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ABSTRACT 

 

Reconstruction from noisy point sets has many ap-plications in the areas of science and engineering. Research 

effort in reconstructing shape from noisy point sets. Reconstruction on planar point including shape, surface, 

curve and manifold recon-struction. Good algorithms are required to create a good shape from a given point set. 

Better local and global sampling conditions form the base of these algorithms. Reconstruction from noisy point 

set is not extensively studied and therefore the researchers do not have a successful algorithm. Reconstruction 

from the stage is begun before many decades and these activities are now being extended for a few days. 

Extending any older reconstruction algorithms needs a good understanding and comparison of all previous 

algorithms. This survey is spamming on different reconstruction algorithms, various local sampling conditions, 

extension of different works and their working conditions and reconstruction implementation from point sets. 

Survey begins after 1997 and compares various extension works. The sampling condition for all these 

algorithms contributes significantly to the construction of algorithms, thus different local sampling conditions 

are investigated. During this study, all algorithms for reconstruction are tabulated and different parameters for 

these algorithms are compared. This survey is concluding with several promising directions for the future 

works on reconstruction.  

Keywords : Curve reconstruction, shape reconstruction, sampling, 2D point sets 

 

I. INTRODUCTION 

 

In recent years, curve, graph, form and multiple 

reconstruc-tion have been extensively applicable 

given a planar point sets. Due to the different types of 

shapes and applications, several algorithms have been 

developed over the past three decades to recreate 

curve, surface and form, taking advantage of specific 

application information and some of which are more 

general. Yet multiple reconstruction is now being 

studied for many applications in science and 

engineering. Manifold reconstruction involves 

building a certain topological space in Ecludian or 

Geometric space. Reconstruction of the shape, curve, 

surface and manifold has many applications, such as 

computer vision, image processing, pattern 

recognition, hidden point elimination, geometric 

modeling, reverse engineering, computer graphics, 

photogrammetry and numerous applica-tions for 

reconstruction. Here the emphasis is on techniques 

which apply to the general environment and which 

have geometric and topological guarantees on the 

performance of reconstruction. In the past three 

decades, numerous algorithms have been established. 

Curve rebuilding is one of the simplest ways of 

reconstruction. Reconstruction of the shape and sur-

face requires further computation. There is only less 

paper for the reconstruction of multiples. In this 
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paper under the reconstruction we are studying more 

than five papers for each field.  

 

II. SURVEY AND RELATED WORK 

 

 
Survey spreads the restoration point to different areas. 

Mainly local approach to sampling condition and 

global approach to the sampling condition are 

considered. Local approach to sampling is based on 

edges of the Delaunay triangles. It bases primarily on 

linking edges using Delaunay triangulation. The 

Global method is based on spanning vertices of 

Voronoi. This study again takes into account samples 

of noise and no samples of noise. Noisy samples with 

point density are greater than neon noise samples. 

Study finds different application of point set 

reconstruction.  

 

Surveying several algorithms in different parameters. 

The first is local sampling and Globel sampling, and 

the survey then takes Noisy samples.  

 

Approach of the local sampling conditions 

 

The point sets within the plane are related in the local 

sampling condition approach based on the Delaunay 

triangle-based strategy. Finding triangle Delaunay for 

every point in the plane. Comparing points with 

other methods in Delaunay-based approach is very 

easy and effective. In the Delaunay triangle system, 

the angle is maximized and the edge length is reduced.  

-shape [1] is a shape construction algorithm based on 

user specification while sampling. Here the 

construction of the -form is performed using the 

Delaunay triangulation process. In this -be a 

sufficiently small real number, it is reconstructed 

using this value alpha form. The -complex of P is 

described by all simplifications with vertices in P 

having an empty radius circumscribing circle. For 

each edge of the Voronoi diagram it is determined in 

algorithm first drawing Voronoi diagram and then -

min and -max values. Identify -min -max for each 

edge in the Voronoi diagram, if any edge meets this 

condition add this edge to the -shape. De Figueiredo[2] 

introduced the EMST algorithm. When the sample is 

sufficiently dense, the Euclidean minimum spanning 

tree (EMST) reconstructs boundary curves. The 

sampling density used to illustrate this finding is 

equal to that of any standard sampling for an 

appropriate level of >0. Naturally, EMST can not 

replicate curves without boundaries and/or multiple 

components. Nina Amenta and Marshall Bern [3] 

Reconstruction of a curve with a sample assurance 

that is not always even. The Crust and the -Skeleton: 

CombinatorialCurve Reconstruction is one of the first 

non-uniform sample reconstruction algorithms to 

build a curve. The algorithm for crust is composed of 

two stages. In the first step the Voronoi diagram is 

constructed in the specified point set P. It is a 

parametric uniform sampled algorithm. It selects a 

value for and generates -skeleton.  
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Figure 1 :- Skeleton produces using forbidden 

region[image courtesy[3] 

 

Computational morphology of curves was proposed 

by Figueiredo and Gomes[4]. Prove the Euclidean 

minimal trees correctly reconstruct arcs from their 

dense samples.  

