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ABSTRACT 

 

This paper presents a novel optimization approach for de-noising and bias correction of MR image with 

intensity in-homogeneity.  Intensity of inhomogeneous objects to be Gaussian distributed with different means 

and variances are modeled, and then a sliding window is introduced to map the original image intensity onto 

another domain, where the intensity distribution of each object is still Gaussian but can be better separated. 

The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying 

the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy 

functional is then defined on each of the local regional, which combines the bias field, the membership 

function of the object region, and the constant approximating the true signal from its corresponding object. The 

energy functional is then extended to the whole image domain by the Bayesian learning approach. 

Furthermore, the smoothness of the obtained optimal bias field is ensured by normalized convolutions without 

extra cost. Experiments on the real image demonstrate the superiority of the proposed algorithm to other state-

of-the-art representative methods. 
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I. INTRODUCTION 

Intensity in homogeneity caused by imperfection of 

imaging devices and subject-induced susceptibility 

effects can lead to serious misclassifications by 

intensity-based segmentation algorithms. Medical 

image acquisition devices and protocols that have 

hugely evolved over the last decades provide a vast 

amount of data out of which the information essential 

for diagnosis, therapy planning and execution, and 

monitoring the progress of disease or results of 

treatment has to be extracted. Preprocessing step is 

required automatically extracting clinical useful 

information usually requires a preprocessing step by 

which various image artifacts, which may degrade the 

results of subsequent image analysis algorithms, are 

removed. Method that deal with aof preprocessing 

with spurious smoothly varying image intensities, i.e., 

with the phenomenon that is usually referred to as 

intensity in homogeneity, intensity non uniformity, 

shading or bias field. This process of images obtained 

by different imaging modalities, such as microscopy, 

computed tomography, ultrasound, and above all by 

magnetic resonance imaging (MRI).  It manifests itself 

as a smooth intensity variation across the image 

(Fig1). Because of this phenomenon, the intensity of 

the same tissue varies with the location of the tissue 

within the image. Usually intensity in homogeneity is 

hardly noticeable to a human observer, many medical 

image analysis methods, such as segmentation and 

registration, are highly sensitive to the spurious 

variations of image intensities. This is why a huge 

methods for intensity in homogeneity correction of 

magnetic resonance (MR) images have been proposed 

in the past. 

http://122.183.214.170:2061/xpls/icp.jsp?arnumber=4114560
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Figure 1. Intensity in homogeneity in MRI brain 

image 

 

Intensity In homogeneity: Smooth spatially varying 

function that alters image intensities that otherwise 

would be constant for the same tissue type regardless 

of its position in an image It is the most easy form, the 

method assumes that intensity in homogeneity is 

perform multiplicative or additive, i.e., the intensity 

in homogeneity field multiplies or adds to the image 

intensities. Most frequently, the multiplicative model 

has been used as it is consistent with the 

inhomogeneous sensitivity of the reception coil. Due 

to induced currents in homogeneities for modeled as 

non uniform excitation, the multiplicative model is 

less appropriate. In addition to intensity in 

homogeneity, the MR image formation model should 

incorporate high-frequency noise. This noise is 

known to have a Rician distribution. However, as 

long as the signal-to-noise ratio (SNR) is not too low, 

noise can be approximated by a quasi-Gaussian 

distribution. This approximation is appropriate for 

image areas corresponding to tissues but not for no-

signal areas, such as air. 

 

Classification of correction methods: Intensity in 

homogeneity correction number of methods have 

been proposed in the last two decades. In the 

following, we propose a classification scheme, 

accordingly classify correction methods, and discuss 

the advantages and disadvantages of different 

correction strategies. From the very beginning, two 

main approaches have been applied to minimize the 

intensity in homogeneity in MR images, namely the 

prospective and retrospective approach. The first aims 

at calibration and improvement of the image 

acquisition process, while the latter relies exclusively 

on the information of the acquired image and 

sometimes also on some a priori knowledge. Based on 

the classification proposed below, we have further 

divided into the prospective methods into those that 

are based on phantoms, multi-coils, and special 

sequences. The retrospective methods are further 

classified into filtering, surface fitting, segmentation, 

and histogram based. 

 

Prospective 

• Phantom 

• Multi-coil 

• Special sequences 

Reprospective 

• Filtering 

• Homomorphic 

• Homomorphic unsharp masking 

• Surface fitting 

• Intensity 

• Gradient 

• Segmentation 

• ML, MAP 

• Fuzzy c-means 

•  Nonparametric 

•  Histogram 

•  High frequency maximization 

•  Information minimization 

•  Histogram matching 

A. Prospective Methods 

Phantom Based: An estimate of the intensity in 

homogeneity field can be obtained by acquiring an 

image of a uniform phantom with known physical 

properties and by scaling and smoothing of the 
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acquired phantom image or water is usually used for 

phantoms and median filtering is applied for image 

smoothing. The phantom based method, which is a 

major drawback of this approach because it cannot 

correct for patient-induced in homogeneity. The 

remaining intensity in homogeneity can be as high as 

30%. Another limitation of this approach is the 

temporal and spatial variation of the coil profile that 

calls for frequent acquisitions of the phantom 

image. To reduce the number of phantom 

acquisitions, the authors in proposed to carefully 

record the orientation and position of the phantom 

and the coils to be able to geometrically transform the 

estimated in homogeneity field to any acquired 

image. Attempts have been made to first 

mathematically model the in homogeneity field by 

polynomials, curves [or by integration based on the 

Biot Savart  law, and then fit the obtained model to 

the phantom image. A method that minimizes the 

dependency of the in homogeneity field on the 

scanner and object has been proposed , deriving a 

mathematical model from the equation for T1 signal 

generation and using a phantom image, flip angle 

mapping, and reference objects. However, the 

usefulness of this method is limited by the specific 

imaging conditions and sensitivity to input 

parameters. 

