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ABSTRACT 

 

This paper presents an extension both in software optimization with simulations and detailed mathematical 

theory of Numerical Reuleaux Method based on previous publications. In the literature, there are a number of 

papers in Numerical Reuleaux Method and its applications (Aerospace, Helicopter Dynamics in Turbulence 

Conditions, Biomedical Engineering, Biomechanics, etc) since 2007. This contribution is a detailed presentation 

of the mathematical framework that constituted the basis for those articles along 2007-2020.  The Classical 

Reuleaux Method (CRM) is frequently used in Physical Dynamics, Engineering Mechanics and Bioengineering 

to determine the Instantaneous Rotation Center (IRC) of a rigid body in arbitrary movement. The generic 

mathematical CRM only can be applied on rigid bodies, whose shape remains constant during the movement. If 

the solid in movement is a Pseudo-Rigid Body (PRB), the CRM has to be modified numerically to conform the 

shape changes and adapt on the density distribution variations of the PRB (we denominate it, in this case1, The 

Numerical Reuleaux Method, NRM). This Geometrical-Numerical Approximation Method is based on the 

division of the Pseudo-rigid body into small volume parts called voxels (roughly speaking parallelepipedic), 

namely, voxelization of the body subject to dynamics. The theoretical basis of the method is strictly shown in 

complementary details, with the necessary Theorems and Propositions of the model. Nonlinear Optimization 

Techniques that support the initial theory have been developed, and the Error boundaries with Error reduction 

techniques are determined. Computational Simulations have been carried out to prove the NRM Theoretical 

Model feasibility and numerical veracity of the Propositions, Theorems, and Error Boundaries. Appropriate 

software was made to carry out these simulations conveniently. The initial results agree to the theoretical 

calculations, and the IRC computation for 2 voxels shows to be simple and easy. Some initial guidelines for a 

theoretical development of this algorithm applied on large pseudo-rigid bodies, by using Monte-Carlo 

techniques, are sketched. Recent applications, Aerospace and Biomechanics, are also shown.   

Keywords : IRC, Nonlinear Optimization, Numerical Reuleaux Method (NRM), Voxel, Pseudo-rigid Body, 

Numerical Simulations.  

 

I. INTRODUCTION 

 

The Classical Reuleaux Method is used for the 

determination of the IRC of rigid bodies [38,39]. This 

method is basically geometrical [Fig 1], and the IRC is 

given by the unique intersection point of two lines 

(for 2D), or three planes (for 3D). These lines (or 

planes in 3D), are perpendicular at the middle points 
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of the straight segments that join some points, (two 

segments and four points that define these segments 

in 2D, and three segments, with six points that define 

the segments in 3D), of the initial position of the 

body, with the corresponding ones which are at the 

final position of the body.[NOTE, large Figures are set 

in Appendix Section with Computational Tables]. 

 

However, when the body in movement is a PRB, the 

method needs to be modified into a numerical way. 

This implies that the shape of the pseudo-rigid body 

has to be divided into small volume parts called 

voxels, and the initial algorithm [21,32,33,45] is 

applied for calculating the particular IRC for each 

independent voxel2 [Fig 3]. The optimal IRC for the 

complete PRB is given by that point whose sum of 

distances to all those individual IRCs (that is, the IRC 

for each voxel movement), is minimal [24]. It is also 

obliged to take into account the changes in the mass 

and density distribution into the pseudo-rigid body. 

This matter makes the calculations more complicated, 

although some approximations can be applied. 

Previous publications of this NRM, with a radiological 

experimental verification series of experiments, have 

been focused on Bioengineering applications related 

to Biomechanical properties of the human spine [11]. 

 

We developed two Objective Functions. Both 

Objective Functions are set as a Least-Squares 

Algorithm, but with different weight factors. The 

Second Objective Function explicit Formula is the 

same in its L2 Norm term, but the weight factor is 

purely related only to volume variation of the pseudo-

rigid body. 

 

The simulations carried out for 1 and 2 voxels frames 

show a clear difference of Error decrease in favour of 

the 2 voxels choice. The average difference of error 

both for 2D and 3D is about 8%. Finally, some 

mechanical Engineering and Bioengineering 

(Biomechanics in particular, [11]) applications are 

show in brief. All in all, we consider this NRM model 

as a promising one for future industrial applications. 
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applications are show in brief. All in all, we consider 

this NRM model as a promising one for future 

industrial applications. 

In summary, this paper presents all the mathematical 

and computational background of Numerical 

Reuleaux Method that was made in its first year of 

foundations (2007). It is complemented with 

Aerospace and Biomedical applications and details. 

Therefore, any article of this subject that can be found 

in the international scientific literature, can be better 

understood with all these algorithms and software-

engineering numerical data and simulations (Tables 1-

5, and Figure 10 at Appendix).  

 

 
 

Fig 1.-Basic sketch of the CRM [10] in 2D for a rigid 

body. The Reuleaux segments join two points of the 

body at the initial position, with the corresponding 

ones at the final position. The perpendiculars to these 

segments at their middle points intersect at the exact 

IRC. In 2D the IRC is given by the intersection of two 

perpendiculars, and we have to take at least two 

points of the rigid body. In 3D the IRC is given, 

instead, by the intersection of three planes (Bisecting 

Planes), which are perpendicular to the Reuleaux 

segments middle points (three) [11]. The necessary 

condition in 3D is the PRB to perform a pure 

movement in 3D (different variations of the three 

spatial Cartesian Coordinates), otherwise we would 

obtain a rotation axis or a simple translation, and in 

other cases the computing program running becomes 

complicated by the singularity of a matrix. This 

matrix is used to obtain the solution of a Linear 

System of Equations rather Ill-posed [16,23] if the 

meshing of the Reuleaux segments in 3D is not 

selected properly. 

 

1 The name of Numerical Reuleaux Method (NRM) is 

assigned to recognize the solid foundation of the 

Classical Reuleaux Method (CRM), wisely invented 

by the Engineer Franz Reuleaux (1829-1905) [38,39]. 

In addition, it is obliged to cite other important 

contributions (among many of them), such as 

Schröder, J (1899) [42], Kennedy, A (1881) [25], Clark, 

WM, and Virginia Downward (1930) [15.1], and 

Rankine, W (1887) [37]. 

2 The modification of the Classical Reuleaux Method 

for Rigid Bodies in 2D to the NRM for Pseudo-Rigid 

Bodies, was invented and designed mathematically by 

F Casesnoves during February 2007, at Biomechanics 

Lab of Mechanical Engineering Department 

(Nottingham University, UK). The origin of the idea 

came from an initial Spinal Biomechanics problem. 

That is, the changes in volume that occur in artificial 

implants during the spine movements (mainly pure 

flexion and extension). 

 

 
Fig 2.-Representation of the original historic 

geometrical definition of IRC in 3D by the Classical 

Reuleaux Method, as it was sketched in Kinematics of 

Machinery (McMillan & Co., London [38], English 
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version of previous German publications [38,39]). 

