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ABSTRACT 

 

Cloud computing system refers to the demand delivery of IT resources via the internet with pay as you go 

pricing. A cloud offers many services to the end users such as software, infrastructure and platform go on. 

Develop scalable techniques for transaction management utilizing the snapshot isolation (SI) model. Because 

the SI model can lead to non-serializable transaction executions, investigate two conflict detection techniques 

for ensuring serializability. To support scalability, investigate system architectures and mechanisms in which 

the transaction management functions are decoupled from the storage system and integrated with the 

application-level processes. present two system architectures and demonstrate their scalability under the scale-

out model of cloud computing platforms. In the first system architecture all transaction management functions 

are executed in a fully decentralized manner by the application processes. The second architecture is based on a 

hybrid approach in which the conflict detection functions are performed by a dedicated service. Perform a 

comparative evaluation of these architectures using the TPC-C benchmark and demonstrate their scalability.  

Keywords:  Scalable Transaction, key-value store, snapshot isolation 

 

I. INTRODUCTION 

 

The cloud computing platforms enable building 

scalable services through the scale-out model by 

utilizing the elastic pool of computing resources 

provided by such platforms. Typically, such services 

require scalable management of large volumes of data. 

It has been widely recognized that the traditional 

database systems based on the relational model and 

SQL do not scale well. The NoSQL databases based on 

the key-value model such as Bigtable and HBase. 

Have been shown to be scalable in large scale 

applications. Unlike traditional relational databases, 

these systems typically do not provide multi-row 

serializable transactions, or provide such transactions 

with certain limitations. For example, HBase and 

Bigtable provide only single-row transactions, 

whereas systems such as Google Megastore and G-

store provide transactions only over a particular group 

of entities. These two classes of systems, relational 

and No SQL based systems. Represent two opposite 

points in the scalability versus functionality space. 

We present here scalable architecture models for 

supporting multi-row serializable transactions for key 

value based No SQL data storage systems. The 

widespread popularity of Cloud computing as a 

preferred platform for the deployment of web 

applications has resulted in an enormous number of 

applications moving to the cloud, and the huge 

success of cloud service providers. Due to the 

increasing number of web applications being hosted 

in the cloud, and the growing scale of data which 

these applications store, process, and serve – scalable 

data management systems form a critical part of cloud 

infrastructures. 
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This design is suitable for applications that require 

transactional access to groups of keys that are 

transient in nature, but live long enough to amortize 

the cost of group formation. Our assumption is that 

the number of keys in a group is small enough to be 

owned by a single node. Considering the size and 

capacity of present commodity hardware, groups with 

thousands to hundreds of thousands of keys can be 

efficiently supported. Furthermore, the system can 

scale-out from tens to hundreds of commodity nodes 

to support millions of Key Groups. G-Store inherits 

the data model as well as the set of operations from 

the underlying Key-Value store; the only addition 

being that the notions of atomicity and consistency 

are extended from a single key to a group of keys. 

 

II. OVERVIEW OF EXISTING SYSTEMS 

 

Present here scalable architecture models for 

supporting multi-row serializable transactions for 

keyvalue based NoSQL data storage systems. Our 

approach is based on decentralized and decoupled 

transaction management where transaction 

management functions are decoupled from the 

storage system and performed by the application-level 

processes themselves, in decentralized manner. In this 

approach the multi row transaction on SQL will be 

facing many issues like hanging or some kind of 

update error and so on.  So that in this proposed 

system will be used for NoSQL method that will 

contain Some kind of issues like serializability to 

overcome this issues implement that Snapshot 

isolation  method will helpful for to conform 

serializability. A new replica contacts all other 

existing replicas in the group and obtains information 

regarding the pending requests for which it was 

either a coordinator or a participant and the lock 

status for the items involved in these requests cycle 

detection approach requires tracking all dependencies 

among transactions. Anti-dependencies  (both 

incoming and outgoing) among concurrent 

transactions, and write-read and write-write 

dependencies among non concurring transactions. 

We maintain this information in the form of a 

dependency serialization graph (DSG), in the global 

storage. Since an active transaction may form 

dependencies with a certain committed transaction, 

we need to retain information about such transactions 

in the DSG. 