 

Multi-coil: There are two types of coils, surface and 

volume are most frequently used in MRI. Surface coils 

usually have good SNR but induce severe intensity in 

homogeneity, while volume coils exhibit less in 

homogeneity but have poor SNR.  The intensity in 

homogeneity field is obtained by dividing the filtered 

surface coil image with the body coil image and 

smoothing the resulting image. The main 

disadvantage of these methods is the prolonged 

acquisition time. The final in homogeneity field was 

modeled by a spline surface that had been fitted to a 

set of in homogeneity field estimates.  This method 

could also handle multispectral images (T1, T2) if 

acquired by the same coils. In general, the usability of 

the multi-coil methods is limited by prolonged 

acquisition times, special coil settings, and incomplete 

in homogeneity correction. 

 

Special Sequences: This group of techniques is 

predominantly related to specific acquisition 

(hardware) designs and is thus only briefly described. 

For certain pulse sequences, the spatial distribution of 

the flip angle can be estimated and used to calculate 

the intensity in homogeneity. The mathematical 

model behind this approach requires the acquisition 

of two images, the second one with doubled nominal 

flip angle of the first. Other techniques, such as 

sensitivity encoding by multiple receiver coils, also 

reduce the in homogeneity artifact but they were 

mainly developed to speed up the scanning 

process. In, echo planar imaging (EPI) phased 

modulation maps were estimated to remove the in 

homogeneity field in the original image. Another 

method, proposed for the in homogeneity field 

minimization of 4.7T images, modified certain pulses 

in the modified driven equilibrium Fourier transform 

(MDEFT) imaging. Besides, for MRI contrasts, such as 

diffusion weighting, magnetization transfer ratios, 

two point quantitative T1, and two point quantitative 

T2, in which the final image is a ratio, most of the 

multiplicative intensity in homogeneity is cancelled 

and the images are relatively homogeneous. This is 

because the sensitivity variation of the receive coil 

remains unchanged even if the sequence parameters 

are varied. 

 

B. Retrospective Methods 

Retrospective methods are relatively general as only a 

few assumptions about the acquisition process are 

usually made. These methods mainly rely on the 

information of the acquired images in which useful 

anatomical information and information on the 

intensity in homogeneity are integrated. A intensity 

probability distribution of the imaged anatomy is 

mostly  used by some methods to facilitate extraction 

of information on intensity in homogeneity. In 

contrast to the prospective methods, which can 

correct only the intensity in homogeneity induced by 
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an MR scanner, retrospective methods can also 

remove patient dependant in homogeneity. 

 

Filtering Methods: Assume filtering methods that can 

be separated from the high-frequency signal of the 

imaged anatomical structures by low-pass filtering. 

However, this assumption is valid only if the imaged 

anatomical structures are relatively small and thus 

contain no low frequencies that might be mistakenly 

removed by low-pass filtering. For most of the 

anatomical structures imaged by MR this assumption 

does not hold, which results in overlap of anatomy 

and in homogeneity frequency spectra. This limits the 

feasibility of filtering methods. Besides, high image 

contrasts generate filtering artifacts known as edge 

effects, manifesting themselves as a distortion of 

homogeneous tissues near the edges. The strongest 

edges that are usually at the object/background 

transitions can be removed by either masking out the 

background, replacing background pixels by average 

intensity values or by extrapolating tissue intensities 

over the background. Nevertheless, substantial 

intensity in homogeneity usually remains in an image 

after correction by these methods. Two main filtering 

approaches, Homomorphic filtering and Holomorphic 

un-sharp masking (HUM), have been proposed. 

Morphological filtering and simple high-pass filtering 

also belong to this group of methods but, in contrast 

to some successful applications to microscopic images, 

they have not been found useful for MRI. 

 

Surface Fitting Methods: These methods fit a 

parametric surface to a set of image features that 

contain information on intensity in homogeneity. The 

resulting surface, which is usually polynomial or 

spline based, represents the multiplicative in 

homogeneity field that is used to correct the input 

image. Based on the image features used for surface 

fitting, this methods are further sorted into intensity 

and gradient based methods. 

 

Intensity Based: A parametric surface in the form of 

thin plate splines was least squares fitted to intensities 

of a set of pixels, which were assumed to belong to 

the same tissue and were distributed over the entire 

image. Manual selection of pixels corresponding to a 

dominant tissue and automatic selection, which was 

based on neural network classification, were 

investigated. Although subjective and time-

consuming, manual selection was shown to give 

better results. In, an automated iterative method was 

proposed, incorporating segmentation of 

homogeneous areas of the major tissue, followed by 

fitting a second order polynomial to intensities of the 

segmented tissue.  Gaussian main tissue model, was 

applied to estimate the in homogeneity fields and 

merge several surface coil (phased array) images. The 

major drawback of these methods is that the in 

homogeneity field is estimated only from intensities 

of one major tissue and then blindly extrapolated over 

the whole image. A combination of B-spline surface 

fitting and a histogram based method was proposed 

in. 

Gradient Based: The main assumption behind these 

methods is that sufficiently large homogeneous areas 

are evenly distributed over the entire image so that 

local gradients of intensity in homogeneity can be 

estimated by local averaging of image intensity 

gradients. In, a polynomial surface was least squares 

fitted to underlying normalized intensities of 

homogeneous areas. Tissue independent segmentation 

was used to obtain the homogeneous areas. Because 

these were rather sparsely distributed over the entire 

volume, not all image information was used to 

estimate the in homogeneity correction field. By a 

similar approach, a finite element surface model was 

fitted by minimizing the difference between 

derivatives of homogeneous areas and the 

corresponding surface model. Instead of surface 

fitting, some methods obtain the in homogeneity field 

by integrating derivatives estimated inside 

homogeneous areas. Simple polynomial models were 

used to extrapolate the gradients outside the 

homogeneous areas. The major drawback of these 

methods is that some adverse image information may 

be integrated. These methods are successful only if 
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homogeneous image areas are large and distinctive, 

such as the white matter in brain images. 

Segmentation Based Methods: On the other hand, 

correct segmentation makes intensity in homogeneity 

correction rather trivial. Intensity in homogeneity 

correction and segmentation can thus be viewed upon 

as two intertwined procedures. In intensity in 

homogeneity correction methods segmentation based  

these two procedures are merged so that they benefit 

from each other, simultaneously yielding better 

segmentation and in homogeneity correction. These 

intensity in homogeneity correction methods are 

further classified according to the image segmentation 

method utilized. 

