
IJSRSET2182134 | Received : 20 March 2019 | Accepted : 30 March 2019 | March-April -2019 [6 (2) : 812-819]

International Journal of Scientific Research in Science, Engineering and Technology

© 2019 IJSRSET | Volume 6 | Issue 2 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

doi : https://doi.org/10.32628/IJSRSET2182134

812

Automated Software Testing Analysis on Test Case Optimization and

Test Case Levels on Java and Python
Ranjeet Kumar1, Prof. Dr. Ramdip Prasad2, Arif Md. Sattar3*

1Department of Computer Science, Magadh University, Bodh Gaya, India
2Department of Mathematics, Danapur College, Patna, India

3Department of Computer Science, Anugrah Memorial College, Gaya, India

ABSTRACT

In today's world, object-oriented programming (OOP) languages are commonly employed in software

development. The architecture and design of the Integrated Development Environment (IDE) models is

constantly updated and modified to facilitate programming practice, keeping in mind the popularity of OOP

languages. However, a huge percentage of syntactic and logical errors are caused by complicated programming

structures and the inherent complexity of underlying applications. Although syntax issues are easier to identify

during compilation, the majority of IDEs fail to detect logical flaws, resulting in not just debugging costs but

also milestone delays. The goal of this study is to provide a new design model for IDEs that will allow them to

detect logical mistakes. This will make it easier for developers to spot logical problems sooner in the

development process, resulting in reduced development time and on-time milestone delivery. The proposed

model will be implemented as a working Python IDE application and compared to other current state-of-the-

art products on the market. The amount of logical mistakes found will be used to assess the proposed model's

correctness. Python was chosen because of its broad application in Artificial Intelligence and Data Science.

Machine learning approaches have been used to the process of student modelling, particularly in the

development of tutors to help students learn to programme. These were created for a variety of languages

(Pascal, Prolog, Lisp, C++), as well as programming paradigms (procedural and declarative), but never for Java

object-oriented programming. Using inconsistencies between a student and the right software, JavaBugs

automatically creates a bug library. While other studies look at code snippets or UML diagrams to infer student

knowledge of object-oriented design and programming, JavaBugs looks at a complete Java programme and finds

the most similar correct programme to the student's solution among a collection of correct solutions, then uses

similarity measures and background knowledge to build trees of misconceptions. Experiments demonstrate that

JavaBugs can find the most comparable correct programme 97 percent of the time, as well as discover and

detect 61.4 percent of expert-identified student mistakes.

Keywords : Automated Software Testing, Test Case Optimization, Object Oriented Programming, Integrated

Development Environment. Logical Flaws, Inherent Complexity, Syntax Issues.

I. INTRODUCTION

Python has grown in popularity as a tool for

implementing artificial intelligence and data science

in a variety of disciplines. As a result, many efforts

have been made to make it easier for Python

developers to code their programmes. One of the

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

813

most important stages toward assisting Python

developers, especially when it comes to detecting

problems, is the development of user-friendly IDEs.

Computer scientists are developing automated error

recovery systems that can detect and correct

programming faults during development.

As a result, clever compilers that can detect

and highlight syntax problems are now on the market.

B. K. Daniel, B. K. Xie, B. K. Xie, B. K. Xie, B. K. et al.,

(2018). The key issue, however, is to discover logical

faults in the coding technique (Colapinto, C., 2017)

and to predict the present instructions' input and

output. In Python, the intelligent recovery unit is

used to detect logical flaws. It will be a programming

language environment upgrade that will help detect

logical problems in addition to syntactic faults

(Beltramelli, et al.,2018). The major goal is to detect

logical problems early in the development process

rather than later. The benefits of identifying logical

faults were highlighted by an intelligent unit. New

programmers are often unaware of the logical faults

that might occur during the development of an

application, and identifying and correcting logical

errors is a difficult task. G. Samara is the author of

this article et al., (2017). They devote time and money

to learn the fundamentals of mistake detection

strategies. T. J. Ketschau, T. J. Ketschau, T. J. Ketschau

et al., (2019). Every year, millions of dollars are

squandered in the search for the same logical flaw.

Every existing computer language contains logical

mistakes, which are corrected after detection

improves (Mongkhonvanit et al., 2018). Even

Nevertheless, there is a lot of discussion on logical

error codes in various communities. However, they

are difficult to comprehend and are occasionally

located in a separate programming language, which

has an impact on the entire technological

development process. E. D. Berger, C. Hollenbeck, P.

Maj, O. Vitek, and J. Vitek et al., (2019).