 

III. PROPOSED APPROACH 

 

 The approaches the focus was on evaluating the 

scalability of different approaches under the scale-out 

model. A comparison of the service-based model and 

the decentralized model in terms of transaction 

throughput and scalability and comparison of the 

basic SI and the transaction serializability approaches 

based on the cycle-prevention and the cycle-

detection techniques .The approaches the focus was 

on evaluating the scalability of different approaches 

under the scale-out model. A comparison of the 

service-based model and the decentralized model in 

terms of transaction throughput and scalability and 

comparison of the basic SI and the transaction 

serializability approaches based on the cycle-

prevention and the cycle-detection techniques .When 

two concurrent transactions Ti and Tj have anti-

dependency, one of them is aborted. This ensures that 

there can never be a pivot transaction, thus 

guaranteeing serializability. We implemented and 

evaluated the above approaches in both the fully 

decentralized model and the service-based model. 

The cycle prevention approach can sometimes abort 

transactions that may not lead to serialization 

anomalies. Cycle Prevention Approach is a two 

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted. This ensures that 

there can never be a pivot transaction, thus 

guaranteeing serializability. In the context of RDBMS, 

this approach was investigated . A transaction is 

aborted only when a dependency cycle is detected 

involving that transaction during its commit protocol. 

The cycle detection approach aborts only the 

transactions that can cause serialization anomalies but 

it requires tracking of all dependencies for every 
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transaction and maintaining a dependency graph to 

check for cycles. Cycle Prevention Approach is a two 

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted. 

 

IV. DESIGN 

 

PNUTS presents a simplified relational data model to 

the user. Data is organized into tables of records with 

attributes. In addition to typical data types, “blob” is a 

valid data type allowing arbitrary structures inside a 

record, but not neces-sarily large binary objects like 

images or audio. (We observe that blob fields, which 

are manipulated entirely in application logic, are used 

extensively in practice.) Schemas are flexible: new 

attributes can be added at any time without halting 

query or update activity, and records are not required 

to have values for all attributes. The query language 

of PNUTS supports selection and prjection from a 

single table. Updates and deletes must specifiy the 

primary key. While restrictive compared to relational 

systems, single-table queries in fact provide very 

flexible access compared to distributed hash [12] or 

ordered [8] data stores, and present opportunities for 

future optimization by the system.Consider again our 

hypo-thetical social networking application: A user 

may update her own record, resulting in point access. 

Another user may scan a set of friends in order by 

name, resulting in range access. PNUTS allows 

applications to declare tables to be hashed or ordered, 

supporting both workloads efficently. Our system is 

designed primarily for online serving work-loads that 

consist mostly of queries that read and write single 

records or small groups of records. Thus, we expect 

most scans to be of just a few tens or hundreds of 

records, and optimize accordingly. Scans can specify 

predicates which are evaluated at the server. 

Similarly, we provide a “multiget” operation which 

supports retrieving multiple records (from one or 

more tables) in parallel by specifying a set of primary 

keys and an optional predicate, but again expect that 

the number of records retrieved will be a few 

thousand at most. 

Our system, regrettably, also does not enforce 

constraints such as referential integrity, although this 

would be very desirable. The implementation 

challenges in a system with fine-grained asynchrony 

are significant, and require future work. Another 

missing feature is complex ad hoc queries (joins, 

group-by, etc.). While improving query functionality 

is a topic of future work, it must be accomplished in a 

way that does not the response-time and availability 

currently guaranteed to the more “transactional” 

requests of web applications.  

