
IJSRSET511820 | IRCT18 | March-April-2018 [(5)1 : 98-107]

 National Conference on 'Innovative Research on Robotics, Circuits and Technology' (IRCT 2018)

Organized By : CIrcuit Branches of SCSVMV, (EEE, ECE, EIE & Mechatronics) , Kanchipuram, Tamil Nadu, India

In Assotiation with International Journal of Scientific Research in Science, Engineering and Technology

© 2018 IJSRSET | Volume 5 | Issue 1 | | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

98

Scalable Transaction Management with Snapshot Isolation For

NOSQL Data Storage System
S. Vijayaraghavan

Assistant Professor, Department of, ECE, SCSVMV, Kanchipuram, Tamil Nadu, India

ABSTRACT

Cloud computing system refers to the demand delivery of IT resources via the internet with pay as you go

pricing. A cloud offers many services to the end users such as software, infrastructure and platform go on.

Develop scalable techniques for transaction management utilizing the snapshot isolation (SI) model. Because

the SI model can lead to non-serializable transaction executions, investigate two conflict detection techniques

for ensuring serializability. To support scalability, investigate system architectures and mechanisms in which

the transaction management functions are decoupled from the storage system and integrated with the

application-level processes. present two system architectures and demonstrate their scalability under the scale-

out model of cloud computing platforms. In the first system architecture all transaction management functions

are executed in a fully decentralized manner by the application processes. The second architecture is based on a

hybrid approach in which the conflict detection functions are performed by a dedicated service. Perform a

comparative evaluation of these architectures using the TPC-C benchmark and demonstrate their scalability.

Keywords: Scalable Transaction, key-value store, snapshot isolation

I. INTRODUCTION

The cloud computing platforms enable building

scalable services through the scale-out model by

utilizing the elastic pool of computing resources

provided by such platforms. Typically, such services

require scalable management of large volumes of data.

It has been widely recognized that the traditional

database systems based on the relational model and

SQL do not scale well. The NoSQL databases based on

the key-value model such as Bigtable and HBase.

Have been shown to be scalable in large scale

applications. Unlike traditional relational databases,

these systems typically do not provide multi-row

serializable transactions, or provide such transactions

with certain limitations. For example, HBase and

Bigtable provide only single-row transactions,

whereas systems such as Google Megastore and G-

store provide transactions only over a particular group

of entities. These two classes of systems, relational

and No SQL based systems. Represent two opposite

points in the scalability versus functionality space.

We present here scalable architecture models for

supporting multi-row serializable transactions for key

value based No SQL data storage systems. The

widespread popularity of Cloud computing as a

preferred platform for the deployment of web

applications has resulted in an enormous number of

applications moving to the cloud, and the huge

success of cloud service providers. Due to the

increasing number of web applications being hosted

in the cloud, and the growing scale of data which

these applications store, process, and serve – scalable

data management systems form a critical part of cloud

infrastructures.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 99

This design is suitable for applications that require

transactional access to groups of keys that are

transient in nature, but live long enough to amortize

the cost of group formation. Our assumption is that

the number of keys in a group is small enough to be

owned by a single node. Considering the size and

capacity of present commodity hardware, groups with

thousands to hundreds of thousands of keys can be

efficiently supported. Furthermore, the system can

scale-out from tens to hundreds of commodity nodes

to support millions of Key Groups. G-Store inherits

the data model as well as the set of operations from

the underlying Key-Value store; the only addition

being that the notions of atomicity and consistency

are extended from a single key to a group of keys.

II. OVERVIEW OF EXISTING SYSTEMS

Present here scalable architecture models for

supporting multi-row serializable transactions for

keyvalue based NoSQL data storage systems. Our

approach is based on decentralized and decoupled

transaction management where transaction

management functions are decoupled from the

storage system and performed by the application-level

processes themselves, in decentralized manner. In this

approach the multi row transaction on SQL will be

facing many issues like hanging or some kind of

update error and so on. So that in this proposed

system will be used for NoSQL method that will

contain Some kind of issues like serializability to

overcome this issues implement that Snapshot

isolation method will helpful for to conform

serializability. A new replica contacts all other

existing replicas in the group and obtains information

regarding the pending requests for which it was

either a coordinator or a participant and the lock

status for the items involved in these requests cycle

detection approach requires tracking all dependencies

among transactions. Anti-dependencies (both

incoming and outgoing) among concurrent

transactions, and write-read and write-write

dependencies among non concurring transactions.