Reuleaux set the concept of Temporary Centre, which 

is equivalent to IRC, and defined the geometrical 

concept of Central Polygon by 1876. Note that the 

sketch corresponds to a wire PQ (a straight line in  

approximation, if we despise the caliber-related 

volume), in a 3D movement. In this approximation, it 

is only necessary to take two points of the wire, since 

a straight line is defined in the space by two points 

[46]. Usually, in 3D, we have to work with three 

points, because a solid-body position is defined in the 

space by at least three points [1.1]. 

1.1-Theoretical Introduction and Concepts 

Therefore, the classical Reuleaux method cannot be 

applied on to resolve the IRC problem when the body 

in movement is Pseudo-rigid, because of the shape of 

the PRB is changing arbitrarily [Fig 3]. The necessary 

and compulsory modification is to divide the pseudo-

rigid body into voxels, and compute independently 

their respective IRCs. The final step is to find with 

computational methods and proper software, that 

point whose sum of distances to all those IRCs is 

minimal if we use an Optimization Least-squares 

Method (LSM) [19,43, 27]. Other types of 

Optimization, by using Statistical concepts, or 

different techniques, such as Minimax (or 

Tchebycheff Norms Methods, [33]), are feasible to be 

carried out. All in all, the selected LSM can be proven 

with mathematical theorems, based on geometric 

calculations and fundamental Optimization Theory. 

Previous Contributions are based on science history. 

Reuleaux started to publish his both Theoretical and 

Geometrical investigations by 1876 [38,39]. However, 

there are more contemporary researchers to Reuleaux 

and during the 20th Century who also have carried 

out significant contributions to the same investigation 

area. We can recall the works of Schröder, J (1899) 

[42], Kennedy, A (1881) [25], Clark, WM, and 

Virginia Downward (1930) [15.1], and Rankine, W 

(1887) [37]. Most of them analysed the work of 

Reuleaux and also developed further advances related 

to his Theories. It is a matter of fairness to recognize 

also their contributions, among several others. We 

present a series of Fig 3 Complementary to catch up 

better the concepts. 

 

1.2.-Previous Contributions 

Reuleaux started to publish his both Theoretical and 

Geometrical investigations by 1876 [38,39]. However, 

there are more contemporary researchers to Reuleaux 

and during the 20th Century who also have carried 

out significant contributions to the same investigation 

area. We can recall the works of Schröder, J (1899) 

[42], Kennedy, A (1881) [25], Clark, WM, and 

Virginia Downward (1930) [15.1], and Rankine, W 

(1887) [37]. Most of them analysed the work of 

Reuleaux and also developed further advances related 

to his Theories. It is a matter of fairness to recognize 

also their contributions, among several others. We 

present a series of Fig 3 Complementary to catch up 

better the concepts. 

1.3.-Research Objectives 

The principal aim of this paper is to develop a truly 

theoretical model to determine the IRC of any 

pseudo-rigid body in movement. The numerical basis 

and demonstrations for this NRM model are based on 

a rigorous mathematical development, and 

subsequently on accurate random simulations. Both 

stages are compulsory to carry out a logic proof, 

although the first mathematical demonstration 

constitutes the initial necessary condition. The model 

optimization can be made by several objective 

functions, and two types of them are presented in this 

contribution. The weight factors selections constitute 

an important part of these objective functions [32, 33]. 

The second objective is to carry out a primary trial of 

Simulations for 1 and 2 voxels, both in 2D and 3D. 

Once the results obtained, we will compare the 

average error values differences between the frame 

corresponding to 1 voxel, and the 2 voxels one. It is 

very important to find and set a clear difference 

between the average errors [21,29,45], in favour of 

the higher number of voxels choice. 
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1.4.-Results Overview 

The synthesis of the results can be classified into two 

parts. The first one is related to the mathematical 

development of the model, and the second to the 

accuracy of the simulations data. The mathematical 

model and the nonlinear optimization carried out can 

be considered rigorously acceptable because the 

formal conditions to demonstrate the Convexity of 

the objective function, and the smoothness of the 

Nonlinear Optimization have been proven. These 

other properties are, namely, Gateaux 

Differentiability, Frechet Differentiability, and Strict 

Differentiability [5.2]. The different Differentiability 

properties that have been proven are complemented 

with clear explanations about why and how these 

concepts imply the smoothness of the Optimization 

both theoretical and computational calculations. 

 

The Existence and Uniqueneness of the solution if the 

movement is in 3D (for a pure 2D-movement the 

solution is a straight line, an axis of rotation) has been 

demonstrated. The final formula that gives the Global 

Minimum [5.2, 32] has been determined. The 

inequalities developed to find out the Superior Error 

Boundaries have also been mathematically checked. 

The results obtained through simulations agree 

initially to the model theory. The intuitive idea 

related to the numerical discretization concept (that 

is, the greater number of voxels, the lower error 

magnitudes), is corroborated by the numerical data 

obtained. 

 

The practical Simulations results show a clear error 

reduction when the number of voxels increases, both 

in 2D and 3D. In 2D, we find an Error reduction 

(≈6%) when the PRB is divided into 2 voxels [45,29]. 

The difference in 3D is higher, and there is a clear 

Error reduction (≈10%) when the number of voxels 

increases. However, we consider these simulations 

stage as a primary attempt, because longer and 

improved Simulations Trials and Statistics will be 

necessary to set a contundent proof of the theory. 

In particular, new software has been planned to fix a 

random initial position of the PRB in the 3D space, 

followed by a random rotation and volume changes. 

On the whole, the theory of the model has been 

implemented with promising results for future 

industrial applications [11]. 

II. Mathematical Model 

 

In this Subsection we present clearly the basic 

concepts and properties of the Mathematical Model. 

Two Objective Functions are defined with their 

corresponding weight factors. Finally, a simple 

Theorem that fixes the relationship and Geometrical 

convergence between the CRM and the NRM is 

demonstrated. 

 

2.1.-General Settings. Initial Assumptions 

Before to start with the demonstration of a number of 

Theorems, it is necessary to prove some initial 

premises, that constitute the base of the Numerical 

Reuleaux Method for a PRB. Then, we assert the 

following, 

 

When a rigid body performs an arbitrary movement, 

the CRM IRC corresponding to that path, is just the 

same than those multiple IRCs, which can be 

obtained by the Reuleaux Method, applied on each 

voxel that constitutes the complete rigid body. 

 

Proof.-It is simply geometrical and evident. Those 

two points that lie on the half of the segments, which 

join the initial and final movements of the rigid body, 

define the chord of a circle whose center is the IRC 

[Fig 2]. If we divide the rigid body into several voxels, 

and carry out the same geometrical calculations, all 

the corresponding IRCs are just the same and center- 

coincident [Fig 4]. Those circles have different radii, 

but the same center, that is, are concentric, because 

the Reuleaux- segments are parallel lines [Fig 4]. 

 

When a rectangular semi-rigid body performs an 

arbitrary movement, however, there are variation of 

density into its whole body, which cause an irregular 
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distribution of density in each voxel that constitute 

the total semi-rigid body. Therefore, when the NRM 

is applied on, it is not only necessary to consider the 

changes of shape, but also of density distribution. 