 

V. CYCLE DETECTION APPROACH 

 

A transaction is aborted only when a dependency 

cycle is detected involving that transaction during its 

commit protocol. The cycle detection approach aborts 

only the transactions that can cause serialization 

anomalies but it requires tracking of all dependencies 

for every transaction and maintaining a dependency 

graph to check for cycles. Cycle Detection Approach: 

A transaction is aborted only when a dependency 

cycle is detected involving that transaction during its 

commit protocol. This approach is conceptually 

similar to the technique [12] investigated in the 

context of RDBMS.The conflict dependency checks in 

the above two ap-proaches are performed in addition 

to the check for write-write conflicts required for the 

basic SI model. We implemented and evaluated the 

above approaches in both the fully decentralized 

model and the service-based model. The cycle 

prevention approach can sometimes abort 

transactions that may not lead to serialization 

anomalies. The cycle detection approach aborts only 

the transactions that can cause serialization anomalies 

but it requires tracking of all dependencies for every 

transaction and maintaining a dependency graph to 

check for cycles. When two concurrent transactions 

Ti and Tj have anti-dependency, one of them is 

aborted. This ensures that there can never be a pivot 

transaction, thus guaranteeing serializability. We 

implemented and evaluated the above approaches in 

both the fully decentralized model and the service-
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based model. The cycle prevention approach can 

sometimes abort transactions that may not lead to 

serialization anomalies. 

 

VI. CYCLE PREVENTION APPROACH 

 

The first system architecture all transaction 

management functions are executed in a fully 

decentralized manner by the application processes. 

The second architecture is based on a hybrid 

approach in which the conflict detection functions 

are performed by a dedicated service. We perform a 

comparative evaluation of these architectures using 

the TPC-C benchmark and demonstrate their 

scalability. Cycle Prevention Approach is a two 

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted. This ensures that 

there can never be a pivot transaction, thus 

guaranteeing serializability. In the context of RDBMS, 

this approach was investigated .The cycle prevention 

approach requires tracking all dependencies among 

transactions, i.e., anti-dependencies (both incoming 

and outgoing) among concurrent transactions, and 

write-read and write-write dependencies among non 

concurring transactions. We maintain this 

information in the form of a dependency serialization 

graph (DSG), in the global storage. Since an active 

transaction may form dependencies with a certain 

committed transaction, we need to retain information  

about such transactions in the DSG. This raises an 

issue that a concurrent writer may miss detecting a 

read-write conflict if it attempts to acquire a write 

lock after the conflicting reader transaction has 

committed and its read lock has been released. To 

avoid this problem,  transaction records its commit 

timestamp, in a column named „read-ts‟ in the Storage 

Table, while releasing read lock acquired on an item. 

A writer checks whether the timestamp value written 

in the „read-ts‟ column is greater than its snapshot 

timestamp, which indicates that the writer is 

concurrent with a committed reader transaction. A 

reader transaction checks for the presence of a write 

lock or a newer committed version for an item in its 

read set to detect read-write conflicts. Otherwise, it 

acquires a read lock on the item. 

 

VII. TIME STAMP MANAGEMENT 

 

The decentralized model the steps in the commit 

protocol are executed concurrently by the application 

processes. Because these steps cannot be performed as 

a single atomic action, a number of design issues arise 

as discussed below. There can be situations where 

several transactions have acquired commit 

timestamps but their commitment status is not yet 

known. We also need to make sure that even if a 

transaction has made its update to the storage system, 

these updates should not be made visible to other 

transactions until the transaction is committed. 

Therefore, we need to maintain two timestamp 

counters: GTS (global timestamp) which is the latest 

commit timestamp assigned to a transaction, and STS 

(stable timestamp), which is the largest timestamp 

such that all transactions with commit timestamp up 

to this value are either committed or aborted and all 

the updates of the committed transactions are written 

to the global storage. An example shown in Figure 

illustrates the notion of GTS and STS. In this example, 

STS is advanced only up to sequence number 16 

because the commit status of all the transactions up to 

sequence number  is known, however, the commit 

status of the transaction with sequence number  is not 

yet known. When a new transaction is started, it uses 

the current STS value as its snapshot timestamp. We 

first experimented with using the key-value storage 

itself to store these counter values. However, we 

found this approach to be slow, and therefore we use 

a dedicated service which we refer to as Timestamp 

Service for maintaining these counter values. 