Any other part of resolving logical errors is

companies that have developed their own solutions

and have not made them available to the general

public. M. Wyrich et al., (2019). The intelligent unit

will be open to any developer and will share its

database for correcting logical flaws. As a result, any

developer can benefit from its development. There

will be no requirement for extensive coding skills.

Every piece of code must adhere to the constraints

imposed by the programming language. K. Deulkar, K.

Deulkar, K. Deulkar, K et al., (2016). Machine

language can be used to comprehend the code, but

the logical error is more complicated than coding

laws and regulations. The IT industry is facing major

calamities as a result of logical mistakes. For example,

NASA missions have frequently failed due to logical

mistakes, and some space missions have been severely

disrupted, resulting in human deaths. It is a logic flaw

between software and hardware capacity that cannot

be enforced on the system. Furthermore, by coding

more than physical components, the logical error can

be corrected. J. Lee et al., (2018).

As a result, it is a simple and inexpensive

method of resolving logical mistakes. It has a low cost

and saves time over seeking a solution to the same

problem repeatedly. The intelligent unit, which

emerges from the coding environment and executes

independently, will be introduced. If the developer

chooses to use the solution, it will issue a warning,

make a suggestion, and automatically correct the fault.

Intelligent units will be designed in accordance with

the environment and architecture in which they will

operate. However, just one IDE is currently under

consideration.

Artificial Intelligence in Education (AIED)

has progressed as a field of study over time. It has

resulted in major, practical solutions to problems in

the creation of intelligent software for educational

support. The difficulty of the student modelling

challenge appears to have piqued academics' curiosity

among the various problems covered by the area [10].

Advances in artificial intelligence techniques, notably

machine learning, have led to the development of

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

814

self-improving student models ([1], [3], [4], [11]), that

is, a student model that can automatically update its

knowledge based on observed student behaviour.

Building a student model can be done in a variety of

ways. The goal of this project is to create a bug library

for newbie Java programmers. A bug library is a

collection of commonly made mistakes and

misunderstandings. The complexity and cost of

building a bug library are the two most significant

challenges. By creating self-improving bug libraries,

ASSERT [3] and MEDD [11] addressed these concerns.

Machine learning techniques were utilised to

generate and extend the bug library automatically.

Automatic Bug Library Construction for Object-

Oriented Novices 185 Only a few ITSs (hence,

student modellers) have been built in the age of

object-oriented programming. This could be because

the challenging task of student modelling for

programming is made even more difficult by the

complex process of object-oriented programming.

While there have been studies on Java programming

faults ([5], [6], [12]), they have primarily focused on

typical syntax errors and compilation behaviour,

rather than learning object-oriented ideas and

programming. In order to study objectoriented

programming, it is necessary to go beyond reviewing

student syntax errors. To accomplish this,

programming solutions must be evaluated in light of

the student's goals [7]. A student's intended strategy

for solving any programming challenge is called an

intention. Intention-based diagnosis also identifies

one accurate solution against which the student's

solution can be compared. Because there are many

correct programming solutions, this is critical when

evaluating them. This strategy is used in ([11] and [9]).

The latter, in particular, assesses student object-

oriented programming in Eiffel solutions. It

determines the disparities between a student's

purpose and their solution. The meaning of these

differences is subsequently deduced by the human

expert. JavaBugs is the subject of this paper. Using the

multistrategy technique employed in MEDD, it

automatically creates a bug library of Java rookie

programmer errors in object-oriented programming.

By automatic, we imply that the bug library can be

organised without the assistance of a human expert.

The following is how it's laid out: In Sections 2 and 3,

the input and output are presented, followed by a

discussion of the algorithms for intention

identification and discrepancy extraction, as well as

misperception detection and discovery. The findings

of the tests, as well as their analysis, are reported in

Section 4. The paper concludes with a discussion of

the work's conclusion and future directions.

II. Literature Review

A method for generating code from an image

has been developed by Beltramelli et al., (2018).

Every image is not coded, and the biggest

disadvantage is that an image design must be created

before it can be transformed into code. The use of

GUI programming style is a step toward expanding

software development possibilities. It produces better

results than coding, but coding will continue to be a

part of programming. It reduces production time and

costs. It makes use of an existing image of an

application's GUI, and its best feature is that it

reengineers the image and provides the code for

customization. Using Android, iOS, and web-based

platforms, it boosts productivity by 77 percent. All

images are incompatible with the proposed GUI

programming methodology. Accepting serious

professional development takes a long time. However,

a coding environment and a wide range of software

development abilities are still required. The

programming methodology hasn't changed much, and

there are still a lot of errors in the code.