 

2.2.-Objective Function(s) Definition 

Once the concept has been set, we will show a simple 

idea of the First Objective Function and how it works 

physically and mathematically. The accuracy of this 

example has been reduced, and the main intention is 

to make a quick caption of the model settings. 

The graphical definition of the Mathematical Model 

for the Numerical Reuleaux Method is displayed in 

[Fig 1]. Complementary, it is shown a basic formula 

for the calculation of the Numerical Reuleaux Method 

for the IRC in [Equation 1]. In [Fig 5], we show in a 

explicit form, the calculation for the optimal IRC 

corresponding to the scheme of [Fig 1], that is, it is 

drawn those two IRCs points of the [Fig 1], and the 

chosen coordinates system. In this extremely simple 

scheme, the Numerical Reuleaux Model (a least-

squares model) reads 

 

 

 

[Equation 1] 

where m1/(m1+m2) and m2/(m1+m2) are the weight 

factors (in the masses of the rectangular pseudo-

rigid body after the movement) corresponding to 

the density variations distribution, and d is the 

distance between the two IRCs of each voxel. The 

coordinate X gives the distance from the IRC(1) to 

the IRC(2). The model presented is based on two 

main assumptions 

There are changes in the shape of a pseudo-rigid 

body in any arbitrary movement 

-There are variations in the density distribution of 

the pseudo-rigid body also when moving 

We will define two Objective Functions. The First 

one is the Mass-related Objective Function, and the 

Second one is the denominated the Volume-related 

Objective Function. According to these premises, 

we start defining also the following differential 

distribution of densities 

𝑚1 = ∫ 𝜌1(𝑉1
𝑟→)𝑑𝑣    

   [Eq 2] 

and   

𝒎𝟐 = ∫ 𝝆𝟐(𝑽𝟐
𝒓→)𝒅𝒗    

   [Eq 3]  

where ρi i=1,2 are the density distribution of each 

voxel, superior and inferior respectively. When the 

number of voxels increases to i voxels, the First 

Objective Function Mass-related, as a result, is formed 

by vectorial functions and has three dimensions 

[17,18,46,], namely 

 

 

 f (x) 

[Eq 4] 

or 

 

 

 

 

 

[Eq 5.1] 

where ρi  i=1,2,..n  and   ρj   j=1,2,….n   are the 

corresponding density functions for each voxel. This 

is the generalization  of the mathematical model for n 

voxels. The weight factors are expressed in a 

differential distribution of densities in [Eq 5.1]. 

Therefore, we have given the initial definitions for 

setting two Objective Functions. If the pseudo-rigid 

body is divided into voxels (3D), or pixels (2D), each 

one, i, of them will have a differential density 

distribution (ρi), whose volume-integration (3D) will 

give the complete mass of each voxel. The density 

distribution (dd) [Eqs 2,3] for the weight factors of 

the First Objective Function, is the difference 

between the final position voxel differential density 

function, and its corresponding initial voxel position 
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differential density function. That is, a difference-

differential density function (ddf). The differential 

density dd for the initial position is defined only for 

the initial volume voxel (rest of the space is null), and 

the same occurs for the final position dd. According 

to these definitions, we have set the Objective 

Functions. Both Objective Functions are set as a 

Least-Squares Algorithm, but with different weight 

factors. The First Objective Function [Eq 5.1] is a 

explicit vectorial function (three variables), which is 

equal to a summatory from i=1 to N (number of 

voxels, in 2D would be the number of pixels, with a 

surface-integration). Each member of the summatory 

is related to a voxel, i, of the pseudo-rigid body, and is 

equal to the product of a Coefficient (weight factor) 

by the square of the L2 Norm (Least-Squares Method), 

that expresses the difference between the optimal 

vector (to be determined by the optimization 

method), and the vector defined by the IRC position 

of that particular voxel (or pixel). The weight factor of 

the First Objective Function for each voxel i, is equal 

to the quotient between the volume-integral of the 

ddf for that voxel volume, and the summatory of all 

the volume- integrals, from i to N, for all the voxels of 

the pseudo-rigid body. The volume-integration limits 

are taken for the maximum volume value, which can 

correspond to the final position voxel (pseudo-rigid 

body expansion), or to the initial position voxel 

(pseudo-rigid body contraction). In this way, the 

smaller volume (either initial or final voxel) is into 

the bigger volume of integration, and the ddf has one 

of its parts null at the domain outside the smaller 

volume. 

The Second Objective Function (Volume-related) 

explicit Formula reads 

 

 

 

                

[Eq 5.2] 

 

were ∆Vj corresponds to any difference between the 

initial volume of the voxel, and the final volumen of 

the voxel. Values are taken in absolute magnitude. 

This Second Objective Function explicit Formula [Eq 

5.2], [1.2,2,3,7,14,32], is the same in its L2 Norm term 

[Eq 5.1], but the weight factor is purely related only 

to volume variation of the PRB. This factor is a 

quotient whose numerator is the absolute value of the 

volume increment between the initial volume of the 

voxel (initial position of the pseudo-rigid body), and 

the final volume of the voxel (final position, after the 

movement, of the pseudo-rigid body). The weight 

factor denominator, as seen, is formed by the 

summatory of all the absolute values of volume 

increments for all voxels of the pseudo-rigid body, 

from i=1 to N. 

2.3.-Convergence from the NRM to CRM 

Theorem 1.-If The Numerical Reuleaux IRC of a 

pseudo-rigid body is applied on, its IRC tends towards 

the Reuleaux IRC of a rigid body when some specific 

distances (hi) and angles (θi) tend to zero, namely 

𝒉𝒊 → 𝟎 

𝒂𝒏𝒅 

𝜽𝒊 → 𝟎 

where hi is the variation of height of the voxel from 

the rigid body size to the pseudo-rigid body size, and 

θi is the angle between the Reuleaux segments of the 

rigid and pseudo rigid-body voxel. 

Proof.-This proof is graphical, very simple and 

intuitive [9]. We see in [Fig 3] the basic scheme of 

this demonstration. It is sufficient to prove the 

Theorem for the superior voxel ABCD. If the body is 

rigid, the voxel goes to the position A’B’C’D’. 

However, if the body is pseudo-rigid, the voxel ABCD 

goes to B’C’D’. Let be AA’ the Reuleaux segment for 

the rigid body, which form an angle θ with the AD’ 

Reuleaux segment of the pseudo-rigid body. It is 

evident geometrically that h, the distance A’D’ has 

the following properties 

𝒉 → 𝟎   𝒂𝒏𝒅       𝜽 → 𝟎 
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When the deformation of the body tends to decrease. 

That is, the Reuleaux segment for the pseudo-rigid 

body AD’ tends to the Reuleaux segment AA’ of the 

rigid body, and therefore the Theorem is proven. 

In the following, the theoretical study of the 

Numerical Reuleaux model involves the analysis of 

the characteristics of the objective function. These are 

related to the convexity properties, the local and 

global minima existence, and the determination of the 

errors. There are two types of errors, the first related 

to the variation of density, and the second to the 

shape changes. All these theoretical results can be 

applied on the experimental results and simulations of 

the model, and also in the construction of the 

computational software for the final practical stages. 