 

ML, MAP Based: The maximum-likelihood (ML) or 

the maximum a posteriori probability (MAP) criterion 

may be used to estimate the image intensity 

probability distribution by parametric models. Finite 

mixture and more frequently finite Gaussian mixture 

models are used and modified to incorporate intensity 

in homogeneity. The models' parameters can be 

estimated by the expectation-maximization (EM) 

algorithm, iterating between classification and 

intensity in homogeneity correction. An additional 

class, named “other,” which had a uniform intensity 

probability distribution was introduced in to model 

the intensities not belonging to any of the main 

tissues. Another similar approach uses additional 

mixed tissue classes to model the partial volume effect 

and background by Rayleigh distribution. Because the 

Gaussian model is only an approximation of a single 

tissue probability density, several Gaussians can be 

used per one main tissue, for example, 3 for white 

matter and 2 for grey matter in the brain, and much 

more for minor, less significant tissues. A unique 

approach, first published in and refined later, 

upgraded the EM iterative scheme by adding a special 

step in which the resulting in homogeneity field was 

scaled to minimize a new criterion, namely, the 

classification error rate (CER). In this way, the whole 

algorithm was primarily guided by the results that 

would be produced by a coarse segmentation. The 

criterion of minimum image entropy was used in to 

estimate the in homogeneity field, while the classical 

EM procedure was implemented to optimize ML in 

search for model parameters. To deal with the high 

number of searched parameters, e.g.  classification 

and in homogeneity correction steps, or to speed up 

the algorithm, optimization schemes such as 

generalized EM (GEM) , iterative conditional modes 

(ICM) or expectation conditional minimization 

(ECM) have been proposed. 

 

One of the main requirements of the EM based 

approaches is the initialization of explicitly modeled 

classes and spatial distribution of tissues. Initialization 

can be obtained by manual selection of representative 

points for each class, which is subjective and 

irreproducible.  A self-adaptive vector quantization 

and tree-structure -means classification were 

implemented to estimate the initial class means, 

standard deviations or brain mask. Other automatic 

approaches used a statistical probability atlas, initially 

registered to the processed image, to estimate the 

required parameters. 

Model of intensity probability do not exploit the 

information about spatial connectedness of 

neighboring pixels belonging to the same class, 

(hidden) Markov random fields [(H) MRF] were 

frequently incorporated. This resulted in improved 

segmentation, which was less sensitive to noise and 

had smoother tissue borders. Even though, to reduce 

over smoothing of tissue borders, spatial 

connectedness should not be too strong. The 

suggestion of authors to limit HMRF smoothing by 

penalizing only the neighboring intensity 

combinations that were implausible due to the 

specific topology of the imaged object. 

 

The proposed framework, interleaving 

segmentation, registration and intensity in 

homogeneity correction to improve tissue 

segmentation. FGM (finite Gaussian mixture) was 

used as a probability model with intensity in 

homogeneity dependant class means. The registration 

step in was performed by deforming the tissue 
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probability maps. The ICM scheme estimated 

different groups of parameters, using EM to find the 

mixture-classification parameters and Levenberg–

Marquardt optimization for in homogeneity field and 

registration steps. This method of algorithm, although 

rather tedious and time-consuming, seems promising 

due to the integration of segmentation, registration 

and intensity in homogeneity correction, which had 

been treated separately in the past. 

Fuzzy C-Means: These methods use the standard 

fuzzy c-means (FCM) segmentation and modify the 

objective function to adapt to intensity in 

homogeneity. The main property of FCM methods is 

the soft classification model, which assumes that 

image voxels belong to more than one class. This is 

consistent with the partial volume effect observed in 

MR images and thus eliminates the explicit modeling 

of mixed classes, which is required by the 

abovementioned FGM models. The authors in 

proposed an adaptive fuzzy c-means method, which 

multiplies the class centroid values by a function of 

location, estimating the intensity in homogeneity. By 

using a spatial regularization terms, penalizing first 

and second derivatives of the in homogeneity field, 

were added to the objective function to preserve its 

smoothness. Because the weights of these 

regularization terms are difficult to set, they have to 

be tuned manually. An automatic procedure based on 

histogram mode searching was used to set the initial 

values of class centroids, while the objective function 

was minimized by the Jacobi iterative scheme applied 

on a multi-grid algorithm to speed up the 

process. The method was later generalized to 3-D 

multispectral images and accelerated by the same 

authors. In and refined later in, spatial information 

was incorporated by adding a spatial regularization 

term that enabled the class membership of a voxel to 

be influenced by its neighbors. This approach proved 

tolerant to salt and pepper noise, resulting in 

smoother segmentation. By tuning repeatedly a 

regularization parameter determining the smoothness 

of segmentation and, implicitly, also the in 

homogeneity field. Another approach was proposed 

in where the in homogeneity field was modeled by 

a B-spline surface, while the spatial voxel 

connectivity was implemented by a dissimilarity 

index, which enforced the connectivity constraint 

only in the homogeneous areas. In this way the tissue 

boundaries were better preserved. Yet another 

method that performed local fuzzy c-means 

classification and thereby completely avoided the 

need for modeling the intensity in homogeneity 

function was presented in. 

Nonparametric: Nonparametric segmentation based in 

homogeneity correction methods were proposed in 

and, using nonparametric max shift or mean shift 

clustering. The methods did not require any a 

priori knowledge on the intensity probability 

distribution, e.g., tissue class means and variances, but 

blindly classified the voxels according to the main 

modes of the feature space that combined voxel 

intensities and corresponding second derivatives. The 

latter were incorporated to exploit the spatial voxel 

connectivity, i.e., to incorporate spatial information 

into classification. In homogeneity correction by a 

parametric polynomial model is based on iterative 

minimization of class square error, i.e., within class 

scatter, of the intensity distribution that is due to 

intensity in homogeneity. 

Histogram Based Methods: The method of  histogram 

based  on operate directly on image intensity 

histograms and need little or no initialization and/or a 

priori knowledge on the intensity probability 

distribution of the imaged structures. This makes 

these methods fully automatic and highly general so 

that they can usually be applied to various images 

with or without pathology. A numerous segmentation 

based methods also operate on image intensity 

histograms, the distinction between the segmentation 

based and histogram based methods is that the latter 

provide no segmentation results. 