 

VIII. EXPERIMENT 

 

The SI model requires checking for write-write 

conflicts among concurrent transactions. This 

requires a mechanism to detect such conflicts and a 

method to resolve conflicts by allowing only one of 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 102 

the conflicting transactions to commit. When two or 

more concurrent transactions conflict, there are two 

approaches to decide which transaction should be 

allowed to commit. The first approach is called first-

committer-wins (FCW)[27], in which the transaction 

with the smallest commit timestamp is allowed to 

commit. In this approach, conflict checking can only 

be performed by a transaction after acquiring its 

commit timestamp. This enforces a sequential 

ordering on conflict checking based on the commit 

timestamps. This would force a younger transaction 

to wait for the progress of all the older transactions, 

thereby limiting concurrency. In contrast, in the 

second approach, which is called first-updater-wins , 

conflict detection is performed by acquiring locks on 

write-set items and in case of conflicting transactions 

the one that acquires the locks first is allowed to 

commit. The FUW approach appears more desirable 

because the conflict detection and resolution can be 

performed before acquiring the commit timestamp, 

there-by reducing any sequential ordering based on 

commit timestamps and reducing the time required 

for executing the commit protocol. Therefore, we 

chose to adopt the FUW approach for conflict 

detection. 

 

There are two problems that arise due to transaction 

failures. A failed transaction can block progress of 

other conflicting transactions. A failure of a 

transaction after acquiring commit timestamp stalls 

advancement of the STS counter thereby forcing the 

new transactions to use old snapshot time, which may 

likely result in greater aborts due to write-write 

conflicts. Thus, an appropriate timeout mechanism is 

needed to detect stalled or failed transactions and 

initiate their recovery. The cooperative recovery 

actions for a failed transaction are triggered in two 

situations. 

 

The conflicting transaction is waiting for the commit 

of a failed transaction, and the STS advancement has 

stalled due to a failed transaction that has acquired a 

commit timestamp. The recovery actions in the first 

situation are performed by any of the conflicting 

transactions, whereas the failures of the second kind 

are detected and recovery actions are performed by 

any application level process or by a dedicated system 

level process. If a transaction fails before acquiring a 

commit timestamp, then it is aborted, otherwise the 

transaction is committed and rolled-forward to 

complete its commit protocol. 

 

 
Figure 1.  Registration screenshot  

 

We used TPC-C benchmark to perform evaluations 

under a realistic workload. However, our 

implementation of the benchmark workload differs 

from TPC-C specifications in the following ways. 

Since our primary purpose is to measure the 

transaction throughput we did not emulate terminal 

I/O. Since HBase does not support composite primary 

keys, we created the row-keys as concatenation of the 

specified primary keys. This eliminated the need of 

join operations, typically required in SQL-based 

implementation of TPC-C. Predicate reads were 

implemented using scan and filtering operations 

provided by HBase. Since the transactions specified in 

TPC-C benchmark do not create serialization 

anomalies under SI, as observed in [9], we 

implemented the modifications suggested in. In our 

experiments we observed that on average a TPC-C 

transaction performed 8 read operations and 6 write 

operations. 
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We first identify the features of the key-value data 

storage system that are required for realizing the 

transaction management mechanisms presented here. 

The storage system should provide support for tables 

and multiple columns per data item (row), and 

primitives for managing multiple versions of data 

items with application-defined timestamps. It should 

provide strong consistency for updates [29], i.e., when 

a data item is updated, any subsequent reads should 

see the updated value. Moreover, for the 

decentralized architecture, we require mechanisms 

for performing row-level transactions involving any 

number of columns. Our implementation is based on 

HBase [3], which meets these requirements. 

 

 
Figure 2. Login screenshot 

 

For each transaction, we maintain in the global 

storage the following information: transaction, 

snapshot timestamp, commit time stamps , write-set 

information, and current status. This information is 

maintained in a table named Transaction Table in the 

global storage, as shown in Fig. 5. In this table, tid is 

the row-key of the table and other items are 

maintained as columns. The column out-edges‟ is used 

to record information related to outgoing dependency 

edges, which is required only in the cycle detection 

approach. To ensure that the Transaction Table does 

not become the bottleneck, we set the table 

configuration to partition it across all the HBase 

servers.  