The analysis of the convexity in an objective function, 

previously to carry out the complete optimization 

method, constitutes a crucial point that determines 

part of the final results. When we demonstrate that a 

function is convex, it follows straightforward that it is 

possible to find at least local minima in the 

optimization calculations. If we also demonstrate that 

it is possible to find a global minimum among those 

local minima, the final results can be considered 

acceptable. 

 

III. Objective Function(s) Mathematical Properties 

 

This Section deals with the mathematical 

demonstration of the most important properties of the 

Objective Function to carry out a rigorous and 

feasible Optimization Method. Among them, the most 

important is the Convexity of the model. When a 

Nonlinear Objective Function is Convex, we can 

assert that a Global Minimum can be obtained 

through suitable optimization. In addition, we prove 

other properties, such as the Gateaux 

Differentiability, Frechet Differentiability, and Strict 

Differentiability [5.2]. The mathematical significance 

of these properties in an objective function is related 

to get useful information about how the minimum of 

the objective function can be computationally 

reached. That is, the smoothness, the speed, and the 

geometrical availability of arbitrary directions 

towards to catch up the Global Minimum. The order 

in which they have been cited goes from more 

relaxed conditions (Gateaux Differentiability) towards 

tougher mathematical conditions (Strict 

Differentiability). 

 

−𝑘1(1 − 𝜆)
2𝑥2
2 − 𝑘2(1 − 𝜆)

2𝑥2
2+. . . 

. . . +(1 − 𝜆)𝑥2
2 =. . . 

. . . = 𝑥2
2 × (1 − 𝜆) × [1 − (1 − 𝜆)] =. . 

. . . = 𝑥2
2(1 − 𝜆)𝜆 

 

1) 1.-Model Convexity 

We show the following Proposition 1, to demonstrate 

the Covexity of the Model. The proof is rather long, 

but not difficult. 

 

Proposition 1.-The objective function of the 

Numerical Reuleaux model is a convex function, 

namely 

 

𝑓(𝜆 𝑥1
→ + (1 − 𝜆) 𝑥2

→ ) ≤ 𝜆𝑓(𝑥1
→ ) + (1 − 𝜆)𝑓(𝑥2

→ ) 

𝑓𝑜𝑟 

𝜆 ∈ (0,1) 

[Eq 6] 

Proof.-We will prove this with the most simple case 

of a one-dimensional function. The demonstration 

can also be extended on the 2D and 3D cases. We 

have, initially, to develop both parts [32] of the 

inequality 

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + 

+(1 − 𝜆)𝑓(𝑥2) 

[Eq 7] 

The left hand of this inequality in one dimension is 

 

 

𝑘1 =
𝑚1

𝑚1 +𝑚2
 

𝑎𝑛𝑑 
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𝑘2 =
𝑚2

𝑚1+𝑚2
     

     [Eq 9] 

Hence, the first part is equal to 

𝑘1 × (𝜆𝑥1 + (1 − 𝜆)𝑥2)
2 = 𝑘1𝜆

2𝑥1
2 + 

+𝑘1(1 − 𝜆)
2𝑥2
2 + 2𝜆(1 − 𝜆)𝑥1𝑥2𝑘1      [Eq 10] 

 

And the second part 

 

𝑘2 × (𝑑 − (𝜆𝑥1 + (1 − 𝜆)𝑥2))
2 = 

= 𝑘2 × 𝑑
2 + 𝜆2𝑘2𝑥1

2 + 

+𝑘2(1 − 𝜆)
2𝑥2
2 + 

+2𝜆(1 − 𝜆)𝑘2𝑥1𝑥2 − 

−2𝜆𝑘2𝑑𝑥1 − 2(1 − 𝜆)𝑑𝑘2𝑥2 

[Eq 11] 

Now, we are dealing the right hand of the unequality 

 

   𝜆𝑓(𝑥1)[𝑃𝑎𝑟𝑡1] + (1 − 𝜆)𝑓(𝑥2)[𝑃𝑎𝑟𝑡2]         [Eq 12] 

 

So we have the first part 

 

𝜆𝑓(𝑥1) = 𝜆[𝑘1𝑥1
2 + 𝑘2(𝑑 − 𝑥1)

2] = 𝜆𝑘1𝑥1
2 +

𝜆𝑘2𝑑
2 + 𝜆𝑘2𝑥1

2 − 2𝜆𝑘2𝑑𝑥1 [Eq 13] 

And the second part 

(1 − 𝜆)𝑓(𝑥2) = (1 − 𝜆)𝑘1𝑥2
2 + (1 − 𝜆)𝑘2𝑑

2 + (1 −

𝜆)𝑘2𝑥2
2 − 2(1 − 𝜆)𝑘2𝑥2𝑑          [Eq 14] 

Now, we are going to share those terms that are equal 

in both sides of the unequality, and carry out further 

calculations to demonstrate that the convexity 

unequality holds for all the selected space. There is a 

group of terms that cancel each other, and the others 

have to be conveniently combined. 

 

We have in the [Eq 11] the following term 

 

𝑘2𝑑
2                                      [Eq 15]   

 

And in [Eq 13] and [Eq 14]   

𝜆𝑘2𝑑
2 

𝑎𝑛𝑑 

(1 − 𝜆)𝑘2𝑑
2 

[Eq 16]   

These two last terms sum is equal to the term of [Eq 

15], so they cancel each other. Now, the following 

group of terms: 

 

In the [Eq 11]  

−2𝜆𝑘2𝑑𝑥1 − 2(1 − 𝜆)𝑑𝑘2𝑥2 

                                                                     [Eq 17] 

And in the [Eq 13] and [Eq 14]  

 

−2𝜆𝑘2𝑑𝑥1                                                                                              

[Eq 18] 

with  

−2(1 − 𝜆)𝑘2𝑥2𝑑                                                                                      

[Eq 19] 

So we see that the terms of [Eq 11] cancel the terms of 

[Eq 18] and [Eq 19] respectively. Now the group of 

terms that have to be shared together to demonstrate 

the unequality. We have in [Eq 10] the term 

𝑘1𝜆
2𝑥1
2 

 [Eq 20] 

And in the [Eq 11] just the same term 

 

𝑘2𝜆
2𝑥1
2 

𝑏𝑢𝑡 

𝑘1 + 𝑘2 = 1 

[Eq 21] 

So, we can pass these terms to the right side of the 

unequality, with the terms of the [Eq 13] 

𝜆𝑘1𝑥1
2 + 𝜆𝑘2𝑥1

2 = 𝜆𝑥1
2                    [Eq 22] 

Then, we have in total in the right hand term 

𝑥1
2𝜆(1 − 𝜆)                             [Eq 23] 

 

Now, with respect to the [Eq 10], we have in the left 

hand member   
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Proposition 2.-The Numerical Reuleaux Method function is Gateaux differentiable [5.2] for any 

local minimizer x , that is, if any local minimizer x exists, then, the directional derivative 

[Eq 33] 

 

 

is linear in    

 

in other words    𝑓′ (�⃑�, 𝑑) = ⟨�⃑�, 𝑑⟩ 

for some element,                    

 

and    𝛻 𝑓(�⃗�) = �⃗� 

Proof.-We will prove firstly the existence of the directional derivative for a local minimizer 𝑥→and 

secondly, the linearity

of the directional derivative in d. Finally, we 

will show that        

𝛻𝑓(𝑥→) = 𝑎→.  