According to Parnianifard et al., (2018),

appropriate admittance and procedure of techniques

has become more complicated with the passage of

time, and their required workforce and resources are

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

815

quantitatively used to complete. The anonymous

setting of various unexpected, sudden change,

unmanageable circumstances, various framework

changes at moments, handling different responses

mixing with each other, contrasting data objects,

understanding new languages, and the problem of

updating technologies, among other things, are all

contributing to a climate of more calculated

ramification in the issue. Not all strategies are

ineffective, but many of them are.

Mongkhonvanit et al., (2018) have created a

tactile interface that is intended to provide practise

for new programmers. The computer programming

language can be designed by any type of entity and in

any context, and computing systems can bend it into

a stable form. It uses pre-built functions like any

programming languages, but the essential point is that

Testudinata is a perfect example of physical inputs

and outputs, which is unique. It demonstrates that

computing interaction is no longer traditional, as it

employs a real-world graphical user interface.

However, Testudinata is still in progress and has flaws.

It's a novel form of programming error that hasn't

been specified before.

B. K. Daniel et al., (2018) highlights the new

difficulty of methodology (Data Science) as it relates

to the passage of time. Each data-related element at

some point (input/output) indicates some new

difficulties that are appearing often. These concerns

necessitate a new mythos for performance as well as

novel approaches to solve complex problems. Many

difficulties with technique have been brought to light,

prompting a search for a new methodology. With the

help of online services, data collection is now

relatively simple. To achieve better results, data

collecting over the internet has been advocated.

However, the nature of questionnaires evolves

throughout time in order to obtain high-quality data.

The question design is critical because the majority of

the survey's focus is on determining the pure

evaluation rather than applying filters by the

collector. GUI programming methodology has been

determined to be necessary for productivity. After

some time, a new methodology is required to address

all types of issues that arise as a result of the system's

use. The most important idea is to update on a regular

basis, however an unstable methodology poses a

significant risk to the data volume. A poor

methodology plan can result in data loss or have an

effect on the outcomes. When data integrity is

compromised, it is impossible to provide correct and

required statistics for data analysis.

Berger, E. D., Hollenbeck, C., Maj, P., Vitek,

O., and Vitek, J. et al., (2019) plan to use a

programming language to regulate the flow of

computation on computing machines. Computer

Language assists programmers in archiving computing

tasks in the form of software with a stated goal. This

study is the result of analysing the characteristics and

flaws of various computer languages in terms of their

scopes. Even a survey of software development in

several programming languages revealed costly

research in the range of skills required to build. Each

programming language specialist, according to the

review, tries to fulfil language physiognomies. A

single language code, on the other hand, can be

designed for use in multiple programming languages.

The git platform keeps track of code modifications for

this reason. All languages fail to meet the statistical

model's quality requirements.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M.

J., Dong, D., Kwik, H.,..., & Ko, A. J. et al., (2019). The

most serious issue with programming languages is the

version gap between learning and becoming a

professional developer. However, the facts show that

using code, as well as earlier work, to bond scoped

writing codes for a precise answer is quite tough.

Each programming language approaches the problem

in its own unique way. This demonstrates how

adaptable each language is. Most programming

languages evolve over time, and they are no longer

focused on syntax mistakes, warnings, or logical flaws.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

816

C. Colapinto, R. Jayaraman, and S. Marsiglio

The importance of goal programming models, which

are characterised as research mechanisms in scientific

management, is highlighted in et al., (2017)'s work.

Due to the intricacy of model patterns and processes

to imitate the goal of one solution, real-world

problems cannot be solved. Instead of archiving one

or two goals, the Goal Programming approach allows

you to archive multiple goals in a comprehensive

fashion. Goal programming, on the other hand, is not

just employed in engineering but also in other fields

of research and management. There is no model that

is 100 percent implementable, that provides exact

solutions, and that is ideal.

M. Wyrich, D. Graziotin, and S. Wagner's et

al., (2019) research focused on simulation-based

learning since virtual real-time practise provides

greater experience than practise after reading

theoretical material. The fundamental feature is that

any situation may be projected precisely, therefore

developed patterns are extremely useful for precisely

determining object qualities. The issue with

simulation is that it isn't standardised. Simulator

software is developed by each software development

organisation. Every business does not focus on

everything and places limitations on their software.

This work is an excellent example of maximising the

use of coding while achieving the greatest results for

obtaining substantial information value. However,

the most serious simulation issue was highlighted.

T. J. Ketschau and J. Kleinhans et al., (2019)

worked on an analytical study report, and the

findings reveal that professional coders do not always

overcome coding issues. The main reason for this is

that firms use various technologies, and programming

language updates and upgrades confuse programmers

during programming tests. It simply assesses a

programmer's skill, yet owing to a variety of issues,

numerous excellent programmers have failed to pass.