We maintain this information in the form of a

dependency serialization graph (DSG), in the global

storage. Since an active transaction may form

dependencies with a certain committed transaction,

we need to retain information about such transactions

in the DSG.

III. PROPOSED APPROACH

 The approaches the focus was on evaluating the

scalability of different approaches under the scale-out

model. A comparison of the service-based model and

the decentralized model in terms of transaction

throughput and scalability and comparison of the

basic SI and the transaction serializability approaches

based on the cycle-prevention and the cycle-

detection techniques .The approaches the focus was

on evaluating the scalability of different approaches

under the scale-out model. A comparison of the

service-based model and the decentralized model in

terms of transaction throughput and scalability and

comparison of the basic SI and the transaction

serializability approaches based on the cycle-

prevention and the cycle-detection techniques .When

two concurrent transactions Ti and Tj have anti-

dependency, one of them is aborted. This ensures that

there can never be a pivot transaction, thus

guaranteeing serializability. We implemented and

evaluated the above approaches in both the fully

decentralized model and the service-based model.

The cycle prevention approach can sometimes abort

transactions that may not lead to serialization

anomalies. Cycle Prevention Approach is a two

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted. This ensures that

there can never be a pivot transaction, thus

guaranteeing serializability. In the context of RDBMS,

this approach was investigated . A transaction is

aborted only when a dependency cycle is detected

involving that transaction during its commit protocol.

The cycle detection approach aborts only the

transactions that can cause serialization anomalies but

it requires tracking of all dependencies for every

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 100

transaction and maintaining a dependency graph to

check for cycles. Cycle Prevention Approach is a two

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted.

IV. DESIGN

PNUTS presents a simplified relational data model to

the user. Data is organized into tables of records with

attributes. In addition to typical data types, “blob” is a

valid data type allowing arbitrary structures inside a

record, but not neces-sarily large binary objects like

images or audio. (We observe that blob fields, which

are manipulated entirely in application logic, are used

extensively in practice.) Schemas are flexible: new

attributes can be added at any time without halting

query or update activity, and records are not required

to have values for all attributes. The query language

of PNUTS supports selection and prjection from a

single table. Updates and deletes must specifiy the

primary key. While restrictive compared to relational

systems, single-table queries in fact provide very

flexible access compared to distributed hash [12] or

ordered [8] data stores, and present opportunities for

future optimization by the system.Consider again our

hypo-thetical social networking application: A user

may update her own record, resulting in point access.

Another user may scan a set of friends in order by

name, resulting in range access. PNUTS allows

applications to declare tables to be hashed or ordered,

supporting both workloads efficently. Our system is

designed primarily for online serving work-loads that

consist mostly of queries that read and write single

records or small groups of records. Thus, we expect

most scans to be of just a few tens or hundreds of

records, and optimize accordingly. Scans can specify

predicates which are evaluated at the server.

Similarly, we provide a “multiget” operation which

supports retrieving multiple records (from one or

more tables) in parallel by specifying a set of primary

keys and an optional predicate, but again expect that

the number of records retrieved will be a few

thousand at most.

Our system, regrettably, also does not enforce

constraints such as referential integrity, although this

would be very desirable. The implementation

challenges in a system with fine-grained asynchrony

are significant, and require future work. Another

missing feature is complex ad hoc queries (joins,

group-by, etc.). While improving query functionality

is a topic of future work, it must be accomplished in a

way that does not the response-time and availability

currently guaranteed to the more “transactional”

requests of web applications.

V. CYCLE DETECTION APPROACH

A transaction is aborted only when a dependency

cycle is detected involving that transaction during its

commit protocol. The cycle detection approach aborts

only the transactions that can cause serialization

anomalies but it requires tracking of all dependencies

for every transaction and maintaining a dependency

graph to check for cycles. Cycle Detection Approach:

A transaction is aborted only when a dependency

cycle is detected involving that transaction during its

commit protocol. This approach is conceptually

similar to the technique [12] investigated in the

context of RDBMS.The conflict dependency checks in

the above two ap-proaches are performed in addition

to the check for write-write conflicts required for the

basic SI model. We implemented and evaluated the

above approaches in both the fully decentralized

model and the service-based model. The cycle

prevention approach can sometimes abort

transactions that may not lead to serialization

anomalies. The cycle detection approach aborts only

the transactions that can cause serialization anomalies

but it requires tracking of all dependencies for every

transaction and maintaining a dependency graph to

check for cycles. When two concurrent transactions

Ti and Tj have anti-dependency, one of them is

aborted. This ensures that there can never be a pivot

transaction, thus guaranteeing serializability. We

implemented and evaluated the above approaches in

both the fully decentralized model and the service-

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 101

based model. The cycle prevention approach can

sometimes abort transactions that may not lead to

serialization anomalies.