For the simple model of the [Fig 2], but choosing two Cartesian coordinates, X and Y, we obtain 

𝑥→1 = (𝑥1, 𝑦1)
𝑡 

𝑥→2 = (𝑥2, 𝑦2)
𝑡 

𝑡ℎ𝑒𝑛 

𝑓(𝑥→) = 𝑘1[(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2] + 𝑘2[(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2] 

𝑎𝑛𝑑 

𝛻𝑓(𝑥→) = [2𝑘1(𝑥 − 𝑥1) + 2𝑘2(𝑥 − 𝑥2),2𝑘1(𝑦 − 𝑦1) + 2𝑘2(𝑦 − 𝑦2)]
𝑡 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝑓(𝑥→ + 𝑡 𝑑
→
) = 𝑓(𝑥 + 𝑡𝑑𝑥 , 𝑦 + 𝑡𝑑𝑦) 

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒: 

𝑓 ′(𝑥→ , 𝑑
→
)

= 𝑙𝑖𝑚𝑡→0
𝑘1[(𝑥 + 𝑡𝑑𝑥 − 𝑥1)

2 + (𝑦 + 𝑡𝑑𝑦 − 𝑦1)
2] + 𝑘2[(𝑥 + 𝑡𝑑𝑥 − 𝑥2)

2 + (𝑦 + 𝑡𝑑𝑦 − 𝑦2)
2]

𝑡
− 

−
𝑘1[(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2] + 𝑘2[(𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2]

𝑡
 

[Eq 34] 

 

The calculation of this derivative has to be carried out by L’Hopital rule, and we obtain finally 

𝑓 ′(𝑥→ , 𝑑
→
) = 𝑘12𝑑𝑥(𝑥 − 𝑥1) + 𝑘12𝑑𝑦(𝑦 − 𝑦1) + 𝑘22𝑑𝑥(𝑥 − 𝑥2) + 𝑘22𝑑𝑦(𝑦 − 𝑦2) = 

= [2𝑘1(𝑥 − 𝑥1) + 2𝑘2(𝑥 − 𝑥2),2𝑘1((𝑦 − 𝑦1) + 2𝑘2(𝑦 − 𝑦2)] × [𝑑𝑥 , 𝑑𝑦]
𝑡
= ⟨𝑎→ , 𝑑

→
⟩  [Eq 35]

Therefore, the directional derivative exists, and is linear in d , as it is shown in [Eq 35]. Besides, 

according to the statement of the [Eq 34], we have 

𝑎→ = 𝛻𝑓(𝑥→) = [2𝑘1(𝑥 − 𝑥1) + 2𝑘2(𝑥 − 𝑥2),2𝑘1(𝑦 − 𝑦1) + 2𝑘2(𝑦 − 𝑦2)]
𝑡 

𝑎𝑛𝑑 

𝑑
→
= (𝑑𝑥 , 𝑑𝑦)

𝑡                                              [Eq 36]

f (x td ) f (x) 

t 
t    0 

f 
' 
(x, d ) lim 

d   E 

a E 
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In consequence, the Proposition 2 is proven. What has been show, until now, is that the Numerical 

Reuleaux Method is a convex function, Gateaux differentiable, and has local minima. In the 

following, it will be shown that the objective function of the model is a differentiable function, has 

local minima, and a global minimum. There are different methods to demonstrate these points, and 

the most simple and easiest to understand have been chosen. 

3.3-Frechet Differentiability 

 

This mathematical property is stricter than Gateaux Differentiability [5.2]. The concept of this 

condition is that, when we are approaching the Minimum (or Global Minimum, it depends of the 

particular problem) of the Objective Function, we can choose any arbitrary direction. Therefore, 

accomplished this condition, the feasibility to catch up the Minimum is higher than the Gateaux 

Differentiability process. We set the following Proposition 3, 

 

Proposition 3.-The NRM Objective Function (f) is Frechet Differentiable, namely, 

 

Given the function f (NRM Objective Function), differentiable  and continuous, with 

 

Ø =  𝛻𝑓(𝑥→)        [Eq 37] 

 

the limit, such as, 

 

  [Eq 38] 

tends to zero for any    ,  , nearby the Global Minimum. 

Proof 

 

f is differentiable and continuous as we proved in Proposition 2, now, we will approach   towards   

through straight lines, such as 

if  

and 

 

suppose that when we are approaching with straight lines, we can find some real numbers h, k, such 

as, 

 

that is, 
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and we make with this approximation a Taylor series in 2D, 

[Eq 39] 

 

now we pass on the left side the first two terms of the right side, 

[Eq 40] 

 

the left part is just the numerator of the limit-fraction of the Proposition 3, that is, we can see the 

last term of the numerator identity better as follows, 

 

  [Eq 41] 

 

now we show that the first term on the right part tends to 0 when h and k tend both to 0, and it 

follows straightforward that the rest of the Taylor terms with higher powers tend also to zero 

quickly, 

so we have, 

 

 
 

   (we omit the rest of the summatory +…. for the sake of simplicity) 

= 

 

we are interested on the real factors h and k, 

 

to simplify, we work in polar coordinates, such as, 

 

 

hence, for any value of θ, 
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     0 

[Eq 42] 

 

for any value of  

It follows the same for all the Taylor terms of the numerator, as we wanted to demonstrate. 

Therefore, Proposition 3 is proven (more types of demonstrations are also possible). 

 

Note the computational/numerical significance of what we have proven, which is the paper aim in 

Applied Mathematics. Many optimization algorithms work with derivatives (there are exceptions, 

the so-called derivative-free Optimization, for instance). If most of the derivatives of the Nonlinear 

Objective Function are tending to null when approaching to the Global Minimum, it implies that 

the computational effort will be easy and quick. Therefore, we have demonstrated the smoothness of 

the optimization process for the Objective Function of the NRM. 

3.4.-Strict Differentiability 

This mathematical property is tougher than Frechet Differentiability [5.2]. The concept of this 

condition is that, when we are approaching the Minimum (or Global Minimum, it depends of the 

particular problem) of the Objective Function, we can choose any two arbitrary directions. 

Therefore, the feasibility to catch up the Minimum is higher than the Frechet Differentiability 

process. We set the following Proposition 4, 

 

Proposition 4.-The NRM Objective Function (f) is Strict Differentiable [5.2], namely Given the 

function f (NRM Objective Function) differentiable and continuous, with 

 

 

the limit, such as, 

  [Eq 43] 

tends to zero for any    ,   ,  , nearby the Global Minimum. 
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Proof 

 

f is Differentiable and Continuous as we proved in Proposition 2, and the Proof is just the same than 

the Proposition 3, but we have in this case two vectors approaching to  

 

and hence, 

 

 

and the denominator of [Eq 43] towards the limit would be 

 

The reader can carry out the rest of the proof development without any difficulty based in these 

approximations  

 

Note just the same as in Proposition 3, the computational/numerical significance of what we have 

proven, which is the paper aim in Applied Mathematics. It is happening the same than in Frechet 

Differentiability, but now we approach to the Global Minimum along two any arbitrary directions. 