 

High-Frequency Maximization: A well-known 

intensity in homogeneity is a well-known correction 

method, known as the N3 (nonparametric non 
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uniformity normalization), was proposed in. The 

method is iterative and seeks the smooth 

multiplicative field that maximizes the high 

frequency content of the distribution of tissue 

intensity. The method is fully automatic, requires no 

a priori knowledge and can be applied to almost any 

MR image. Interestingly, no improvements have been 

suggested for this highly popular and successful 

method. 

 

Information Minimization: These methods are based 

on the assumption that intensity in homogeneity 

corruption introduces additional information to the in 

homogeneity-free image. The removal of intensity in 

homogeneity is, therefore, based on constrained 

minimization of image information, which is 

estimated by image entropy. Image entropy can be 

computed from the original intensity distributions or 

from the log-transformed distributions. In the first 

case, multiplicative correction model has to be 

constrained so as to avoid uniform scaling of image 

intensities (contrast changing), which would 

otherwise result in completely uniform image with no 

anatomical information.By the use of other method, 

in log-transformed intensity domain, the 

multiplicative correction model becomes additive and 

thereby requires no scaling constraints. However, 

numerical computation of entropy becomes far more 

difficult due to the nonlinear log-transformation of 

image intensities and associated problems with 

histogram binning. Nevertheless, the information 

minimization methods can be widely applied to 

different types of MR images because they use solely 

the information that is present in an image, without 

making assumptions on spatial and intensity 

distributions. 

An information minimization based intensity in 

homogeneity correction method was first considered 

in 1995. Refined applications on microscopic and MR 

images followed in year 2000 and latter. The method 

in utilized fast annealing to minimize a three part 

energy function, consisting of image entropy, field 

smoothness constraint and a mean preserving 

regularization term. In, image correction was 

performed by a linear model consisting of 

multiplicative and additive components, which were 

modeled by a combination of smoothly varying basis 

functions that were constrained to preserve the global 

intensity statistics. An interesting attempt to extent 

the information minimization method was proposed 

in, optimizing the first-order conditional 

entropy. Inter-volume in homogeneity correction, 

removing only the differences between two in    fields 

to allow inter-volume comparisons, was solved by 

minimization of joint volume entropy. Proposed an 

iterative correction strategy in which intensity in 

homogeneity correction forces, reducing the global 

entropy of the feature space, were estimated for each 

voxel. Besides intensities, spatial information in the 

form of second order derivatives was incorporated in 

the feature space. This method was further extended 

in with the aim to integrate spatial and intensity 

information from multispectral MR images, i.e., from 

T1, T2, and proton density (PD) weighted images. 

The advantage of this method was its ability to 

incorporate complementary information of the 

multispectral images and their derived features for 

better in homogeneity correction. 

Integration of complimentary information from 

multispectral images requires that images are well 

registered, which is usually the case for multispectral 

MR images. In general, however, integration of 

multispectral images, e.g., computed tomography (CT) 

and MR images, requires multimodal image 

registration, which is also often solved efficiently in 

information theoretic framework, e.g., by maximizing 

mutual information. Therefore, the problem of 

registration and in homogeneity correction, one 

concerned with transforming an image in spatial 

domain to achieve spatial correspondence and the 

other concerned with transforming an image in 

intensity domain to restore intensity homogeneity, 

may both be solved simultaneously in an information 

theoretic framework. For example, by transforming a 

reference image, both in the spatial domain and in the 

intensity domain, such that mutual information of the 

reference and target images is maximized will bring 

the two images, being mono-modal or multimodal, in 
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spatial and in intensity correspondence. This suggests 

that simultaneous information theoretic registration 

and in homogeneity correction are well worth further 

exploration. 

Histogram Matching: The image is divided into a 

small sub-volumes in proposed histogram matching 

method which intensity in homogeneity was 

supposed to be relatively constant. Local intensity in 

homogeneity was estimated by least square fitting of 

the intensity histogram model to the actual histogram 

of a sub-volume. The model of histogram was a finite 

Gaussian mixture with seven parameters, initialized 

from the global histogram of the image. No 

segmentation was required as only intensity in 

homogeneity estimation was needed for each sub-

volume. These local estimates were then tested for 

outliers and interpolated by a   B-spline surface to 

produce the final in homogeneity field. Another 

method found the Legendre polynomial in 

homogeneity model by nonlinear optimization based 

on a special valley function, which was shaped by 

the a priori given mean intensities and standard 

deviations of the main tissue classes. As histogram 

matching methods require several input parameters 

and a tissue model, they are far less general as, for 

example, the information minimization methods. 

Other Methods: Three methods that cannot be easily 

classified into any of the above categories are briefly 

described. By the registration based method proposed 

in, an image undergoing intensity in homogeneity 

correction was registered to a reference image. 

Normalized mutual information and a B-spline 

deformation model were used to perform multi-scale 

rigid and non rigid registrations. The in homogeneity 

field was extracted by smoothing and dividing the 

two registered images. The major drawback of this 

approach is the requirement for an application-

specific reference image. The second method relies on 

singularity function analysis. The main idea behind 

this method was to correct an image in such a way 

that its high frequency spectrum remained unchanged 

while the intensity in homogeneity corrupted low 

frequency part was removed and later reconstructed 

by a model that enforced piecewise intensity 

constancy in the image domain. The algorithm works 

on one dimensional image profiles, alternating 

between columns and rows. The final in homogeneity 

field is obtained by smoothing the quotient of the 

original and the reconstructed image. The method 

requires no a priori knowledge or background 

removal but may be sensitive to a number of input 

parameters. The third method combines a set of 

techniques for embedding the physics of the imaging 

process that generates a class of MR images into 

segmentation or registration algorithm. 