VI. CYCLE PREVENTION APPROACH

The first system architecture all transaction

management functions are executed in a fully

decentralized manner by the application processes.

The second architecture is based on a hybrid

approach in which the conflict detection functions

are performed by a dedicated service. We perform a

comparative evaluation of these architectures using

the TPC-C benchmark and demonstrate their

scalability. Cycle Prevention Approach is a two

concurrent transactions Ti and Tj have an anti-

dependency, one of them is aborted. This ensures that

there can never be a pivot transaction, thus

guaranteeing serializability. In the context of RDBMS,

this approach was investigated .The cycle prevention

approach requires tracking all dependencies among

transactions, i.e., anti-dependencies (both incoming

and outgoing) among concurrent transactions, and

write-read and write-write dependencies among non

concurring transactions. We maintain this

information in the form of a dependency serialization

graph (DSG), in the global storage. Since an active

transaction may form dependencies with a certain

committed transaction, we need to retain information

about such transactions in the DSG. This raises an

issue that a concurrent writer may miss detecting a

read-write conflict if it attempts to acquire a write

lock after the conflicting reader transaction has

committed and its read lock has been released. To

avoid this problem, transaction records its commit

timestamp, in a column named „read-ts‟ in the Storage

Table, while releasing read lock acquired on an item.

A writer checks whether the timestamp value written

in the „read-ts‟ column is greater than its snapshot

timestamp, which indicates that the writer is

concurrent with a committed reader transaction. A

reader transaction checks for the presence of a write

lock or a newer committed version for an item in its

read set to detect read-write conflicts. Otherwise, it

acquires a read lock on the item.

VII. TIME STAMP MANAGEMENT

The decentralized model the steps in the commit

protocol are executed concurrently by the application

processes. Because these steps cannot be performed as

a single atomic action, a number of design issues arise

as discussed below. There can be situations where

several transactions have acquired commit

timestamps but their commitment status is not yet

known. We also need to make sure that even if a

transaction has made its update to the storage system,

these updates should not be made visible to other

transactions until the transaction is committed.

Therefore, we need to maintain two timestamp

counters: GTS (global timestamp) which is the latest

commit timestamp assigned to a transaction, and STS

(stable timestamp), which is the largest timestamp

such that all transactions with commit timestamp up

to this value are either committed or aborted and all

the updates of the committed transactions are written

to the global storage. An example shown in Figure

illustrates the notion of GTS and STS. In this example,

STS is advanced only up to sequence number 16

because the commit status of all the transactions up to

sequence number is known, however, the commit

status of the transaction with sequence number is not

yet known. When a new transaction is started, it uses

the current STS value as its snapshot timestamp. We

first experimented with using the key-value storage

itself to store these counter values. However, we

found this approach to be slow, and therefore we use

a dedicated service which we refer to as Timestamp

Service for maintaining these counter values.

VIII. EXPERIMENT

The SI model requires checking for write-write

conflicts among concurrent transactions. This

requires a mechanism to detect such conflicts and a

method to resolve conflicts by allowing only one of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 102

the conflicting transactions to commit. When two or

more concurrent transactions conflict, there are two

approaches to decide which transaction should be

allowed to commit. The first approach is called first-

committer-wins (FCW)[27], in which the transaction

with the smallest commit timestamp is allowed to

commit. In this approach, conflict checking can only

be performed by a transaction after acquiring its

commit timestamp. This enforces a sequential

ordering on conflict checking based on the commit

timestamps. This would force a younger transaction

to wait for the progress of all the older transactions,

thereby limiting concurrency. In contrast, in the

second approach, which is called first-updater-wins ,

conflict detection is performed by acquiring locks on

write-set items and in case of conflicting transactions

the one that acquires the locks first is allowed to

commit. The FUW approach appears more desirable

because the conflict detection and resolution can be

performed before acquiring the commit timestamp,

there-by reducing any sequential ordering based on

commit timestamps and reducing the time required

for executing the commit protocol. Therefore, we

chose to adopt the FUW approach for conflict

detection.