This mathematical condition adds more trust upon the Objective Function of the NRM. 

 

IV. Mathematical Optimization 

 

In this Section the Existence of a Global Minimum is proven, and we determine the basic analytic 

formulas (2D and 3D) for the Global Minimum. 

4.1.-Existence of Global Minimum 

Now we will try to find the analytic Formula for the Global Minimum, both in 2D and 3D. 

Proposition 5.-The Numerical Reuleaux Method objective function has a unique global minimum  

 

�⃗� 𝑤𝑖𝑡ℎ 𝛻 𝑓(�⃗�) = 0.   

 

Proof.-It was shown in Proposition 2 the existence of the local minima in the objective function of 

the model,  which is Gateaux differentiable. We will demonstrate that the objective function critical 

point  

 �⃗� 𝑤𝑖𝑡ℎ 𝛻 𝑓(�⃗�) = 0., such as minimum, and therefore a Global Minimum. 
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The proof is developed in 2D, and can be easily extended for n-dimensions. We start with the first 

objective function 

 

𝑥→1 = (𝑥1, 𝑦1)
𝑡  

𝑥→2 = (𝑥2, 𝑦2)
𝑡 

𝑡ℎ𝑒𝑛 

𝑓(𝑥→) = 𝑘1[(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2] + 𝑘2[(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2] 

𝑎𝑛𝑑 

𝛻𝑓(𝑥→) = [2𝑘1(𝑥 − 𝑥1) + 2𝑘2(𝑥 − 𝑥2),2𝑘1(𝑦 − 𝑦1) + 2𝑘2(𝑦 − 𝑦2)]
𝑡 = 0 

𝐻𝑒𝑛𝑐𝑒 

𝜕𝑓(𝑥→)

𝜕𝑥
= 2𝑘1(𝑥 − 𝑥1) + 2𝑘2(𝑥 − 𝑥2) = 0 

𝜕𝑓(𝑥→)

𝜕𝑦
= 2𝑘1(𝑦 − 𝑦1) + 2𝑘2(𝑦 − 𝑦2) = 0 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝑥 = 𝑘1𝑥1 + 𝑘2𝑥2 

𝑎𝑛𝑑 

𝑦 = 𝑘1𝑦1 + 𝑘2𝑦2               [Eq 44] 

 

Therefore, the critical point solutions are unique, now we will carry out the second derivatives to 

show that the Hessian is at least a semi-definite positive matrix, and therefore the critical point is a 

minimum and unique, that is, a global minimum 

 

𝜕2𝑓(𝑥→)

𝜕𝑥2
= 2(𝑘1 + 𝑘2) = 2

 > 0 

and [Eq 45] 

𝜕2𝑓(𝑥→)

𝜕𝑦2
= 2(𝑘1 + 𝑘2) = 2     > 0 

 

Now the second partial derivatives in X and Y 

𝜕2𝑓(𝑥→)

𝜕𝑥𝜕𝑦
= 0 

𝑎𝑛𝑑 

𝜕2𝑓(𝑥→)

𝜕𝑦𝜕𝑥
= 0 

𝐻𝑒𝑠𝑠𝑖𝑎𝑛 

𝐷𝑒𝑡[𝐻𝑒𝑠𝑠𝑖𝑎𝑛] = 𝐷𝑒𝑡

(

 
 

𝜕2𝑓(𝑥→)

𝜕𝑥2
𝜕2𝑓(𝑥→)

𝜕𝑥𝜕𝑦

𝜕2𝑓(𝑥→)

𝜕𝑦𝜕𝑥

𝜕2𝑓(𝑥→)

𝜕𝑦2 )

 
 
= 4 ≥ 0 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝑖𝑓 

𝑋
→
= (𝑥, 𝑦, 𝑧)𝑡 ∈ 𝐸 

𝑡ℎ𝑒𝑛 
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2𝐷 

(𝑥, 𝑦) ×

(

 
 

𝜕2𝑓(𝑥→)

𝜕𝑥2
𝜕2𝑓(𝑥→)

𝜕𝑥𝜕𝑦

𝜕2𝑓(𝑥→)

𝜕𝑦𝜕𝑥

𝜕2𝑓(𝑥→)

𝜕𝑦2 )

 
 
× (
𝑥
𝑦) = (𝑥, 𝑦) × (

2 0
0 2

) × (
𝑥
𝑦) = (2𝑥, 2𝑦) × (

𝑥
𝑦) = 2𝑥

2 + 2𝑦2 ≥ 0 

 

for all 𝑥→ ∈ 𝐸.  

2) [Eqs 46] 

 

In consequence, the proposition is demonstrated. On the whole, we have obtained important 

practical results about the objective function of the Reuleaux Numerical Model. We have proven 

that it is Gateaux and Frechet Differentiable, Strict Differentiable, and has a global minimum. This 

implies that the optimization process to find the Numerical IRC, as said above, will be smooth and 

mathematically trustful. 

 

3) 4.2.-Global Minimum General Formula, 2D and 3D 

 

Corollary 1.-The general solution for the optimal IRC in the Numerical Reuleaux method for n 

voxels reads, 

 

 

 

 

𝑤ℎ𝑒𝑟𝑒 

𝑥→𝑖 = (𝑥𝑖, 0,0)
𝑡 

𝑦→𝑖 = (0, 𝑦𝑖 , 0)
𝑡 

𝑧→𝑖 = (0,0, 𝑧𝑖)
𝑡 

[Eq 47] 

and these are the coordinates for each particular IRC of each voxel i. 

Proof.-We obtained in Proposition 7 the solution for the global minimizer for n=2 (two voxels) 

 

𝑥→1 = (𝑥1, 𝑦1)
𝑡 

𝑥→2 = (𝑥2, 𝑦2)
𝑡 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝑥𝑛=2 = 𝑘1𝑥1 + 𝑘2𝑥2 =∑𝑘𝑖𝑥𝑖 =∑
𝑚𝑖𝑥𝑖
∑ 𝑚𝑗
2
𝑗=1

2

𝑖=1

2

𝑖=1

 

𝑎𝑛𝑑 

𝑦𝑛=2 = 𝑘1𝑦1 + 𝑘2𝑦2 =∑
𝑚𝑖𝑦𝑖
∑ 𝑚𝑗
2
𝑗=1

2

𝑖=1

 

𝑠𝑖𝑛 𝑐 𝑒 

Tn

i

n

i

n

i
n

j

j

ii

n

j

j

ii

n

j

j

ii
noptimal

m

zm

m

ym

m

xm
X   

= = =

===

=
1 1 1

111

, ),,(
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𝑘1 =
𝑚1

𝑚1 +𝑚2
 

𝑘2 =
𝑚2

𝑚1 +𝑚2
 

ℎ𝑒𝑛𝑐𝑒 

𝑋
→
𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑛=2 = (∑

𝑚𝑖𝑥𝑖
∑ 𝑚𝑗
2
𝑗=1

,∑
𝑚𝑖𝑦𝑖
∑ 𝑚𝑗
2
𝑗=1

)