 

This project presents a novel vibration 

approach to simultaneous bias correction and 

segmentation. By exploiting local image redundant 

information, we define a mapping from original 

image domain to another domain so that the intensity 

probability model is more robust to noise. We then 

define an ML energy functional based on the 

intensity distributions in each local region in the 

transformed domain, which combines the bias field, 

the membership function of each object region, and 

the constant approximating the true signal from its 

corresponding object. Finally, the ML energy 

functional is extended to the whole image domain, 

which we call the criterion of maximum likelihood in 

transformed domain (MLTD). The MLTD criterion 

achieves a global minimum with respect to each of its 

variables. Moreover, analysis of the MLTD criterion 

shows that it is a soft classification model, which 

assumes that each pixel intensity belongs to more 

than one class, while the hard classification assigns 

the intensity of each pixel to only one class. 

Therefore, the MLTD criterion obtains a better 

corrected bias field. 

 

II. LITERATURE REVIEW 

 

By utilizing the Bayesian rule, we design a nonlinear 

adaptive velocity and a probability-weighted stopping 

force to implement a robust segmentation for objects 

with weak boundaries. The proposed method is 

featured by the following three properties:  
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• It automatically determines the curve to shrink or 

expand by utilizing the Bayesian rule to involve 

the regional features of images. 

• It drives the curve evolve with an appropriate 

speed to avoid the leakage at weak boundaries. 

• It reduces the influence of false boundaries, i.e., 

edges far away from objects of interest.  

[1] A. Anderson et al.described a new energy 

minimization method for simultaneous tissue 

classification and bias field estimation of magnetic 

resonance (MR) images. We first derive an important 

characteristic of local image intensities--the 

intensities of different tissues within a neighborhood 

form separable clusters, and the center of each cluster 

can be well approximated by the product of the bias 

within the neighborhood and a tissue-dependent 

constant. We then introduce a coherent local 

intensity clustering (CLIC) criterion function as a 

metric to evaluate tissue classification and bias field 

estimation. An integration of this metric defines an 

energy on a bias field, membership functions of the 

tissues, and the parameters that approximate the true 

signal from the corresponding tissues. Thus, tissue 

classification and bias field estimation are 

simultaneously achieved by minimizing this energy. 

The smoothness of the derived optimal bias field is 

ensured by the spatially coherent nature of the CLIC 

criterion function. As a result, no extra effort is 

needed to smooth the bias field in our method. 

Moreover, the proposed algorithm is robust to the 

choice of initial conditions, thereby allowing fully 

automatic applications. Our algorithm has been 

applied to high field and ultra high field MR images 

with promising results. 

 

[2] L. Wang et al. described a new energy 

minimization framework for simultaneous estimation 

of the bias field and segmentation of tissues for 

magnetic resonance images. The bias field is modeled 

as a linear combination of a set of basis functions, and 

thereby parameterized by the coefficients of the basis 

functions. We define an energy that depends on the 

coefficients of the basis functions, the membership 

functions of the tissues in the image, and the 

constants approximating the true signal from the 

corresponding tissues. This energy is convex in each 

of its variables. Bias field estimation and image 

segmentation are simultaneously achieved as the 

result of minimizing this energy. We provide an 

efficient iterative algorithm for energy minimization, 

which converges to the optimal solution at a fast rate. 

A salient advantage of our method is that its result is 

independent of initialization, which allows robust and 

fully automated application. The proposed method 

has been successfully applied to 3-Tesla MR images 

with desirable results. Comparisons with other 

approaches demonstrate the superior performance of 

this algorithm. 

 

[3] B. Wang et al. presented a novel level set method 

(LSM) for image segmentation. By utilizing the 

Bayesian rule, we design a nonlinear adaptive velocity 

and a probability-weighted stopping force to 

implement a robust segmentation for objects with 

weak boundaries. The proposed method is featured by 

the following three properties: 1) it automatically 

determines the curve to shrink or expand by utilizing 

the Bayesian rule to involve the regional features of 

images; 2) it drives the curve evolve with an 

appropriate speed to avoid the leakage at weak 

boundaries; and 3) it reduces the influence of false 

boundaries, i.e., edges far away from objects of 

interest. We applied the proposed segmentation 

method to artificial images, medical images and the 

BSD-300 image dataset for qualitative and 

quantitative evaluations. The comparison results show 

the proposed method performs competitively, 

compared with the LSM and its representative 

variants. 

 

[4]X. Gaoet al. presented a new image segmentation 

method that applies an edge-based level set method in 

a relay fashion. The proposed method segments an 

image in a series of nested subregions that are 

automatically created by shrinking the stabilized 
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curves in their previous subregions. The final result is 

obtained by combining all boundaries detected in 

these subregions. The proposed method has the 

following three advantages: 1) It can be automatically 

executed without human-computer interactions; 2) it 

applies the edge-based level set method with relay 

fashion to detect all boundaries; and 3) it 

automatically obtains a full segmentation without 

specifying the number of relays in advance. The 

comparison experiments illustrate that the proposed 

method performs better than the representative level 

set methods, and it can obtain similar or better results 

compared with other popular segmentation 

algorithms. 

 

 [5] U. Vovk et al.presented a medical image 

acquisition devices provide a vast amount of 

anatomical and functional information, which 

facilitate and improve diagnosis and patient 

treatment, especially when supported by modern 

quantitative image analysis methods. However, 

modality specific image artifacts, such as the 

phenomena of intensity in homogeneity in magnetic 

resonance images (MRI), are still prominent and can 

adversely affect quantitative image analysis. In this 

paper, numerous methods that have been developed 

to reduce or eliminate intensity in homogeneities in 

MRI are reviewed. First, the methods are classified 

according to the in homogeneity correction strategy. 

Next, different qualitative and quantitative evaluation 

approaches are reviewed. Third, 60 relevant 

publications are categorized according to several 

features and analyzed so as to reveal major trends, 

popularity, evaluation strategies and applications. 

Finally, key evaluation issues and future development 

of the in homogeneity correction field, supported by 

the results of the analysis, are discussed. 

 

 [6] E. McVeigh et al. described a receiver coil 

response is a major cause of no uniformities in 

magnetic resonance images. The spatial dependence 

of the sensitivity and phase of single-saddle receiver 

coils has been investigated quantitatively by 

calculating the H1 field and comparing the results 

with measurements of a uniform phantom. 

Agreement between the measurements and 

calculations is excellent. A method is developed 

which corrects for both the non-uniform sensitivity 

and the phase shifts introduced by receiver coils. 

