
IJSRSET207253 | Accepted : 25 March 2020 | Published : 03 April 2020 | March-April-2020 [7 (2) : 269-273]

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

© 2020 IJSRSET | Volume 7 | Issue 2 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

DOI : https://doi.org/10.32628/IJSRSET207253

269

Implementation of Lexical Analysis on Assignment Statements in C++
Programming Language

Zaw Lin Oo1, Mya Sandar Kyin2
1Faculty of Information Science, University of Computer Studies, Taungoo, Pegu Regional Division, Myanmar

2Faculty of Computer Science, University of Computer Studies, Taungoo, Pegu Regional Division, Myanmar

ABSTRACT

A compiler is a computer program that translates computer code written in one programming language (the

source language) into another language (the target language). The name compiler is primarily used for programs

that translate source code from a high-level programming language to a lower level language [7]. The three

main processes of compilation are lexical analysis, syntax analysis and semantic analysis. A compiler has two

components, front-end and back-end. Front-end portion of a compiler has to do to main tasks lexical analysis

and syntax analysis. On the lexical analysis, input source code are scanned and tokenized into various tokens [6].

In the system, front-end portion of the compiler, lexical analysis is used. There are many token elements in C++

programming language. In this system, line break token, white space tokens (space and tab) and operators (+,-

,*,/,=,+= and so on) are used as token elements for the assignment statements of C++ source program. This

system is taken all the assignment statements of C++ program as input. Of course, the extracted assignment

statements may be literals or values assignment statement (e.g. x=3; or pi= 3.142;), variable assignment

statement (e.g. x=y; or x=z;) and expression assignment statement (e.g. a=b+c; or x=y*z; or a=b*(c+d); and

produced symbol table, step by step recognized table by using finite state automata and lexeme table.

Keywords : Learn C++ syntax, Compiling Technique, Compiler Design Theory, Tokenization in NLP, Lexical

Analysis on C++

I. INTRODUCTION

Nowadays, software is primarily written in high level

language by using an appropriate compiler. A

compiler is a program that takes as input a program

written in a source language such as Pascal or C++ and

translates it into a functionally equivalent program in

the target language (assembly or machine code).

When no error is detected in the input source code,

the translation can be completed. The process of

translating a source code language to a target language

code is called compilation process can be divided into

two parts namely analysis and synthesis stages. In

analysis stage, the source program break into

constituent pieces (tokens) and creates intermediates

representations (symbols). In synthesis stage,

compiler generates the target program from the

intermediate representations. It is a process translates

what the programmer tells intermediate code

optimizer into another equivalent code. The analysis

part can be divided into lexical analysis, syntax

analysis and semantic analysis. The next part is the

synthesis part that can be divided into intermediate

code generator, code optimizer and code generator

[MMO].

II. METHODS AND MATERIAL

Compilation Process

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET207253

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 2

Zaw Lin Oo et al Int J Sci Res Sci Eng Technol. March-April-2020; 7 (2) : 269-273

 270

The compiler is to translate the bit patterns (streams)

that represent a program written in some computer

language into a sequence of machine instructions that

carry out the programmer’s intend. The compilation

process is done by a serial connection of three boxes

which it is called the lexical box, the syntax box and

the code generator. These three boxes have access to a

common set of tables where long term or global

information about the program may be entered. One

such table is the symbol table, in which information

about each variables or identifier is accumulated as

shown in Fig1 [MMO].

Fig.1: Step by step compiling job.

In this system, lexical phase would like to be

presented in emphasis for assignment statements of

the C++ source program. The input to a compiler is a

bit pattern representing a string of characters. The

lexical box is concerned with breaking up the string

of character into the words they represent. In this

phase, the input string of character is transformed

into new entities. These entities are often called

tokens. Each token consists of two parts, a class part

and a value part. The class part denotes that the token

is in one of a finite set of classes and indicated the

nature of information included in the value part [1].

2.1. Lexical Analysis

Lexical analysis or scanning is the process where the

stream of characters making up at the source program

is read from left- to- right and grouped into tokens.