 

The data distribution scheme for HBase is based on 

sequential range partitioning. Therefore, if we 

generate transaction ids sequentially it creates a load 

balancing problem since all the rows in Transaction 

Table corresponding the currently running 

transactions will be stored only at one or few HBase 

servers. Therefore, to avoid this problem we generate 

transaction ids randomly. For each application data 

table, hereby referred as Storage Table, we maintain 

the information related to the committed versions of 

application data items and lock information, as shown 

in Fig. 6. An application may have multiple such 

storage tables. Since we adopt the eager update model, 

uncommitted versions of data items also need to be 

maintained in the global storage. A transaction writes 

a new version of a data item with its tid as the version 

timestamp. These version timestamps then need to be 

mapped to the transaction commit timestamp TSc 

when transaction commits. This mapping is stored by 

writing tid in a column named committed-version 

with version timestamp as TSc. The column „w lock‟ 

in the Storage Table is used to detect write-write 

conflicts, whereas columns „r lock,‟ „read-ts,‟ and 

„readers‟ are used in detecting read write conflicts for 

serializability, as discussed in the next section. 

 

 
Figure 3.  Home Screen Shot 

 

Understanding Snapshot Isolation and Row 

Versioning. Once snapshot isolation is enabled, 

updated row versions for each transaction are 

maintained in tempdb. A unique transaction sequence 

number identifies each transaction, and these unique 
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numbers are recorded for each row version.SI is an 

extension of multiversion concurrency control. A 

transaction T1 executing with Snapshot Isolation 

Takes snapshot of committed data at start of T1 called 

start- timestamp Always reads/modifies data in its 

own snapshot Updates of concurrent transactions are 

not visible to T1 T1 is allowed to commit only when 

another Tx t2 running concurrently has not already 

written the data item that T1 intends to write. 

 

PNUTS is a hosted, centrally-managed database 

service shared by multiple applications. To add 

capacity, we add servers. The system adapts by 

automatically shifting some load to the new servers. 

The bottleneck for some applications is the number of 

disk seeks that can be done concurrently; for others it 

is the amount of aggregate RAM for caching or CPU 

cycles for processing queries. In all cases, adding more 

servers adds more of the bottleneck resource. When 

servers have a hard failure (such as a burnt out power 

supply or RAID controller failure), we automatically 

recover by copying data (from a replica) to other live 

servers (new or existing), carrying out little or no 

recovery on the failed server itself. Our goal is to scale 

to more than ten worldwide replicas, each with 1,000 

or more servers. At this scale, auto-mated failover and 

load balancing is the only way to manage the 

operations load. This hosted model introduces several 

complications that must be dealt with. First, different 

applications have different workloads and 

requirements, even within our relatively narrow 

niche of web serving applications. Therefore, the 

system must support several different workload 

profiles, and be automatically or easily tunable to 

different profiles. For example, our master ship 

migration protocol adapts to the observed write 

patterns of different applications. Second, we need 

performance isolation so that one heavyweight 

application does not negatively impact the 

performance of other applications. In our current 

implementation, performance isolation is provided by 

assigning different applications to different sets of 

storage units within a region. 

 
Figure 4. Buyer page Screen shot 

 

Our implementation of Paxos has interesting trade in 

system behavior. Application servers in multiple 

datacenters may initiate writes to the same entity 

group and log position simultaneously. All but one of 

them will fail and need to retry their transactions. 

The increased latency imposed by synchronous 

replication increases the likelihood of conicts for a 

given per-entity-group commit rate Limiting that rate 

to a few writes per second per entity group yields 

insignificant conict rates. For apps whose entities are 

manipulated by a small number of users at a time this 

limitation is generally not a concern. Most of our 

target customers scale write throughput by shading 

entity groups more only or by ensuring replicas are 

placed in the same region, decreasing both latency 

and connect rate. Applications with some server 

\stickiness" are well positioned to batch user 

operations into fewer Megastore transactions. Bulk 

processing of Megastore queue messages is a common 

batching technique, reducing the conict rate and 

increasing aggregate throughput. For groups that 

must regularly exceed a few writes per second, 

applications can use the _ne-grained advisory locks 

dispensed by coordinator servers. Sequencing 

transactions back-to-back avoids the delays associated 

with retries and the reversion to two-phase Paxos 

when a convict is detected. 