However, this article points to a problem with syntax

capabilities, but debugging is more involved in this

case.

The downloadable copy of the study paper by

Samara, G. et al., (2017) underlined the importance of

having a feature to monitor syntax for detecting

logical mistakes in computer applications in a

software development environment. However, if

programming matches action behaviour that

appropriately reflects class objects within a scope, it

could be a simple task. Logical errors are nothing

more than a programming error that is specified

outside of its scope. Indirectly, it's a difficulty with

undefined mathematical concepts, overloaded phrases,

or logic problem terms derived from human

perception. Furthermore, logical defects can be

detected using error information, which can aid in

the future correction of common logical problems.

The main focus of the research is on the maintenance

of developed applications and the development of

software quality. The integrity of logical error-free

software development is ensured by logical error

principals.

According to Deulkar, K. et al., (2016), a

programme cannot be turned into machine code

without proper coding, regardless of how the code is

written in a structure. With its syntactic standards

and regulations, code quality is unimportant.

Correcting the code, on the other hand, is an

important aspect of software development in order to

build authentic computation as a required duty.

Software quality is determined by a number of factors,

but a logical flaw in the code poses a significant

difficulty. Furthermore, syntactical problems are

detected earlier than logical faults. The nature of

logical mistakes is dependent on the programming

language, and there is currently no mature solution.

The black word on this soft copy, authored by

Lee, J. et al., (2018), is projecting research on

detecting and diagnosing logical faults. The concept is

to use machine learning to correct code faults. To

begin, use programming data sets to train a model to

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

817

detect the programming problem. Which is gathered

through the use of computer programmes. The study

demonstrates a brand new error-correcting algorithm

that categorises and corrects faults. However, this

study is still in its early phases and will take time to

evolve into a viable answer.

JavaBug:

In an intelligent tutoring system, student

modelling is the process of approximating a student's

knowledge of a lesson. Understanding student

behaviour in the software environment is required to

"approximate." It compares a student's final solution

to a programming exercise to its library of frequent

errors and misconceptions to infer the student's

knowledge (bug library). Detecting the most similar

correct programme (intention expressed as reference

programmes), extracting the superficial differences

(discrepancies) between the student's and the correct

programme, and forming misconception definitions

(error hierarchies) described by discrepancies based

on similarity and causality heuristics are all part of

the automatic bug library construction task.

Input:

A student's programme (in.java format), a

knowledge base comprised of the bug library, a set of

correct programmes known as reference programmes,

and causality heuristics are all inputs to JavaBugs. The

bug library contains the most typical mistakes

students make when studying Java object-oriented

programming. JavaBugs uses domain knowledge to

sever nodes in the error hierarchy using causality

heuristics. Discrepancies, for example, can exist.

III. Methodology/Research Design

Fig: 1 - Main steps of Research

Step 1: Research the features of the most popular

Python IDEs.

In this phase, we'll look at the most important

aspects of the most often used IDEs for Python

application development. We do this by looking at

websites where programmers discuss logical flaws, as

well as code examples and setup configurations. We

extract logical errors, code, and setup information in

great detail. In the initial stage, the primary focus will

be on gathering configuration information and

identifying IDE names as well as their unique pattern

aspects to aid software development. Obtaining

information about their error-handling technique and

the extent to which they can cover logical faults.

Identifying vulnerabilities that prevent a recovery

solution from being implemented. One Ide, for

example, is very friendly but not smart when it comes

to monitoring human programming faults, while

another Ide is enhanced when it comes to detecting

flaws but is not very user-friendly.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

818

Step 2: Look for IDEs that provide logical error

detection.

After conducting research, a list of IDEs will

be compiled at this phase. Analyze them to see how

capable they are at detecting and resolving errors.

Determine the extent of the logical flaw and how it

affects the solution. When they are chosen for

research, they will proceed to the following round,

where each Ide will testify and experiment with

various logical error codes acquired during the first

stage. Marking the level of ide's performance on each

logical error. This will serve as a foundation for the

next stage of the research, as well as aid in the

definition of parameters for logical flaws in order to

restore principals.

Step 3: Research the major flaws in IDEs that are

connected to the logical faults discovered in step 2.

The success rate of IDEs that assist developers

in resolving programming errors will be measured in

this section of the study. They will be chosen based

on their ability to detect faults, issue warnings,

recover from errors, and provide solutions to

problems. To further this research, a mature logical

error handler IDE or IDEs will be ideal. That IDE or

IDEs that work with logical errors are more useful,

keep an eye out for new intelligent logical error

recovery units to be created. The data gathered

during this phase of study will serve as a foundation

for the recovery model.

