs

that enables and facilitates formal network reasoning.

Recent advances in for-mal methods have made it

possible to precisely model systems of realistic size. In

particular, operational semantics have been used to

model the behavior of complex systems such as the C

programming language, x86 processors, and even

whole operating systems.

We seek to develop detailed models of SDNs that

support reasoning about essential network

functionality such as forwarding, as well as complex

features such as bandwidth, queues, controller

resources, and failures. With these models,

researchers can communicate their ideas concisely

and unambiguously; developers of SDN controller

platforms and tools can verify that their features are

implemented correctly and users

III. SIMPLE CONTROLLER CORRECTNESS

PRINCIPLES

Figure 2. Controller Stack Diagram

Proving from scratch that a given controller correctly

implements a given packet-processing function is a

formidable task. Doing so requires reasoning about

intricate details such as asynchrony in the network

and the possibility of message reordering. We have

developed a generic reasoning technique that

dramatically simplifies the proof task. To verify a

controller, it is only necessary to prove two natural

properties: (i) the controller program must implement

the packet-processing function, and (ii) each switch

must approximate the packet-processing function and

otherwise send packets to the controller. For most

controllers, proving these properties is

straightforward.

This result encapsulates a large amount of intricate

reasoning about OpenFlow pro-grams and packages it

up into a generic controller-correctness theorem. This

is a powerful result: to establish correctness for a new

controller, we do not have to start from scratch; we

only have to prove two simple properties. Thus,

controllers that use our technique can safely provide

high-level abstractions to SDN applications.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 42

IV. CONCLUSION

We hope that our SDN model will serve as a useful

foundation for building other tools. For example, the

model could be used as a test-oracle for OpenFlow

switches, or as an engine for an OpenFlow software

model-checker, in the style of NICE. The model could

also be used to develop property-checking tools for

high-level abstractions. We have built such a tool for

NetCore based an encoding in first-order logic

extended with fixed points.

V. REFERENCES

[1]. L. Girish and S. K. N. Rao, "Mathematical tools

and methods for analysis of SDN: A

comprehensive survey," 2016 2nd International

Conference on Contemporary Computing and

Informatics (IC3I), Noida, 2016, pp. 718-724.

[2]. M. Canini, D. Venzano, P. Peresıni, D. Kostic,

and J. Rexford. Automating the testing of

OpenFlow applications. In ´ NSDI, 2012.

[3]. Guha, M. Reitblatt, and N. Foster. Machine-

verified network controllers. In PLDI, 2013.

[4]. C. Monsanto, N. Foster, R. Harrison, and D.

Walker. A compiler and run-time system for

network programming languages. In POPL,

2012.

[5]. T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, M. Zhu,R. Ramanathan, Y. Iwata,

H. Inoue, T. Hama et al., "Onix: a distributed

control platform for large-scale production

networks," in Proceedings of the 9th USENIX

conference on Operating systems design and

implementation, 2010, pp. 1-6.

[6]. A. Greenberg, G. Hjalmtysson, D. A. Maltz, A.

Myers, J. Rexford,G. Xie, H. Yan, J. Zhan, and

H. Zhang, "A clean slate 4d approach to

network control and management," SIGCOMM

Comput. Commun.Rev., vol. 35, no. 5, pp. 41-

54, Oct. 2005.

[7]. M. Caesar, D. Caldwell, N. Feamster, J. Rexford,

A. Shaikh, and J. van der Merwe, "Design and

implementation of a routing control platform,"

in Proceedings of the 2nd conference on

Symposium on Networked Systems Design &

Implementation - Volume 2, ser.

NSDI’05,Berkeley, CA, USA, 2005, pp. 15-28.

[8]. M. Casado, M. J. Freedman, J. Pettit, J. Luo, N.

McKeown, and S. Shenker, "Ethane: taking

control of the enterprise," in Proceedings of the

2007 conference on Applications, technologies,

architectures, and protocols for computer

communications, ser. SIGCOMM ’07, New

York, NY, USA, 2007, pp. 1-12.

[9]. N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, "Openflow: enabling innovation

in campus networks," SIGCOMM Comput.

Commun. Rev., vol. 38, no. 2, pp. 69-74, Mar.

2008.

[10]. S. Azodolmolky, R. Nejabati, E. Escalona, R.

Jayakumar, N. Efstathiou, and D. Simeonidou,

"Integrated openflow-gmpls control plane: an

overlay model for software defined packet over

optical networks," Opt.Express, vol. 19, no. 26,

pp. B421-B428, Dec 2011.

[11]. M. Channegowda, R. Nejabati, M. R. Fard, S.

Peng, N. Amaya, G. Zervas, D. Simeonidou, R.

Vilalta, R. Casellas, R. Mart´ınez, R. M.noz, L.

Liu, T. Tsuritani, I. Morita, A. Autenrieth, J.

Elbers, P. Kostecki, and P. Kaczmarek,

"Experimental demonstration of an openflow

based software-defined optical network

employing packet, fixed and flexible dwdm grid

technologies on an international multi-domain

testbed," Opt.Express, vol. 21, no. 5, pp. 5487-

5498, Mar 2013.

[12]. M. Jarschel, S. Oechsner, D. Schlosser, R. Pries,

S. Goll, and P. TranGia,"Modeling and

performance evaluation of an openflow

architecture,"in Teletraffic Congress (ITC),

2011, Sept., pp. 1-7.

[13]. Y. Luo, P. Cascon, E. Murray, and J. Ortega,

"Accelerating openflowswitching with network

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 43

processors," in Proceedings of the

5thACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ser.

ANCS ’09, New York, USA, 2009, pp. 70-71.

[14]. A. Bianco, R. Birke, L. Giraudo, and M. Palacin,

"Openflow switching:Data plane performance,"

in Communications (ICC), 2010 IEEE

International Conference on, May, pp. 1-5.

[15]. A. R. Curtis, J. C. Mogul, J. Tourrilhes, P.

Yalagandula, P. Sharma, and S. Banerjee,

"Devoflow: scaling flow management for high-

performance networks," in Proceedings of the

ACM SIGCOMM 2011 conference,

ser.SIGCOMM ’11, New York, NY, USA, 2011,

pp. 254-265.

[16]. 12] R. Pries, M. Jarschel, and S. Goll, "On the

usability of openflow in data center

environments," in Communications (ICC), 2012

IEEE International Conference on, June, pp.

5533-5537.

[17]. C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and

A. Moore, "Oflops:An open framework for

openflow switch evaluation," in Passive and

Active Measurement, ser. Lecture Notes in

Computer Science, N. Taft and F. Ricciato, Eds.

Springer, 2012, vol. 7192, pp. 85-95.

[18]. Openflow controller performance comparison.

Online]. Available:

[19]. http://www.openflow.org/wk/index.php/Contro

ller Performance Comparisons

[20]. (last access 29 March 2013).