 

To scale throughput and localize outages, we partition 

our data into a collection of entity groups, each 

independently and synchronously replicated over a 

wide area. The underlying data is stored in a scalable 
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NoSQL datastore in each datacenter . Entities within 

an entity group are mutated with single-phase ACID 

transactions (for which the commit record is 

replicated via Paxos). Operations across entity groups 

could rely on expensive two-phase commits, but 

typically leverage Megastore's e_cient asynchronous 

messaging. A transaction in a sending entity group 

places one or more messages in a queue; transactions 

in receiving entity groups atomically consume those 

messages and apply ensuing mutations. Note that we 

use asynchronous messaging between logically distant 

entity groups, not physically distant replicas .All 

network transaction between datacenters is from 

replicated operations, which are synchronous and 

consistent. Indexes local to an entity group obey 

ACID semantics those across entity groups have 

looser consistency. See Figure 2 for the various 

operations on and between entity groups. 

 

 
 

Figure 5.  View sale Screen shot   

 

We decided to use Paxos, a proven, optimal, fault-

tolerant consensus algorithm with no requirement for 

a distinguished master. We replicate a write-ahead 

log over a group of symmetric peers. Any node can 

initiate reads and writes Each log append blocks on 

acknowledgments from a majority of replicas, and 

replicas in the minority catch up as they are able |the 

algorithm's inherent fault tolerance eliminates the 

need for distinguished failed" state. A novel extension 

to Paxos, detailed in Section, allows local reads at any 

up-to-date replica. Another extension permits single-

roundtrip writes. Even with fault tolerance from 

Paxos, there are limitations to using a single log. With 

replicas spread over a wide area, communication 

latencies limit overall through-put. Moreover, 

progress is impeded when no replica is cur-rent or a 

majority fail to acknowledge writes. In a traditional 

SQL database hosting thousands or millions of users, 

using a synchronously replicated log would risk 

interruptions of widespread impact . So to improve 

availability and throughput we use multiple 

replicated logs, each governing its own partition of 

the data set. 

 

We evaluated common strategies for wide-area 

replication Asynchronous Master/Slave A master 

node replicates write-ahead log entries to at least one 

slave. Log appends are acknowledged at the master in 

parallel with transmission to slaves. The master can 

support fast ACID transactions but risks downtime or 

data loss during failover to a slave. A consensus 

protocol is required to mediate master ship. 

Synchronous Master/Slave a master waits for changes 

to be mirrored to slaves before acknowledging them, 

allowing failover without data loss. Master and slave 

failures need timely detection by an external system. 

Optimistic Replication Any member of a 

homogeneous replica group can accept mutations , 

which are  asynchronously propagated through the 

group. Availability and latency are excellent. 

However, the global mutation ordering is not known 

at commit time, so transactions are impossible. We 

avoided strategies which could lose data on failures, 

which are common in large-scale systems. We also 

discarded strategies that do not permit ACID 

transactions. Despite the operational advantages of 

eventually consistent systems, it is currently too 

dificult to give up the read-modify-write idiom in 

rapid application development. We also discarded 

options with a heavyweight master. Failover requires 

a series of high-latency stages often causing a user-

visible outage, and there is still a huge amount of 

complexity. Why build a fault-tolerant system to 
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arbitrate mastership and failover work ows if we 

could avoid distinguished masters altogether. 

 

Replicating data across hosts within a single data 

center improves availability by overcoming host-

specific failures but with diminishing returns. We still 

must confront the networks that connect them to the 

outside world and the infrastructure that powers, 

cools, and houses them. Economically constructed 

sites risk some level of facility-wide outages [25] and 

are vulnerable to regional disasters. For cloud storage 

to meet availability demands, service providers must 

replicate data over a wide geographic area. In contrast 

to our need for a storage platform that is global, 

reliable, and arbitrarily large in scale, our hardware 

building blocks are geographically conned, failure-

prone, and super limited capacity. We must bind 

these components into a united ensemble _bring 

greater throughput and reliability. To do so, we have 

taken a two-pronged approach for availability, we 

implemented a synchronous, fault tolerant log 

replicator optimized for long distance-links for scale, 

we partitioned data into a vast space of small 

databases, each with its own replicated log stored in a 

per-replica NoSQL datastore. 