 

[7] A. Simmons et al. described a number of sources of 

non-uniformity for spin echo images at 1.5 T. Both 

coil tuning and crosstalk can have significant effects 

on image non- uniformity. For short repetition times, 

non-uniformity increases with decreasing TR, 

possibly due to gradient eddy currents. In sections of 

RF coils with poor RF uniformity, image non-

uniformity varies with both echo time and the 

number of echoes in a multi-echo sequence. For the 

particular imager used, there are small differences 

between transverse and sagittal/coronal non-

uniformity. The temporal stability of image non-

uniformity is very good. The use of uniform oil 

phantoms is shown to be superior to low pass filtered 

images for correction of image non-uniformity. 

[8] A. Fan et al.We propose a novel bias correction 

method for magnetic resonance (MR) imaging that 

uses complementary body coil and surface coil 

images. The former are spatially homogeneous but 

have low signal intensity; the latter provide excellent 

signal response but have large bias fields. We present 

a variation framework where we optimize energy 

functional to estimate the bias field and the 

underlying image using both observed images. The 

energy functional contains smoothness-enforcing 

regularization for both the image and the bias field. 

We present extensions of our basic framework to a 

variety of imaging protocols. We solve the 

optimization problem using a computationally 

efficient numerical algorithm based on coordinate 

descent, preconditioned conjugate gradient, half-

quadratic regularization, and multi-grid techniques. 

We show qualitative and quantitative results 

demonstrating the effectiveness of the proposed 

method in producing de-biased and de-noised MR 

images. 
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[9] M. Ahmed et al.We present a novel algorithm for 

fuzzy segmentation of magnetic resonance imaging 

(MRI) data and estimation of intensity in 

homogeneities using fuzzy logic. MRI intensity in 

homogeneities can be attributed to imperfections in 

the radio-frequency coils or to problems associated 

with the acquisition sequences. The result is a slowly 

varying shading artifact over the image that can 

produce errors with conventional intensity-based 

classification. Our algorithm is formulated by 

modifying the objective function of the standard 

fuzzy c-means (FCM) algorithm to compensate for 

such in homogeneities and to allow the labeling of a 

pixel (voxel) to be influenced by the labels in its 

immediate neighborhood. The neighborhood effect 

acts as a regularization and biases the solution toward 

piecewise-homogeneous labeling. Such  regularization 

is useful in segmenting scans corrupted by salt and 

pepper noise. Experimental results on both synthetic 

images and MR data are given to demonstrate the 

effectiveness and efficiency of the proposed 

algorithm. 

[10] B. Brinkmann et al.presented  a  grayscale in 

homogeneities in magnetic resonance (MR) images 

confound quantitative analysis of these images. 

Homomorphic un-sharp masking and its variations 

have been commonly used as a post-processing 

method to remove in homogeneities in MR images 

However, little data is available in the literature 

assessing the relative effectiveness of these algorithms 

to remove in homogeneities, or describing how these 

algorithms can affect image data. In this study, the 

author address these questions quantitatively using 

simulated images with artificially constructed and 

empirically measured bias fields. The authors' results 

show that mean-based filtering is consistently more 

effective than median-based algorithms for removing 

in homogeneities in MR images, and that artifacts are 

frequently introduced into images at the most 

commonly used window sizes. The authors' results 

demonstrate dramatic improvement in the 

effectiveness of the algorithms with significantly 

larger windows than are commonly used. 

[11] P. Vemuriet al. presented a magnetic resonance 

(MR) images can be acquired by multiple receiver coil 

systems to improve signal-to-noise ratio (SNR) and to 

decrease acquisition time. The optimal SNR images 

can be reconstructed from the coil data when the coil 

sensitivities are known. In typical MR imaging 

studies, the information about coil sensitivity profiles 

is not available. In such cases the sum-of-squares 

(SOS) reconstruction algorithm is usually applied. The 

intensity of the SOS reconstructed image is modulated 

by a spatially variable function due to the non-

uniformity of coil sensitivities. Additionally, the SOS 

images also have sub-optimal SNR and bias in image 

intensity. All these effects might introduce errors 

when quantitative analysis and/or tissue segmentation 

are performed on the SOS reconstructed images. In 

this paper, we present an iterative algorithm for coil 

sensitivity estimation and demonstrate its 

applicability for optimal SNR reconstruction and 

intensity in homogeneity correction in phased array 

MR imaging. 

 [12] R. Guillemaud et al. proposed a  modification of 

Wells et al. (ibid., vol. 15, no. 4, p. 429-42, 1996) 

technique for bias field estimation and segmentation 

of magnetic resonance (MR) images. They show that 

replacing the class other, which includes all tissue not 

modeled explicitly by Gaussians with small variance, 

by a uniform probability density, and amending the 

expectation-maximization (EM) algorithm 

appropriately, gives significantly better results. The 

authors next consider the estimation and filtering of 

high-frequency information in MR images, 

comprising noise, inter-tissue boundaries, and within 

tissue microstructures. The authors conclude that 

post-filtering is preferable to the pre-filtering that has 

been proposed previously. The authors observe that 

the performance of any segmentation algorithm, in 

particular that of Wells et al. (and the authors' 

refinements of it) is affected substantially by the 

number and selection of the tissue classes that are 

modeled explicitly, the corresponding defining 

parameters and, critically, the spatial distribution of 

tissues in the image. The authors present an initial 
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exploration to choose automatically the number of 

classes and the associated parameters that give the 

best output. This requires the authors to define what 

is meant by "best output" and for this they propose 

the application of minimum entropy. The methods 

developed have been implemented and are illustrated 

throughout on simulated and real data (brain and 

breast MR). 

 

 [13] K. Leemput et al. proposed a model-based 

method for fully automated bias field correction of 

MR brain images. The MR signal is modeled as a 

realization of a random process with a parametric 

probability distribution that is corrupted by a smooth 

polynomial in homogeneity or bias field. The method 

the authors propose applies an iterative expectation-

maximization (EM) strategy that interleaves pixel 

classification with estimation of class distribution and 

bias field parameters, improving the likelihood of the 

model parameters at each iteration. The algorithm, 

which can handle multichannel data and slice-by-

slice constant intensity offsets, is initialized with 

information from a digital brain atlas about the a 

priori expected location of tissue classes. This allows 

full automation of the method without need for user 

interaction, yielding more objective and reproducible 

results. The authors have validated the bias correction 

algorithm on simulated data and they illustrate its 

performance on various MR images with important 

field in homogeneities. They also relate the proposed 

algorithm to other bias correction algorithms. 