There are two problems that arise due to transaction

failures. A failed transaction can block progress of

other conflicting transactions. A failure of a

transaction after acquiring commit timestamp stalls

advancement of the STS counter thereby forcing the

new transactions to use old snapshot time, which may

likely result in greater aborts due to write-write

conflicts. Thus, an appropriate timeout mechanism is

needed to detect stalled or failed transactions and

initiate their recovery. The cooperative recovery

actions for a failed transaction are triggered in two

situations.

The conflicting transaction is waiting for the commit

of a failed transaction, and the STS advancement has

stalled due to a failed transaction that has acquired a

commit timestamp. The recovery actions in the first

situation are performed by any of the conflicting

transactions, whereas the failures of the second kind

are detected and recovery actions are performed by

any application level process or by a dedicated system

level process. If a transaction fails before acquiring a

commit timestamp, then it is aborted, otherwise the

transaction is committed and rolled-forward to

complete its commit protocol.

Figure 1. Registration screenshot

We used TPC-C benchmark to perform evaluations

under a realistic workload. However, our

implementation of the benchmark workload differs

from TPC-C specifications in the following ways.

Since our primary purpose is to measure the

transaction throughput we did not emulate terminal

I/O. Since HBase does not support composite primary

keys, we created the row-keys as concatenation of the

specified primary keys. This eliminated the need of

join operations, typically required in SQL-based

implementation of TPC-C. Predicate reads were

implemented using scan and filtering operations

provided by HBase. Since the transactions specified in

TPC-C benchmark do not create serialization

anomalies under SI, as observed in [9], we

implemented the modifications suggested in. In our

experiments we observed that on average a TPC-C

transaction performed 8 read operations and 6 write

operations.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 103

We first identify the features of the key-value data

storage system that are required for realizing the

transaction management mechanisms presented here.

The storage system should provide support for tables

and multiple columns per data item (row), and

primitives for managing multiple versions of data

items with application-defined timestamps. It should

provide strong consistency for updates [29], i.e., when

a data item is updated, any subsequent reads should

see the updated value. Moreover, for the

decentralized architecture, we require mechanisms

for performing row-level transactions involving any

number of columns. Our implementation is based on

HBase [3], which meets these requirements.

Figure 2. Login screenshot

For each transaction, we maintain in the global

storage the following information: transaction,

snapshot timestamp, commit time stamps , write-set

information, and current status. This information is

maintained in a table named Transaction Table in the

global storage, as shown in Fig. 5. In this table, tid is

the row-key of the table and other items are

maintained as columns. The column out-edges‟ is used

to record information related to outgoing dependency

edges, which is required only in the cycle detection

approach. To ensure that the Transaction Table does

not become the bottleneck, we set the table

configuration to partition it across all the HBase

servers.

The data distribution scheme for HBase is based on

sequential range partitioning. Therefore, if we

generate transaction ids sequentially it creates a load

balancing problem since all the rows in Transaction

Table corresponding the currently running

transactions will be stored only at one or few HBase

servers. Therefore, to avoid this problem we generate

transaction ids randomly. For each application data

table, hereby referred as Storage Table, we maintain

the information related to the committed versions of

application data items and lock information, as shown

in Fig. 6. An application may have multiple such

storage tables. Since we adopt the eager update model,

uncommitted versions of data items also need to be

maintained in the global storage. A transaction writes

a new version of a data item with its tid as the version

timestamp. These version timestamps then need to be

mapped to the transaction commit timestamp TSc

when transaction commits. This mapping is stored by

writing tid in a column named committed-version

with version timestamp as TSc. The column „w lock‟

in the Storage Table is used to detect write-write

conflicts, whereas columns „r lock,‟ „read-ts,‟ and

„readers‟ are used in detecting read write conflicts for

serializability, as discussed in the next section.

Figure 3. Home Screen Shot

Understanding Snapshot Isolation and Row

Versioning. Once snapshot isolation is enabled,

updated row versions for each transaction are

maintained in tempdb. A unique transaction sequence

number identifies each transaction, and these unique

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 104

numbers are recorded for each row version.SI is an

extension of multiversion concurrency control. A

transaction T1 executing with Snapshot Isolation

Takes snapshot of committed data at start of T1 called

start- timestamp Always reads/modifies data in its

own snapshot Updates of concurrent transactions are

not visible to T1 T1 is allowed to commit only when

another Tx t2 running concurrently has not already

written the data item that T1 intends to write.