Step 4: Create the most sophisticated error recovery

model possible.

The clever Unit will begin developing a

logical error model in the fourth stage of study, which

will be experimental. The model's elements and

deciding parameters will be adjusted. Defining its

theory and method of operation Its entire workflow

and component integration. Its subunits, components,

and the entire system are tested and validated. After

all of the development procedures have been

completed. The logical error recovery model will be

released for Beta testing and distributed to developers

for input.

Experiments, data, and analysis utilising a case study

are the fifth and final steps.

 After you've completed the logical error

model, you can move on to the next step. The

information from each step of the model-making

process will be recorded. Its findings will be

extremely beneficial in the study and enhancement of

logical error detection, resolution, and solution

suggestions. Comparing research findings to those of

other similar case studies. The importance and

evaluation of the intelligent logical error recovery

unit will be ensured by matching marks. All IDEs that

respect their development programming language

will include an intelligent logical error unit.

IV. REFERENCES

[1]. Beltramelli, T. (2018, June). pix2code:

Generating code from a graphical user interface

screenshot. In Proceedings of the ACM SIGCHI

Symposium on Engineering Interactive

Computing Systems (p. 3).ACM.

[2]. Parnianifard, A., Azfanizam, A., Ariffin, M. K.

A. M., & Ismail, M. I. S. (2017). An overview on

robust design hybrid metamodeling: Advanced

methodology in process optimization under

uncertainty.

[3]. Mongkhonvanit, K., Zau, C. J. Y., Proctor, C., &

Blikstein, P. (2018, June). Testudinata: a

tangible interface for exploring functional

programming. In Proceedings of the 17th ACM

Conference on Interaction Design and Children

(pp. 493-496). ACM.

[4]. Daniel, B. K. (2018). Reimaging Research

Methodology as Data Science. Big Data and

Cognitive Computing, 2(1), 4.

[5]. Berger, E. D., Hollenbeck, C., Maj, P., Vitek, O.,

& Vitek, J. (2019). On the Impact of

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. Krunal H. Patel, Prof. Adil A. Haji Int J Sci Res Sci Eng Technol. March-April-2019; 6 (2) : 812-819

819

Programming Languages on Code Quality.

arXiv preprint arXiv:1901.10220.

[6]. Xie, B., Loksa, D., Nelson, G. L., Davidson, M.

J., Dong, D., Kwik, H., ... & Ko, A. J. (2019). A

theory of instruction for introductory

programming skills. Computer Science

Education, 1-49.

[7]. Colapinto, C., Jayaraman, R., & Marsiglio, S.

(2017). Multi-criteria decision analysis with

goal programming in engineering, management

and social sciences: a state-of-the art review.

Annals of Operations Research, 251(1-2), 7-40.

[8]. Wyrich, M., Graziotin, D., & Wagner, S. (2019).

A theory on individual characteristics of

successful coding challenge solvers. PeerJ

Computer Science, 5, e173.

[9]. Ketschau, T. J., & Kleinhans, J. (2019). Concept

and Implementation of a Two-Stage Coding

Scheme for the Development of Computer-

Based Testing (CBT)-Items in Traditional Test

Software. J, 2(1), 41-49.

[10]. Samara, G. (2017). A Practical Approach for

Detecting Logical Error in Object Oriented

Environment. arXiv preprint arXiv:1712.04189.

[11]. Deulkar, K., Kapoor, J., Gaud, P., & Gala, H.

(2016). A novel approach to error detection and

correction of c programs using machine

learning and data mining. International Journal

on Cybernetics & Informatics, 5(2), 31-39.

[12]. Lee, J., Song, D., So, S., & Oh, H. (2018).

Automatic diagnosis and correction of logical

errors for functional programming assignments.

Proceedings of the ACM on Programming

Languages, 2(OOPSLA), 158.

Cite this Article :

Dr. Ranjeet Kumar, Prof. Dr. Ramdip Prasad, Arif Md.

Sattar, "Automated Software Testing Analysis on Test Case

Optimization and Test Case Levels on Java and Python",

International Journal of Scientific Research in Science,

Engineering and Technology (IJSRSET), Online ISSN :

2394-4099, Print ISSN : 2395-1990, Volume 6 Issue 2, pp.

812-819, March-April 2019.

doi : https://doi.org/10.32628/IJSRSET2182134

Journal URL : https://ijsrset.com/IJSRSET2182134

https://doi.org/10.32628/IJSRSET2182134
https://ijsrset.com/IJSRSET2182134