 

The evidence is based on a combinatorial 

characterization of minimal stretching paths and a 

definition of the local arc geometry inside tubular 

neighbourhoods, and more general curves can also be 

reconstructed with Simple Heuristics. D. Attali 

developed another method for curve reconstruction 

in 1997[5], the reconstruction of r-regular form from 

unorganized points is carried out on specific sets of 

points. Any circle that passes through the boundary 

points in this system has a radius greater than r. Here 

sample r-regular shapes with a <sin( r/8)r sampling 

path. This approach is applied for finding structure in 

2D but in the 3D points certain phases are well 

known.  

 

Nina Amenta and Marshall Bern [6] Reconstruction 

of a curve with a sample assurance which is not 

always uniform. The Crust and the -Skeleton: 

CombinatorialCurve Reconstruction is one of the first 

non-uniform sample reconstruction algorithms that 

create a curve. The algorithm for crust is composed of 

two stages. In the first phase the Voronoi diagram is 

constructed in the given point set P. The second 

phase computes the larger set of P[V for the Delaunay 

triangulation. Crust algorithm proposed the idea of 

local feature size which enables reconstruction from 

non-uniformly sampled point sets with a minimal 

angle between the edges of the reconstructed piece-

wise boundary. The minimum angle is derived from 

their sampling state. The specified sampling criteria 

for the Crust method ( <0. 252, includes >151. 05) The 

evidence is based on a combinatorial characterization 

of minimum stretching paths and a definition of the 

local arc geometry inside tubular neighborhoods. 

Tamal K. Dey Piyush Kumar[7] implemented a 

Simple Provable Curve Reconstruction Algorithm for 

the construction of the curve. This algorithm is based 

from the moment on the nearest neighbor. All nearest 

neighbor edges that connect a point to its Euclidean 

nearest neighbor must be in the reconstruction if the 

input is 1/3-sample. However, not all edges of the 

rebuild are necessarily the nearest adjacent edges. The 

remaining edges are as follows characterised. Let p be 

a sampling point where only one incident involves 

the nearest neighboring edge PQ. Consider the half-

plane with PQ being a normal outward to its 

boundary line through p, and let r be the nearest to P 

of all the sample points in this half-plane. Call pr the 

half-neighbor edge of p. Dey and Kumar show that 

for a 1/3 sample, all half-neighbor edges also need to 

be in the reconstruction. Dey et al. [8]’s Gathan 

algorithm treats sharp corners and reveals the 

combined sampling state for smooth and corner parts 

of the curve in its extension to GathanG. It does not 

take graphical considerations into account. 

Notwithstanding this we assume it offers the best 

sampling-oriented approach from sparse point sets to 

date for this 2D-shaped prob-lem reconstruction. 

After this Yong Zeng et al. [9 ] implements a distance-

based free algorithm for curve reconstruction. Use the 

two proximity and smoothness properties derived 

from Gestalt laws, but allow a rather dense sampling 

in sharp corners. Zeng. VICUR uses a DISCUR-based 

approach in a distance-based parameter approach: 

Yong zeng later develops a human-vision-based 

algorithm for curve reconstruction[10 ]. .  

 

http://www.ijsrset.com/


International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 2 

Jijith K et al Int J Sci Res Sci Eng Technol. March-April-2020; 7 (2) : 10-18 

 

 13 

The output generated by algorithms using a local 

sampling criterion is a multiplier that can be linked 

and possibly bound together. A unique condition can 

only be guaranteed for sufficiently dense sampling, 

say a closed and independently connected manifold, 

with very stringent requirements being imposed. 

Otherwise the results are not accurate. For instance, 

this can be seen later in Figure 2 which shows a 

number of such cases. Regional sampling conditions 

were, of course, intentionally designed to make no 

assumptions about the form, but rather how the shape 

was sampled.  

 

 
Figure 2 : Two far-reaching circles point set. A) The 

need for international connectivity. B) Only a (local) 

closure is needed. 