 

[14] D. Pham et al. presented the fuzzy segmentation 

of two-dimensional (2-D) and three-dimensional (3-

D) multispectral magnetic resonance (MR) images 

that have been corrupted by intensity in 

homogeneities, also known as shading artifacts. The 

algorithm is an extension of the 2-D adaptive fuzzy C-

means algorithm (2-D AFCM) presented in previous 

work by the authors. This algorithm models the 

intensity in homogeneities as a gain field that causes 

image intensities to smoothly and slowly vary 

through the image space. It iteratively adapts to the 

intensity in homogeneities and is completely 

automated. In this paper, the authors fully generalize 

2-D AFCM to three-dimensional (3-D) multispectral 

images. Because of the potential size of 3-D image 

data, they also describe a new faster multi grid-based 

algorithm for its implementation. They show, using 

simulated MR data, that 3-D AFCM yields lower error 

rates than both the standard fuzzy C-means (FCM) 

algorithm and two other competing methods, when 

segmenting corrupted images. Its efficacy is further 

demonstrated using real 3-D scalar and multispectral 

MR brain images. 

 

[15] B. Likar et al. describes the problem of 

retrospective correction of intensity in homogeneity 

in magnetic resonance (MR) images is addressed. A 

novel model-based correction method is proposed, 

based on the assumption that an image corrupted by 

intensity in homogeneity contains more information 

than the corresponding uncorrupted image. The 

image degradation process is described by a linear 

model, consisting of a multiplicative and an additive 

component which are modeled by a combination of 

smoothly varying basis functions. The degraded image 

is corrected by the inverse of the image degradation 

model. The parameters of this model are optimized 

such that the information of the corrected image is 

minimized while the global intensity statistic is 

preserved. The method was quantitatively evaluated 

and compared to other methods on a number of 

simulated and real MR images and proved to be 

effective, reliable, and computationally attractive. The 

method can be widely applied to different types of 

MR images because it solely uses the information that 

is naturally present in an image, without making 

assumptions on its spatial and intensity distribution. 

Besides, the method requires no preprocessing, 

parameter setting, nor user interaction. Consequently, 

the proposed method may be a valuable tool in MR 

image analysis. 

 

III. EXISTING APPROACH 
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Intensity in homogeneity is usually ascribed to a 

smooth and spatially varying field multiplying the 

true signal of the same object in the measured image. 

This spatially varying smooth field is named as bias 

field. Existing method Bias correction is a procedure 

to estimate the bias field from the measured image to 

reduce its side effect .In the existing bias correction 

approaches can be categorized into two categories, 

namely prospective and retrospective approaches. 

Prospective methods aim at calibrating and improving 

image acquisition processing by applying specific 

hardware or devising special imaging 

sequences. However, these methods cannot correct 

patient-induced in homogeneity. Comparatively, 

retrospective methods only rely on the acquired 

images and sometimes some prior knowledge. Thus, 

they are relatively more general, and can be used to 

correct patient-induced in homogeneity from 

different sources. The retrospective methods can be 

further categorized into several categories based on 

filtering, surface fitting, histogram and segmentation . 

Among various retrospective methods, segmentation 

based ones are most attractive, since they unify 

segmentation and bias correction under a single 

framework to benefit from each other, simultaneously 

yielding better segmentation and bias correction 

results. In these methods, parameter model based on 

the maximum-likelihood (ML) or maximum a 

posterior (MAP) probability criterion is often used, in 

which the corresponding parameters are often 

estimated by the expectation maximization (EM) 

algorithm. However, an appropriate initialization of 

the EM algorithm is critical to such algorithms, which 

requires either a close estimate of the bias field or a 

coarse segmentation. Manual selections of seed points 

for each class are often used, but it is subjective and 

irreproducible.Neighboring pixels information 

belonging to the same class, the segmentation results 

are often sensitive to noise and the tissue borders may 

not be smooth. Markov random fields (MRF) model 

can yield improved segmentation results that are less 

sensitive to noise. 

 

Recently, Li et al. proposed a parametric method for 

simultaneous bias field correction and segmentation 

by minimizing a least square energy functional. The 

bias field is modeled as a linear combination of a set of 

orthogonal polynomial basis function. In 7T   MRI 

even though this leads to a very smooth bias field, 

some bias fields cannot be well fitted by polynomials, 

such as the bias field. Moreover, each pixel is assigned 

to one tissue class. However, intensities of the partial 

volume voxels are composed of multiple class 

intensities in images, and the proportion of the partial 

volume voxels in low-resolution datasets can be up to 

30%.  Thus, the calculated bias field may be partially 

wrong. Li et al. proposed a variation level set (VLS) 

approach to simultaneous segmentation and bias 

correction. However, this method needs to 

alternatively iterate two partial differential equations, 

which is very time-consuming. Furthermore, the 

energy functional in the VLS method is not convex in 

the set of characteristic functions, making it easy to 

be trapped into local minima. 

 

A. Overview of Existing Approach  

 There are two categories in bias correction, namely 

prospective and retrospective approaches. 

 

Prospective methods  

• Calibrating and improving image acquisition 

processing by applying specific     hardware or 

devising special imaging sequences.  

• These methods cannot correct patient-

induced in homogeneity. 

Retrospective methods  

• Used to correct patient-induced in 

homogeneity. 

• But it can’t separate patient induced in 

homogeneity and device caused intensity in 

homogeneity.  

 

IV. PROPOSED SYSTEM 
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 This project presents a novel variation approach 

to simultaneous bias correction and segmentation. By 

exploiting local image redundant information, we 

define a mapping from original image domain to 

another domain so that the intensity probability 

model is more robust to noise. We then define an ML 

energy functional based on the intensity distributions 

in each local region in the transformed domain, 

which combines the bias field, the membership 

function of each object region, and the constant 

approximating the true signal from its corresponding 

object. Finally, the ML energy functional is extended 

to the whole image domain, which we call the 

criterion of maximum likelihood in transformed 

domain (MLTD). The MLTD criterion achieves a 

global minimum with respect to each of its variables. 