Tokens are sequences of characters with a collective

meaning. There are usually only a small number of

tokens for a programming language constants (integer,

double, character, string, etc.), operators (arithmetic,

relations, logical), punctuation and reserved words.

Lexical analyzer take a source program as input and

produces a stream of token as output. A lexeme is the

actual character sequence forming a token; the token

is the general class that a lexeme belongs to. Some

tokens have exactly one lexeme for other, there are

many lexemes (e.g. integer constant).The scanner is

tasked with determining that the input stream can be

divided into valid symbols in the source language, but

has no smarts about which token should come where

few errors can be detected at the lexical-level alone

because the scanner has very localized view of the

source program without any context. The scanner can

report about characters that are not valid tokens (e.g.

an illegal or unrecognized symbol and a few other

malformed entities constant, un-terminated,

comments, etc.). It does not look for or detect garbled

sequences; token out of the place, undeclared

identifiers, misspelled keywords, mismatches types

and mismatches operators. The lexical analyzer can be

a convenient place to carry out some other chores like

stripping out comments and white space between

tokens and perhaps even some features like macros

and conditional compilation[4].For example, the

assignment statement ‘z=a*(x+y);’ is input into the

code window (text editor) and it passes through the

lexical box. It is tokenized into five token elements

such as ‘=’, ‘*’, ’(‘, ’+’, and ‘)’. The lexical box generates

and produces lexemes table. It is shown in Table1.

Table 1: Lexeme table for assignment statement

2.2.1 Tokenization

A block of text corresponding to the token is known

as a lexeme. A lexical analyzer processes lexemes to

categorize them according to function, giving them

meaning. This assignment of meaning is known as

tokenization. A lexical analyzer processes lexemes to

SR .N

o

Token Type Lexeme

1 Identifier Token z

2 Operator(assignment) =

3 Identifier Token a

4 Operator Token *,+

5 Operator Precedence

Token

‘(‘ and ‘)’

6 Separator or

terminator

;

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 2

Zaw Lin Oo et al Int J Sci Res Sci Eng Technol. March-April-2020; 7 (2) : 269-273

 271

categorize them according to function, giving them

meaning. This assignment of meaning is known as

tokenization. A Token can look like anything; it just

needs to be a useful part of the structured text (source

program syntax). An essential function of a compiler

is to build the Symbol table where the identifier the

program is recoded along with various attributes [3].

2.2.2 Symbol Recognition

In addition to recognizing the symbols of the

language the lexical analyzer will usually perform one

or two other simple tasks such as

• Deleting comments

• Inserting line numbers

• Evaluating constants

Table 2: Symbol table for assignment statement

Though there are arguments that the last of these is

better left to the machine dependent back end of the

compiler. The lexical analyzer is only concerned with

recognizing language symbols in order to pass them

on to the syntax analyzer. It is not concerned at all

with the order in which symbols appear. It would be

up to the syntax analyzer to realize that they did not

form the start of any program. For the purposes of the

lexical analysis, regular expressions are a convenient

method of representing symbols such as identifiers

and constants [2]. Let us turn to assignment statement

of our example that is ‘‘z=a*(x+y);’’ the lexical analyzer

scans the input assignment statement and generates

the symbol table. This table is shown in Table 2.

2.2.3 Regular Expression and Regular Language

A regular expression is a text pattern consisting of a

combination of alphanumeric characters and special

characters known as meta-characters. A close relative

is in fact the wildcard expression which is often used

in file management. The result of a match is either

successful or not, however when a match is successful

not all of the pattern must match. Regular expressions

are the key to powerful, flexible and efficient text

processing.

 Regular expressions themselves, with a general

pattern notation almost like a mini programming

language, can be used to describe and phrase text.

With additional support provided by the particular

tool being used, regular expressions can add, remove,

isolate, and regularly fold, spindle, and mutilate all

kinds of text data. The set of all integer constants or

the set of all variable names are sets of strings. Such a

set of strings is called a language. For integers, the

alphabet consists of the digits 0-9 and for variable

names the alphabet contains both letters and digits.

Regular expressions, and algebraic notation that is

compact and easy for humans to use and understand,

can be used to describe sets of strings [5].