 

When multiple connected components are needed, 

these can be generated by dropping the global tree 

compliance condition and extracting the interpolating 

manifold separately from each disjoint set. It benefits 

proximity as Closure is still being carried out as a local 

property. The client is then given the choice (see 

Figure 2).  

 

Global Search Approach 

 

The one described in[11] is a first attempt at using an 

approach to global search. Here you construct 

Voronoi trees spanning and pick one with minimal 

length by programming integer, with O(n 2 log n) 

complexity. . For sharp angles and non-uniform 

sampling, it does not work well; naturally, better 

solutions are pruned too early.  

 

Joachim Giesen’s Curve Reconstruction in Arbitrary 

Dimension and the Traveling Salesman Problem[12] 

presented an approach based on globel search 

algorithms. Giesen shows in[ 12] that the Euclidean 

Traveling Salesman Problem (ETSP) solution, called a 

tour, can reconstruct the shape for a sufficiently thick 

sampling. He provides two algorithms but no results, 

and only a promise of existence. This shows that for 

simple, normal curves Traveling Salesman Paths, the 

correct polygonal reconstruction is given, as long as 

the points are densely enough sampled. In this case 

the polygonal reconstruction is part of the Delaunay 

triangulation sample points. Based on that,[13] shows 

that such a tour often reconstructs forms for non-

uniform sampling and solves the NP-hard problem in 

polynomial time. An unknown curve nite sample V is 

an example of the problem of curve reconstruction 

and the task is to link the points in V in the order in 

which they are placed on. Giesen[12] has recently 

shown that V’s Traveling Salesman Tour solves the 

reconstruction problem under relatively weekly 

assumptions 

  

 

on and V. We are extending its outcome into three 

dimensions. Nonetheless, the evidence given is for an 

extremely restrictive ¡20 that includes >174. 27. For 

unrestricted sets, Arora et al[ 14] gives an 

approximation (1 + 1=c) to the optimum ETSP tour in 

O(n(log n) O(c)). Nevertheless, these methods are not 

ideal, and our studies have shown that the graphical 

form of non-optimal solutions is often weak.  

 

The exact solution based on TSP in[15 ] is contrasted 

with the Crust-type algorithm family and six other 

AP-proximation solutions based on various heuristics 

based on TSP. We note that all of these TSP-

heuristics do not include sparse sampling for certain 

curves which the exact TSP method has done well. 

We also note that the exponential complexity of the 

TSP decreases with denser sampling. This algorithm 

shows that the TSP algorithm is far superior to the 

efficiency of respect for re-construction. His 

theoretical running time was never more than 13 

times the average running time of the other 

algorithms. Here, also notice that the exponential 

complexity of the TSP decreases with denser sampling. 
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These methods do not require user-specified 

parameters, except Arbitrary Dimension Curve 

Reconstruction and the Traveling Salesman Problem. 

Unfortunately, finding the exact solution using a 

naive TSP solver takes unnecessary time for O(2n) 

and for small P. The exact TSP solver concord[16 ] is 

sub-exponential and can take hundreds of CPU-years 

for medium sized point sets. On the empirical scaling 

of run-time to find optimal solutions to Hoos et al’s 

traveling salesman problem[17 ] clarified the 

difficulty of TSP concord. While a DG-restricted TSP 

solution would in theory produce B min, we find the 

TSP too general to be applicable to the problem we 

mentioned. Our focus is on an algorithm for efficient 

shape construction that produces esthetic shapes as 

seen by humans, and it only needs to work on point 

sets that are reasonable in their spacing.  

 

Aesthetic Shape Construction Connect2D: Connects 

points to a nice form improved by ohrhallinger et al. 

[18], above all algorithms. Presents an efficient 

algorithm for determining an esthetically pleasing 

boundary of form that connects all points in a given 

unorganized set of 2D points, with no other 

information than point coordinates. Notice that for a 

certain group of point sets there is a relationship 

between the minimum perimeter polygon of DG and 

the Euclidean minimum spanning tree (EMST) of P. 

This partnership features well-defined edge exchange 

operations. Although their algorithm gives very good 

results for sharp corners, it can not guarantee linear 

complexity, as a global search for solution space may 

be necessary in some cases. Their main contribution is 

the approach to formulating curve reconstruction as a 

minimization issue through the properties of Gestalt 

esthetic shape laws .  

 

The algorithm given for [19], on the other hand, is 

quite unique although it also minimizes the same 

criterion of time. For 2D, it turns out that minimizing 

the duration is very well related to the above 

mentioned Gestalt laws. This algorithm is based on 

the observation that the EMST graph characterizes 

  

the boundary shape very well for point sets, except 

for those with a random or highly uniform spacing. 