PNUTS is a hosted, centrally-managed database

service shared by multiple applications. To add

capacity, we add servers. The system adapts by

automatically shifting some load to the new servers.

The bottleneck for some applications is the number of

disk seeks that can be done concurrently; for others it

is the amount of aggregate RAM for caching or CPU

cycles for processing queries. In all cases, adding more

servers adds more of the bottleneck resource. When

servers have a hard failure (such as a burnt out power

supply or RAID controller failure), we automatically

recover by copying data (from a replica) to other live

servers (new or existing), carrying out little or no

recovery on the failed server itself. Our goal is to scale

to more than ten worldwide replicas, each with 1,000

or more servers. At this scale, auto-mated failover and

load balancing is the only way to manage the

operations load. This hosted model introduces several

complications that must be dealt with. First, different

applications have different workloads and

requirements, even within our relatively narrow

niche of web serving applications. Therefore, the

system must support several different workload

profiles, and be automatically or easily tunable to

different profiles. For example, our master ship

migration protocol adapts to the observed write

patterns of different applications. Second, we need

performance isolation so that one heavyweight

application does not negatively impact the

performance of other applications. In our current

implementation, performance isolation is provided by

assigning different applications to different sets of

storage units within a region.

Figure 4. Buyer page Screen shot

Our implementation of Paxos has interesting trade in

system behavior. Application servers in multiple

datacenters may initiate writes to the same entity

group and log position simultaneously. All but one of

them will fail and need to retry their transactions.

The increased latency imposed by synchronous

replication increases the likelihood of conicts for a

given per-entity-group commit rate Limiting that rate

to a few writes per second per entity group yields

insignificant conict rates. For apps whose entities are

manipulated by a small number of users at a time this

limitation is generally not a concern. Most of our

target customers scale write throughput by shading

entity groups more only or by ensuring replicas are

placed in the same region, decreasing both latency

and connect rate. Applications with some server

\stickiness" are well positioned to batch user

operations into fewer Megastore transactions. Bulk

processing of Megastore queue messages is a common

batching technique, reducing the conict rate and

increasing aggregate throughput. For groups that

must regularly exceed a few writes per second,

applications can use the _ne-grained advisory locks

dispensed by coordinator servers. Sequencing

transactions back-to-back avoids the delays associated

with retries and the reversion to two-phase Paxos

when a convict is detected.

To scale throughput and localize outages, we partition

our data into a collection of entity groups, each

independently and synchronously replicated over a

wide area. The underlying data is stored in a scalable

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 105

NoSQL datastore in each datacenter . Entities within

an entity group are mutated with single-phase ACID

transactions (for which the commit record is

replicated via Paxos). Operations across entity groups

could rely on expensive two-phase commits, but

typically leverage Megastore's e_cient asynchronous

messaging. A transaction in a sending entity group

places one or more messages in a queue; transactions

in receiving entity groups atomically consume those

messages and apply ensuing mutations. Note that we

use asynchronous messaging between logically distant

entity groups, not physically distant replicas .All

network transaction between datacenters is from

replicated operations, which are synchronous and

consistent. Indexes local to an entity group obey

ACID semantics those across entity groups have

looser consistency. See Figure 2 for the various

operations on and between entity groups.

Figure 5. View sale Screen shot

We decided to use Paxos, a proven, optimal, fault-

tolerant consensus algorithm with no requirement for

a distinguished master. We replicate a write-ahead

log over a group of symmetric peers. Any node can

initiate reads and writes Each log append blocks on

acknowledgments from a majority of replicas, and

replicas in the minority catch up as they are able |the

algorithm's inherent fault tolerance eliminates the

need for distinguished failed" state. A novel extension

to Paxos, detailed in Section, allows local reads at any

up-to-date replica. Another extension permits single-

roundtrip writes. Even with fault tolerance from

Paxos, there are limitations to using a single log. With

replicas spread over a wide area, communication

latencies limit overall through-put. Moreover,

progress is impeded when no replica is cur-rent or a

majority fail to acknowledge writes. In a traditional

SQL database hosting thousands or millions of users,

using a synchronously replicated log would risk

interruptions of widespread impact . So to improve

availability and throughput we use multiple

replicated logs, each governing its own partition of

the data set.