2

𝑖=1

2

𝑖=1

𝑇

 

 

[Eq 48] 

 

In the same way, by using the minimization method of Proposition 7 in 3D, we could obtain for 3 

voxels 

𝑋
→
𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑛=3 = (∑

𝑚𝑖𝑥𝑖

∑ 𝑚𝑗
3
𝑗=1

, ∑
𝑚𝑖𝑦𝑖

∑ 𝑚𝑗
3
𝑗=1

, ∑
𝑚𝑖𝑧𝑖

∑ 𝑚𝑗
3
𝑗=1

3
𝑖=1 )3

𝑖=1
3
𝑖=1

𝑇
  

[Eq 49]  

 

Now we can write the general formula for n voxels in 3D, namely 

𝑋
→
𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑛 = (∑

𝑚𝑖𝑥𝑖

∑ 𝑚𝑗
𝑛
𝑗=1

, ∑
𝑚𝑖𝑦𝑖

∑ 𝑚𝑗
𝑛
𝑗=1

, ∑
𝑚𝑖𝑧𝑖

∑ 𝑚𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )𝑇𝑛

𝑖=1
𝑛
𝑖=1   

[Eq 50] 

 

All in all, these obtained formulas [Eq 40] to [Eq 43] are similar to the Classic Mechanics Theory of 

the Mass Center determination. We could observe some kind of parallelism between the Mass 

Center Equations and the Numerical Reuleaux Method optimal solutions. We note that this analytic 

solution for the optimization problem is very easy to compute, and therefore the saved 

computational time is significant. It is not necessary to carry out any optimization program for the 

general objective function, since it suffices to calculate directly the analytic solution. However, this 

analytic solution is based on constant density distributions for each voxel. On the other hand, it is 

more convenient reformulate [Eq 43] in a matrix equation, such as, 

 

 

 

 

 

 

 

 

 

[Eq 51] 

 

where  K  is the matrix that contains the weight factors for each voxel. 
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V. Errors Boundaries and Error Reduction Techniques 

 

In this Section the most important Error and its corresponding boundaries are defined and 

calculated. The Voxel-Volume error is related to volume variations of each voxel during the PRB 

movement. We develop all these mathematical properties through Theorems 2,3, and Corollary 2. 

5.1.-Voxel-Volume Error 

 

Theorem 2.-If the Numerical Reuleaux Method is applied on the dynamics of a rectangular pseudo-

rigid body, the mathematical weight error of this least squares model [Eq 5.1], decreases 

proportionally to the reduction of the voxels dimensions. 

 

Proof.-The demonstration is based on the fact that the weight factors of the objective function in the 

least squares model, 

[Eq 5.1], decrease when the voxel dimensions become smaller.  

We had the objective function 

𝑓(𝑥→) = ∑
∫ 𝜌𝑖(𝑥𝑖

→ )𝑑𝑣
𝑉𝑖

∑ ∫ 𝜌𝑗(𝑥𝑗
→ 

𝑉𝑗
)𝑑𝑣𝑗

𝑛
𝑗=1

× ‖𝑥→− 𝑥𝑖
→ ‖

2𝑛
𝑖=1      [Eq 52]

For the sake of simplicity, we take the integral weight factors in only two dimensions, and the third 

dimension is constant, k. Therefore, we have the following masses 

𝑚𝑖 = ∫ 𝑘𝜌𝑖(𝑥, 𝑦)𝑑𝑣𝑖𝑉𝑖
= ∫ 𝑘𝜌𝑖𝑉𝑖

(𝑥, 𝑦)𝑑𝑥𝑖𝑑𝑦𝑖     [Eq 53]

written in a simpler form, for a voxel of dimensions (a,b,k) 

𝑚 = ∫ ∫ 𝑘𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑚(𝑥, 𝑦)
𝑏

0

𝑎

0
                       [Eq 54] 

This is an integral function of two variables, whose expression is an integral equation. Therefore, to 

carry out the calculation of the errors, it is necessary to derivate under the integral sign, as follows 

𝝏𝒎

𝝏𝒙
= ∫ ∫ 𝒌

𝝏(𝒙,𝒚)

𝝏𝒙
𝒅𝒚𝒅𝒙 + ∫ 𝒌𝝆(𝒂, 𝒚)𝒅𝒚 − ∫ 𝒌𝝆(𝟎, 𝒚)𝒅𝒚

𝒃

𝟎

𝒃

𝟎

𝒃

𝟎

𝒂

𝟎
     [Eq 55] 

 

 
𝜕𝑚

𝜕𝑦
= ∫ ∫ 𝑘

𝜕(𝑥,𝑦)

𝜕𝑦
𝑑𝑦𝑑𝑥 + ∫ 𝑘𝜌(𝑥, 𝑏)𝑑𝑥 − ∫ 𝑘𝜌(𝑥, 0)𝑑𝑥

𝑎

0

𝑎

0

𝑏

0

𝑎

0
   [Eq 56] 

 

Therefore, the total error of the mass is, 

 

            

       

       

 [Eq 57] 

where εx and εy are constants that depend of the measurement precision of the system (relative 

errors), whose values are the same independently of the size of the voxel. 

2
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Now we will prove that when a,b → 0 , both factors                 

          [Eq 58] 

 

We need now to develop the integral of the [Eq 55] in numerical series by Gauss method, because it 

is only sufficient to demonstrate the Theorem for this term of [Eq 57]. Therefore, it is only necessary 

to demonstrate this for       .              The   first term of,             according to [Eq 55] is 

 

 

 





 

a b

dydx
x

yx
k

0 0

),(
∑ ∑ 𝑘 × [

𝜕(𝑥,𝑦)

𝜕𝑥
]

𝑦𝑖=𝑏
𝑦𝑖=0

𝑥𝑖=𝑎
𝑥𝑖=0 𝑥𝑖,𝑦𝑖

𝛥𝑦𝛥𝑥 →𝑎,𝑏→0 0             [Eq 59] 

 

where we have divided the intervals [0,a] and [0,b] of the voxel into small subvoxels whose 

individual sizes are kΔxΔy. For example, we divide the intervals into m divisions such as 

𝛥𝑥 =
𝑎

𝑚
 

                                                                        𝛥𝑦 =
𝑏

𝑚
                                        [Eq 60] 

Therefore, the second term would be 

∫ 𝑘𝜌(𝑎, 𝑦)𝑑𝑦 ≅ ∑ 𝑘 × [𝜌(𝑎, 𝑦)]𝑦𝑖𝛥𝑦 →𝑏→0 0
𝑦𝑖=𝑏
𝑦𝑖=0

𝑏

0
     [Eq 61] 

And the third term approximation is 

−∫ 𝑘𝜌(0, 𝑦)𝑑𝑦 ≅ −∑ 𝑘 × [𝜌(0, 𝑦)]𝑦𝑖𝛥𝑦 →𝑏→0 0
𝑦𝑖=𝑏
𝑦𝑖=0

𝑏

0
    [Eq 62]

Therefore, these terms tend to zero when the dimensions of the voxels decrease, in particular the 

first term of the equation 

[Eq 58]. In consequence, the Theorem is proven. 