There are leaf vertices in EMST, however, and no leaf 

vertices should be present in the interpolating, closed 

manifold curve. Based on this observation, this 

algorithm enacts an extension to the EMST by having 

at least two incident edges for each vertex. Show that 

the results are much better than previous methods, 

especially for sparser point sets. This also shows that 

the complexity of our method is O(n log n) like other 

Delaunay-based methods based on a local sampling 

condition, which is a major advantage over .  

 

Extensions 

 

NN-CRUST has been applied to CONSERVATIVE—

CRUST 

 

[20] to handle open curves, and later to GathanG [8], 

which has changed the sampling condition to handle 

sharp corners, but includes >150 elsewhere. 21] The 

definition of curve reconstruction has been 

introduced as requiring homeomorphism between 

polygonal reconstruction and curve but not geometric 

proximity. They also presented their own sampling 

condition which required several parameters for the 

reconstruction of open and closed curve collections 

with sharp corners. Some methods suggested a 

sampling condition using a human perception 

dependent vision feature and some empirically 

defined parameters [22,23].  

 

[24] suggested a three-step process to reconstruct very 

sparsely sampled features for closed curves, finding it 

a global problem. The first step ensures 

reconstruction for <0. 5, but to handle the sharp 

angles of 0-60, additional restriction is needed, 

gradually increasing the density as a peak ratio 

between adjacent edge lengths.  

 

Reconstruction of noisy sampling curves 
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Lee’s reconstruction of curves from unorganized 

points[25] implemented reconstruction of curves 

from the noisy point sets. Suggest an algorithm to 

approximate a set of disorganized points with a simple, 

self-intersected curve. The moving least square 

method has a good ability to lower a point cloud to a 

thin curve-like form which is a near-best point-set 

approximation. Using Euclidean minimal spanning 

tree, area expansion and refining repeat is suggested 

an enhanced moving least square technique. Using 

the improved moving least-square technique we can 

easily recreate a smooth curve after thinning a 

provided point cloud. An application will be applied 

to a tube surface reconstruction algorithm. Lee’s 

method uses the Euclidean Minimum Spanning Tree, 

a neighborhood map, to connect noisy samples. Using 

a variant of Moving Least Squares, this dense graph is 

smoothed and a spline function is added. Their 

approach is restricted to individual open curves and 

does not handle well varying sample density or noise. 

The screened poison system proposed by Kazhadan et 

al. [26] reconstructs noisy point sets. Reconstruction 

of the Poisson surface creates watertight surfaces from 

sets centered in points. Extend the technique here to 

include the points specifically as constraints on 

interpolation . . The extension to a screened Poisson 

equation can be seen as a generalization of the 

mathematical structure behind it 

 

Robest HPR[27 ] Suggest a robust visibility 

approximation algorithm for a point array that 

includes concavities, non-uniformly distributed 

samples and may be skewed by noise from a given 

perspective. Instead of making an explicit 

reconstruction of the surface for the settled points, 

visibility is measured in a dual space based on a 

convex hull. Goes et al. [28] provide a robust 2D 

shape reconstruction and simplification algorithm 

that takes the noise and outliers of a ladenpoint array 

as inputs. It implements an optimal transport-driven 

approach where the setting of the input point is 

approximated by a simplification complex considered 

as a sum of 0-and1-simplifies uniform steps. This 

approach solves a related problem and can also 

reconstruct intersecting curves by greedily 

simplifying the Delaunay triangulation of the point 

set but without linking curves to non-uniform 

sampling or noise. A similar approach to non-uniform 

sampling[29 ] also fails. Here a robust algorithm is 

proposed to recreate the 2D curve from unorganized 

point data with high noise and outliers. Extract the 

quadtree’s ’ grid-like ’ boundaries by constructing the 

quadtree of the input point data and smooth the 

boundaries using a modified Laplacian method.  

 

Method[30 ] transfers and removes sample-centered 

balls to obtain a sparse piece of wise linear fit, but 

only shows results in very dense sampling cases, and 

implements algorithms to reconstruct closed and open 

curves of their noisy and unordered samples from 

clouds. The curve is reconstructed as a polygonal path 

described by its vertices, identified in an iterative 

process comprising stages of evolution and decimation.  

 

A new method FITCONNECT is introduced by S. 

Ohrhallinger et al. [31] Propose a parameter-free 

approach for restoring multiple connectivity in 

unstructured, high-noise 2D point clouds with local 

feature width. It allows capturing the characteristics 

that arise from the noise. To do this, expand the 

HNN-CRUST reconstruction algorithm. 