We evaluated common strategies for wide-area

replication Asynchronous Master/Slave A master

node replicates write-ahead log entries to at least one

slave. Log appends are acknowledged at the master in

parallel with transmission to slaves. The master can

support fast ACID transactions but risks downtime or

data loss during failover to a slave. A consensus

protocol is required to mediate master ship.

Synchronous Master/Slave a master waits for changes

to be mirrored to slaves before acknowledging them,

allowing failover without data loss. Master and slave

failures need timely detection by an external system.

Optimistic Replication Any member of a

homogeneous replica group can accept mutations ,

which are asynchronously propagated through the

group. Availability and latency are excellent.

However, the global mutation ordering is not known

at commit time, so transactions are impossible. We

avoided strategies which could lose data on failures,

which are common in large-scale systems. We also

discarded strategies that do not permit ACID

transactions. Despite the operational advantages of

eventually consistent systems, it is currently too

dificult to give up the read-modify-write idiom in

rapid application development. We also discarded

options with a heavyweight master. Failover requires

a series of high-latency stages often causing a user-

visible outage, and there is still a huge amount of

complexity. Why build a fault-tolerant system to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 106

arbitrate mastership and failover work ows if we

could avoid distinguished masters altogether.

Replicating data across hosts within a single data

center improves availability by overcoming host-

specific failures but with diminishing returns. We still

must confront the networks that connect them to the

outside world and the infrastructure that powers,

cools, and houses them. Economically constructed

sites risk some level of facility-wide outages [25] and

are vulnerable to regional disasters. For cloud storage

to meet availability demands, service providers must

replicate data over a wide geographic area. In contrast

to our need for a storage platform that is global,

reliable, and arbitrarily large in scale, our hardware

building blocks are geographically conned, failure-

prone, and super limited capacity. We must bind

these components into a united ensemble _bring

greater throughput and reliability. To do so, we have

taken a two-pronged approach for availability, we

implemented a synchronous, fault tolerant log

replicator optimized for long distance-links for scale,

we partitioned data into a vast space of small

databases, each with its own replicated log stored in a

per-replica NoSQL datastore.

PNUTS presents a simplified relational data model to

the user. Data is organized into tables of records with

attributes.In addition to typical data types, “blob” is a

valid data type, allowing arbitrary structures inside a

record, but not neces-sarily large binary objects like

images or audio. (We observe that blob fields, which

are manipulated entirely in application logic, are used

extensively in practice.) Schemas are flexible: new

attributes can be added at any time without halting

query or update activity, and records are not required

to have values for all attributes. The query language

of PNUTS supports selection and prjection from a

single table. Updates and deletes must specific the

primary key. While restrictive compared to relational

systems, single-table queries in fact provide very

flexible access compared to distributed hash or

ordered data stores, and present opportunities for

future optimization by the system . Consider again

our hypo-thetical social networking application: A

user may update her own record, resulting in point

access. Another user may scan a set of friends in order

by name, resulting in range access. PNUTS allows

applications to declare tables to be hashed or ordered,

supporting both workloads efficently. The

implementation challenges in a system with fine-

grained asynchrony are significant, and require future

work. Another missing feature is complex ad hoc

queries (joins, group-by, etc.). While improving query

functionality is a topic of future work, it must be

accomplished in a way that does not jeapardize the

response-time and availability currently guaranteed

to the more “transactional” requests of web

applications. In the shorter term, we plan to provide

an interface for both Hadoop, an open source

implementation of Map Reduce , to pull data out of

PNUTS for analysis, much as Map Reduce pulls data

out of Big Table .

IX. CONCLUSION

We have presented here a fully decentralized

transaction management model and a service-based

architecture for supporting snapshot isolation as well

as serializable transactions for key-value based cloud

storage systems. We investigated here two approaches

for ensuring serializability. We find that both the

decentralized and service based models achieve

throughput scalability under the scale-out model. The

service-based model performs better than the

decentralized model. To ensure the scalability of the

service-based approach we developed a replication

based architecture for the conflict detection service.