 Table 3: Example of regular expression

Regular expressions are concise, linguistic

characterization of regular languages (regular sets).

Each regular expression defines a regular language a

set of strings over some alphabet, such as ASCII

characters; each member of this set is called a

sentence, or a word we use regular expressions to

define each category of tokens. For example, an

Lexeme Token

z Identifier

= Operator

a Identifier

* Operator

(Operator

x Identifier

+ Operator

Y Identifier

) Operator

; Separator Regular

Expression Explanation

a* 0 or more a’s

a+ 1 or more a’s

(a/b)*

all strings of a’s and b’s
(including)

(aa/ab/ba/bb)*

all strings of a’s and b’s of

even length

[a-z A-Z]

shorthand for

“a|b|…..|z|A|…..|Z”

[0-9] shorthand for “0|1|2|…..|9”

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 2

Zaw Lin Oo et al Int J Sci Res Sci Eng Technol. March-April-2020; 7 (2) : 269-273

 272

identifier specifies a set of strings that are a sequence

of letters, digits, and underscores, starting with a

letter. Example of regular expressions can be seen in

Table 3.

III. RESULTS AND DISCUSSION

System Design for Lexical Analysis on Assignment

Statement

This system intends to the learner who studies the

compiler design and compiling technique. The only

assignment statements of the input source code in

C++ are considered and produced symbol table, step

by step recognized table and lexeme table. This

system cannot serve the whole lexical box functions.

It is intended to easily understand and clearly seen

the transition of assignment statements. This system

provides the learners who learn the compiler design

theory and then they may implement the whole

lexical box of compilation processes.

Implementation of Lexical Analysis on Assignment

Statements with C++ Programming Language is to

produce symbol table, step by step recognized table

(transition table) and lexeme table of identifiers and

operators for the assignment statements of C++ source

code. From the input source code, the assignment

statements are extracted and these statements are

tokenized to include each types and values of tokens

for all assignment statements. And then, the symbol

table is generated for each input identifier or operator

tokens. Moreover, the system can recognize each

input assignment statement with their states.

Nowadays, the most Integrated Development

Environment (IDE) such as C-Free4, C-Free5 and

devc or code editor does not trim for the line spaces

and white spaces (double spaces, tab and etc.). The

overall system is shown in Fig. 2. In this system, it

will trim that multi-lines, unnecessary spaces and tab

are written by programmer. For example, z=a * (x+y);

this statement is legal for C++, but not readable. It

should be z=a*(x+y); that is more suitable for

programmers and readable form.

Fig. 2: System design

IV. REFERENCES

[1]. P.M. LEWISII, D.J. ROSENKRANTZ, R.E.

STEARNS, ”Compiler Design Theory”, Third

Printing, November 1978, ISBN 0-201-14455-7

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 2

Zaw Lin Oo et al Int J Sci Res Sci Eng Technol. March-April-2020; 7 (2) : 269-273

 273

[2]. ROBIN HUNTER, “The Essence of Compilers”,

First published In ISBN 0-13-727835-7

[3]. NWE NWE THANT, “Implementing Syntax

Analyzer for Compiler Process”, 2009

[4]. Maggie Johnson and Julie Zelenski, “Lexical

Analysis”, Printed in 2008

[5]. Myo Myint Oo, “Implementation of Lexical

Analysis on Declaration Statements in C++

Programming Language”, 2011

[6]. https://www.tutorialspoint.com/compiler_desig

n/compiler_design_phases_of_compiler.htm

[7]. https://en.wikipedia.org/wiki/Compiler

Cite this article as :

Zaw Lin Oo, Mya Sandar Kyin, "Implementation of

Lexical Analysis on Assignment Statements in C++

Programming Language", International Journal of

Scientific Research in Science, Engineering and

Technology (IJSRSET), Online ISSN : 2394-4099,

Print ISSN : 2395-1990, Volume 7 Issue 2, pp. 269-273,

March-April 2020. Available at doi :

https://doi.org/10.32628/IJSRSET207253

Journal URL : http://ijsrset.com/IJSRSET207253

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET207253
https://search.crossref.org/?q=10.32628/IJSRSET207253
http://ijsrset.com/IJSRSET207253