FITCONNECT extends HNN-CRUST seamlessly to 

connect both samples with and without noise, 

performs just as locally as the recovered features and 

can generate multiple open or closed curves on the 

component. By the way, this approach simplifies the 

geometry of the production by removing from noisy 

clusters all but a representative stage. FITCONNECT 

increases the size of the neighborhood for the fits 

until they match each other, eliminating samples that 

do not contribute to the connectivity. They guarantee 

multiple construction for very high noise levels, 

provided that the characteristics emerge over the 

noise level and provide an estimate of local noise at 

samples.  
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Figure 03 : HNN-CRUST edge-pair reconstruction for 

a samples (image courtesy of [31]). 

 

Guarantees for the reconstruction of curves 

 

Provable surface reconstruction from noisy samples 

by Tamal et al. [32] Present a noise model that 

describes sample noise in terms of its local feature size. 

They demonstrate that reconstruction is possible in 

principle without quantifying the fraction. Curve 

Reconstruction from Noisy Samples is another 

method introduced by Cheng et al. [33]. Here 

introduce an algorithm to reconstruct a set of disjoint 

smoothly closed curves from noisy samples. Our noise 

model assumes that the samples are collected by first 

drawing points on the curves according to a locally 

uniform distribution followed by uniform disturbance 

in the usual directions. This reconstruction may be 

possible in terms of sample noise function and local 

feature size but their proposed algorithm for a 

number of N points is of impractical time complexity 

O(N3). In the normal directions, it also requires local 

uniform distribution and uniform perturbation. 

FITCONNECT [31] as the basis for restoring the 

connectivity, which has been shown to recreate 

features that appear locally over the scale of the 

sample noise.  

 

Applications and reconstruction of Noisy Samples 

 

A Mobile Scene Tracking and Object Retrieval System 

by K Birkas et al. [34] Present a prototype data-driven 

retrieval system based on deep camera detection 

technology. The framework uses a combination of 

local and global features and fuses information from 

different angles to efficiently retrieve artifacts in a 

scene with noisy data and extreme occlusions. Birkas 

et al. [34 ] demonstrate a framework for extracting 

objects from mobile sensed data by segmenting them 

by clustering. From these point clusters, (partially 

occluded) silhouettes that are noisy due to sensor 

artifacts can be identified. Birkas et al. [34 ] 

demonstrate a method for extracting objects from 

mobile sensed data by segmenting them by clustering. 

From these point clusters, (partially occluded) 

silhouettes that are noisy due to sensor artifacts can 

be identified.  

 

III. CONCLUSION 

 

Curve reconstruction in the planar point set was a lot 

of algorithms other than form and surface 

reconstruction. -shape, crust, r-regular shape, EMST, 

nearest neighbor and traveling salesman are the key 

algorithms for the reconstruction of the curve. 

Among these algorithms, many of them function in 

boundary samples and dot patterns. Uniform samples 

are required for some algorithms and some algorithms 

that function both uniform and non-uniform samples. 

Both algorithms, except Traveling Salesmen, require 

smooth boundaries. Smooth boundary curve 

reconstruction is much easier than irregular curves. 

Identifying boundaries in curve reconstruction is 

done by a few numbers of algorithms and some 

algorithms never detect multiple boundaries. Survey 

span Uniform samples to Noisy sample point sets. 

First, consider the local sampling conditions that 

provide details such as the point sample so that 

Delaunay triangulation method is used. Common 

edges of the Delaunay triangles are taken to connect 

the edges. Then consider Global sampling conditions, 

which is the Voronoi diagram related method. 

Extensions are identified over these survey by 

comparing different algorithms. Surface 

reconstruction has many applications in the medical 
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field. There are many algorithms for surface 

reconstruction. Commonly a surface is 2-manifold 

embedded in R2. -shape and crust are the initial 

algorithms for shape reconstruction from the given 

planar point sets. Crust algorithm is based on one 

theorem and the cocone algorithm is there for 

reconstructing the surface. Natural Neighbor, Morse 

Flow, Power Crust, Tight Cocone, and Peel are 

important surface reconstruction algorithms. Shape 

reconstruction algorithms are reconstructing the 

shape from the input point set. Incremental labeling 

and aesthetic shape reconstruction are important for 

shape reconstruction algorithms. Manifold 

reconstruction needs more computation. Commonly 

manifold is a topological space in which it mapped 

into the Ecludian space of geometrical space. There 

are only a few algorithms for reconstructing manifold.  
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