A soft classification model, shows that each pixel 

intensity belongs to more than one class, while the 

hard classification assigns the intensity of each pixel 

to only one class in MLTD criterion. Therefore, the 

MLTD criterion obtains a better corrected bias 

field. Moreover in MLTD criterion the recently 

proposed CLIC can be specially viewed. while the 

MLTD is more accurate to model in homogeneous 

image intensity. 

 

 A. Proposed and Related Works 

Let us revisit the probability density function (PDF) 

of the intensity I(y) represented by (2).   For  the  

clustering  center  point  x ,  we  define  a  mapping T: 

I(x|αi) → I(x|αi) from original image intensity domain 

D(T) to another domain R(T) as follow. 

 

Refer to the red dashed curves in Fig 3.1the 

overlapping tails of the distributions are suppressed to 

some extent. Therefore, the misclassification caused 

by the overlapping intensity can be alleviated to some 

extent in the transformed domain R(T). In the 

following, we will design our energy functional on 

the domain R(T) by means of the well-defined 

relationship between domain D(T) and R(T). 

 

 

Figure 1. Original image intensity domain (blue solid 

curves) and the transformed domain (red dashed 

curves) 

 

B. Energy Minimization 

The whole minimization procedure consists of the 

following three steps, which are implemented 

iteratively. 

• Keep u fixed, optimize and update the variable 

sets c, b, and σ. 

• Keep c, b, and σ fixed, optimize and update u. 

• Check whether the convergence has been 

reached. If not, return to 1). 

Everything is detailed in Matlab Program(c,b,σ). 

 

C. Advantages Of The MLTD Model 

If we set to be, the membership function of 

region to be a truncated Gaussian window will be the 

same as the CLIC energy functional with except for 

some trivial constant factors. In addition our MLTD 

model the CLIC model can be specially viewed and 

the MLTD will be more accurate to model the image 

with intensity in homogeneity than the CLIC 

model. It is claimed that the CLIC model will yield a 

hard classification (the image intensity in a fixed 

position only belongs to one tissue). Differently, we 

will discuss that the proposed MLTD model leads to a 

soft classification (image intensity in a fixed position 

belongs to all tissues with a corresponding 

probability). 

In medical imaging, partial volume voxels often have 

an intensity composed of multiple class 

intensities. For example, there is as much as 30% of 
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partial volume voxels in low resolution datasets. The 

partial volume effect severely influences the accuracy 

of estimated bias field if a hard classification method 

is adopted because the hard classification method 

assumes the image intensity in a fixed position only 

belongs to one tissue. Our proposed methods are soft 

classification methods which assume that intensity of 

each tissue is composed of multiple class intensities, 

thereby alleviating partial volume effect to some 

extent. 

 

D. Maximum Likelihood Algorithm 

The MLTD method is considered to be one of 

best estimation methods in statistics. For example, in 

adult female penguins but be unable to measure the 

height of every single penguin in a population due to 

cost or time constraints.  

The unknown mean and variance of heights 

are normally distributed as we assumed, the mean and 

variance can be estimated with MLE while only 

knowing the heights of some sample of the overall 

population. The mean and variance would accomplish 

by MLE as parameters and finding particular 

parametric values that make the observed results the 

most probable given the model. 

 

V. RESULTS AND DISCUSSION 

 

 

 

                    

 

Original image 

 

 

 

 

 

Bias field 

 

 

 

 

 

Segmented result 

 

                 
Histogram of original Image 

 

 

 
  

Histogram of Bias Corrected Image 

In this section, compares   MLTD and RMLTD 

methods with the CLIC and VLS methods for a 

synthetic image with noise. The intensity of this 

synthetic image is severely in homogeneous and the 

noise is strong in CLIC and VLS. When compared 

MLTD with the segmentation result by CLIC method 

is not visually satisfying because some background 

intensities are misclassified as the object intensities. 

Compared with their original images in Fig 6.3and6.4, 

it is obvious that intensity contrast between object 

and background is more obvious after preprocessing, 

which in turn results in an easier separation of the 

object from background. The segmentation result by 

VLS method is better than the CLIC method but there 

still exist some obvious misclassifications. In general, 

MLTD yields the best segmentation results among the 

three methods. The testing image size is 320×320. The 

proposed MLTD method image size is 150×120. 
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However, there still exist some small dot regions that 

are misclassified due to the strong noise. 

 

In the sagittal slice fig. compares results by MLTD and 

RMLTD, CLIC and VLS on a 3-tesla MRI. The 

estimated bias fields, bias corrected images, and 

segmentation results are shown 6.7, 6.8, 6.9 

respectively. The histogram of the original MRI image 

and the histograms of the bias corrected images by 

our methods, CLIC and VLS are shown. From the 

histograms of the bias corrected images recovered by 

MLTD, CLIC, and VLS, we see that the histograms of 

specific tissues approximately satisfy Gaussian 

distribution but with significantly different   

variances. These results validate that MLTD model is 

better consistent with the intensity distribution of the 

image with intensity in homogeneity than CLIC and 

VLS which do not consider the variance of intensities 

belonging to different tissues. Testing competing 

methods on Brain normal subjects (1 mm isotropic 

spacing, no added noise, discrete anatomical labeling) 

with stimulated bias fields with 0%, 20%,and 40% 

intensity in homogeneity, respectively. From Mc Gill 

Brain. The 5%, 10%, and 20% levels of Gaussian 

noises are then added to these images. Moreover ,the 

segmentation results of MLTD are much closer to the 

brain anatomy than CLIC and VLS. 

  

Application to Simultaneous Segmentation and   Bias 

Correction 

Finally, show the segmentation results of MLTD 

method on a 7T MRI image. The original images, 

estimated bias fields, and the bias corrected images 

are shown in fig 6.1, 6.2, 6.3 respectively. Obviously, 

the image qualities are significantly improved and 

some regions whose intensity contrast is too low to be 

identified are able to be distinguished easily after 

correction.  
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