The decentralized model has no centralized

component that can become a bottle neck, therefore,

its scalability only depends on the underlying storage

system. We also observe that the cycle detection

approach has significant overhead compared to the

cycle prevention approach. We conclude that if

serializability of transaction is required then using the

cycle prevention approach is desirable. We also

demonstrated here the effectiveness of the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 107

cooperative recovery mechanisms used in our

approach. In summary, our work demonstrates that

serializable transactions can be supported in a scalable

manner in NoSQL data storage system.

In this paper we present Megastore, a scalable, highly

available datastore designed to meet the storage

requirements of interactive Internet services. We use

Paxos for synchronous wide area replication,

providing lightweight and fast failover of individual

operations. The latency penalty of synchronous

replication across widely distributed replicas is more

than onset by the convenience of a single system

image and the operational benefits of carrier-grade

availability. We use Bigtable as our scalable datastore

while adding richer primitives such as ACID

transactions, indexes, and queues. Partitioning the

database into entity group sub-databases provides

familiar transactional features for most operations

while allowing scalability of storage and throughput.

X. FUTURE WORK

In the future, we would like to explore the

implications of the Key Grouping protocol in the

presence of analytical workloads and index structures

built on Key-Value stores. We would also like to

explore the feasibility of the design of G-Store using

Key-Value stores such a Dynamo and PNUTS where

the data store spans multiple data centers and

geographical regions, and supports replication and

weaker consistency guarantees of reads, and evaluate

the ramifications of the weaker consistency

guarantees of the data store on the consistency and

isolation guarantees of transactions on groups In the

concept multi row transaction using DB2 database has

been more important one for all the process that

scalability process to done the project work. In

feature thing is all multi rows. If user at stabel mode

means database will be remove the user from

DataBase.

XI. REFERENCES

[1]. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A.

Wallach,M. Burrows, T. Chandra, A. Fikes, and R.E.

Gruber, 'Bigtable: ADistributed Storage System for

Structured Data,' ACM Trans.Comput. Syst., vol. 26,

no. 2, pp. 1-26, June 2008.

[2]. B.F. Cooper, R. Ramakrishnan, U. Srivastava-, A.

Silberstein,P. Bohannon, H.-A. Jacobsen, N. Puz, D.

Weaver, and R. Yerneni,'Pnuts: Yahoo!'s Hosted

Data Serving Platform,' Proc. VLDB Endowment,

vol. 1, no. 2, pp. 1277-1288, Aug. 2008.

[3]. Apache, Hbase. Online]. Available:

http://hbase.apache.org/.

[4]. J. Baker, C. Bond, J. Corbett, J.J. Furman, A. Khorlin,

J. Larson,J.-M. Leon, Y. Li, A. Lloyd, and V.

Yushprakh , 'Megastore: Providing Scalable, Highly

Available Storage for Interactive Services,' in Proc.

CIDR, 2011, pp. 223-234.

[5]. S. Das, D. Agrawal, and A.E. Abbadi, 'G-Store: A

Scalable Data Store for Transactional Multi Key

Access in the Cloud,' in Proc.ACM Symp. Cloud

Comput., 2010.

[6]. T.Haerder and A. Reuter, 'Principles of Transaction-

Oriented Database Recovery,' ACM Comput. Survey,

vol. 15, no. 4, pp. 287-317, Dec. 1983.

[7]. T.P. Council, San Francisco, CA, USATPC-C

Benchmark.Online]. Available:

http://www.tpc.org/tpcc.

[8]. H. Berenson, P. Bernstein, J. Gray, J. Melton, E.

O'Neil, andP. O'Neil, 'A Critique of ANSI SQL

Isolation Levels,' in Proc.ACM SIGMOD, 1995, pp.

1-10.

[9]. A. Faceted, D. Liarokapis, E. O'Neil, P. O'Neil, and

D. Shasha,'Making Snapshot Isolation Serializable,'

ACM Trans. Database Syst., vol. 30, no. 2, pp. 492-

528, June 2005.

[10]. M. Bornea, O. Hodson, S. Elnikety, and A.

Fekete,'One-Copy Serializability With Snapshot

Isolation Under the Hood,' in Proc. IEEE ICDE, Apr.

2011, pp. 625-636.

[11]. M.J. Cahill, U. Rohm, and A.D. Fekete, 'Serializable

Isolation for Snapshot Databases,' ACM Trans.

Database Syst., vol. 34, no. 4, pp. 20:1-20:42, Dec.

2009.