 

PNUTS presents a simplified relational data model to 

the user. Data is organized into tables of records with 

attributes.In addition to typical data types, “blob” is a 

valid data type, allowing arbitrary structures inside a 

record, but not neces-sarily large binary objects like 

images or audio. (We observe that blob fields, which 

are manipulated entirely in application logic, are used 

extensively in practice.) Schemas are flexible: new 

attributes can be added at any time without halting 

query or update activity, and records are not required 

to have values for all attributes. The query language 

of PNUTS supports selection and prjection from a 

single table. Updates and deletes must specific the 

primary key. While restrictive compared to relational 

systems, single-table queries in fact provide very 

flexible access compared to distributed hash or 

ordered data stores, and present opportunities for 

future optimization by the system . Consider again 

our hypo-thetical social networking application: A 

user may update her own record, resulting in point 

access. Another user may scan a set of friends in order 

by name, resulting in range access. PNUTS allows 

applications to declare tables to be hashed or ordered, 

supporting both workloads efficently. The 

implementation challenges in a system with fine-

grained asynchrony are significant, and require future 

work. Another missing feature is complex ad hoc 

queries (joins, group-by, etc.). While improving query 

functionality is a topic of future work, it must be 

accomplished in a way that does not jeapardize the 

response-time and availability currently guaranteed 

to the more “transactional” requests of web 

applications. In the shorter term, we plan to provide 

an interface for both Hadoop, an open source 

implementation of Map Reduce , to pull data out of 

PNUTS for analysis, much as Map Reduce pulls data 

out of Big Table . 

IX. CONCLUSION 

 

We have presented here a fully decentralized 

transaction management model and a service-based 

architecture for supporting snapshot isolation as well 

as serializable transactions for key-value based cloud 

storage systems. We investigated here two approaches 

for ensuring serializability. We find that both the 

decentralized and service based models achieve 

throughput scalability under the scale-out model. The 

service-based model performs better than the 

decentralized model. To ensure the scalability of the 

service-based approach we developed a replication 

based architecture for the conflict detection service. 

The decentralized model has no centralized 

component that can become a bottle neck, therefore, 

its scalability only depends on the underlying storage 

system. We also observe that the cycle detection 

approach has significant overhead compared to the 

cycle prevention approach. We conclude that if 

serializability of transaction is required then using the 

cycle prevention approach is desirable. We also 

demonstrated here the effectiveness of the 
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cooperative recovery mechanisms used in our 

approach. In summary, our work demonstrates that 

serializable transactions can be supported in a scalable 

manner in NoSQL data storage system. 

 

In this paper we present Megastore, a scalable, highly 

available datastore designed to meet the storage 

requirements of interactive Internet services. We use 

Paxos for synchronous wide area replication, 

providing lightweight and fast failover of individual 

operations. The latency penalty of synchronous 

replication across widely distributed replicas is more 

than onset by the convenience of a single system 

image and the operational benefits of carrier-grade 

availability. We use Bigtable as our scalable datastore 

while adding richer primitives such as ACID 

transactions, indexes, and queues. Partitioning the 

database into entity group sub-databases provides 

familiar transactional features for most operations 

while allowing scalability of storage and throughput. 

 

X. FUTURE WORK 

 

In the future, we would like to explore the 

implications of the Key Grouping protocol in the 

presence of analytical workloads and index structures 

built on Key-Value stores. We would also like to 

explore the feasibility of the design of G-Store using 

Key-Value stores such a Dynamo and PNUTS where 

the data store spans multiple data centers and 

geographical regions, and supports replication and 

weaker consistency guarantees of reads, and evaluate 

the ramifications of the weaker consistency 

guarantees of the data store on the consistency and 

isolation guarantees of transactions on groups In the 

concept multi row transaction using DB2 database has 

been more important one for all the process that 

scalability process to done the project work. In 

feature thing is all multi rows.  If user at stabel mode 

means database will be remove the user from 

DataBase. 
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