5.2.-Voxel-Volume Error Boundaries 

 

This error type is more related to the Second Objective Function. We set the bounds for this error 

through Theorem 3. 

 

Theorem 3.-If the Numerical Reuleaux Method is applied on, the error due to the voxels size shows 

lower superior bounds, when the voxels size decreases. In other words, the smaller voxels, the 

smaller volume-variation errors. 
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Proof.-This theorem is understood intuitively, because the smaller voxels size, the nearer is the 

natural approximation to a particules system. However, it is necessary to prove it mathematically 

and carry out useful superior bounds and quantifications of the error values. 

This demonstration has two parts. The first deals with the proofs related to the numerical 

determination of the superior bounds of the error corresponding to any voxel size. The second 

shows that these bounds decrease when the the voxel size decreases its volume. Therefore, according 

to [Fig 6], we have a coordinates system in 2D, X, Y, that gives the vector 

position of the IRC when the body is 

rigid, that is, 

 

 
Xexact  

or 
aX


 

 

 
X e , and the IRC position for the pseudo-rigid for 

the pseudo-rigid  body, that is, 

                                                                                                                                             
X  approximated , or Xa . The angle θ, [Fig 6], is the same for the perpendicular Reuleaux segments, 

just because those  

segments are perpendicular to the Reuleaux segments that define this angle θ. The Reuleaux 

segments, as in previous demonstrations, are AA’, and the distance AA’’, so we see that when 

 

𝜽 → 𝟎 

𝒕𝒉𝒆𝒏 

𝑨′′ → 𝑨′ 
𝒊𝒇 

𝒉 = 𝑨′𝑨′′ 
𝒕𝒉𝒆𝒏 

𝒉 → 𝟎     

[Eq 63] 

We also define, in [Fig 6 ] 

𝑑
→
= 𝑥→𝑎 − 𝑥

→
𝑒                                                 

[Eq 64] 

If we take the weight factor, in the objective function part of [Eq 4], as a constant k, for the sake 

of simplicity 

 

𝑓(𝑥→) = 𝑘 × ‖𝑥→− 𝑥→𝑒‖
2
= 𝑘 × ‖𝑥→𝑒 − 𝑥

→‖
2
= 𝑘 × ‖(𝑥→ − 𝑥→𝑎) + (𝑥

→
𝑎 − 𝑥

→
𝑒)‖

2
≤ 

𝑘 × ‖𝑥→− 𝑥→𝑎‖
2
+ 𝑘 × ‖𝑥→𝑒 − 𝑥

→
𝑎‖
2
+ 2𝑘 × ‖𝑥→− 𝑥→𝑎‖ × ‖𝑥

→
𝑒 − 𝑥

→
𝑎‖ = 

= 𝑘 × ‖𝑥→𝑒 − 𝑥
→
𝑎‖
2
+ 𝑘 × ‖𝑥→− 𝑥→𝑎‖ × [‖𝑥

→− 𝑥→𝑎‖ + 2 × ‖𝑥
→
𝑒 − 𝑥

→
𝑎‖] 

 

[Eq 65]
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In conclusion, from the [Eq 64] development, we have 

 

𝑓(𝑥→) ≤ 𝑘 × ‖𝑥→𝑒 − 𝑥
→
𝑎‖
2
+ 𝑘 × ‖𝑥→− 𝑥→𝑎‖ × [‖𝑥

→− 𝑥→𝑎‖ + 2 × ‖𝑥
→
𝑒 − 𝑥

→
𝑎‖]   [Eq 66]

 

 
Now, we are interested in the variation of the objective function f (x) with respect to the distance 

that defines the difference between the IRC approximated 
�⃗�𝑎, and the IRC exact,  �⃗�𝑒 . Then we call 

 

𝜀 = ‖𝑋
→
𝑒 − 𝑋

→
𝑎‖ 

𝑠𝑜 

𝜕𝑓(𝑥→)

𝜕𝜀
≤ 2𝑘𝜀 + 2𝑘 × ‖𝑥→− 𝑥→𝑎‖

[Eq 67] 

Therefore, since we are working in 2D, the volume error respect to ε will be 

𝜀𝑉 = √(
𝜕𝑓(𝑥→)

𝜕𝜀
)

2

(𝜀𝑦
2 + 𝜀𝑥

2) 

 

[Eq 68] 

Because it is necessary to sum the relative errors of X and Y, since the distance ε depends on those 

two variables. Then, we have 

𝜀𝑉 = √(
𝜕𝑓(𝑥→)

𝜕𝜀
)

2

(𝜀𝑦
2 + 𝜀𝑥

2) ≤ 2𝑘 × (𝜀 + ‖𝑥→ − 𝑥→𝑎‖) × (𝜀𝑥
2 + 𝜀𝑦

2)1/2 ≤ 

≤ 2𝑘 × (𝜀 + ‖𝑥→− 𝑥→𝑎‖) × (𝜀𝑥
2 + 𝜀𝑦

2 + 2𝜀𝑥𝜀𝑦)
1/2 = 2𝑘 × (𝜀 + ‖𝑥→− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) 

𝑡ℎ𝑒𝑛 

 

 

                

 

 [Eq 69] 

Here, [Eq 69], it is seen that the bounds of the volume error depend on two factors, apart of the 

weight ones and the relative errors constants for each dimension, Ɛx and Ɛy. The first is the difference 

between the exact IRC and the approximated IRC, ε, which is linear. The second depends of the 

difference between the approximated IRC (the corresponding to the completely rigid body) and the 

coordinates of the optimal IRC for the whole group of voxels. This value will be shown that depends 

on the number of voxels. That is, when the number of voxels increases, the distance between the 

cloud of distribution of IRCs points for the voxels, and the approximated IRC decreases. As a result, 

the distance between the optimal IRC and the approximated IRC decreases. 

)()(2 yxaV xxk  +−+
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Now we  will show the second part  of  the  Theorem 3, that  is, when the voxels  size decreases, the 

bounds  of  εV  become 

smaller. Suppose that the superior voxel of the [Fig 6] is divided into two smaller voxels, according 

to [Fig 7]. We set a 2D 

Cartesian coordinates system, X, Y, and find the position vectors for each IRC exact,    

 
X e1 

 

and �⃗�𝑒2  

(e1 for the upper voxel, and e2 for the lower voxel). Let’s call now 

 
X e 3    the IRC corresponding to the sum of voxels 1 and voxel 2 in [Fig 7] 

(in [Fig 6] is

  
X e ), and X a  the position vector for the IRC also for the sum of voxel 1 and voxel 2 (in [Fig 6], is 

�⃗�𝑎 , it is 

just the same). As it is seen and guessed in [Fig 7], there is a number of inequal distances such as 

 

𝜀1 = ‖𝑋
→
𝑒1 − 𝑋

→
𝑎‖ ≤ 𝜀3 = ‖𝑋

→
𝑒3 − 𝑋

→
𝑎‖ 

𝑎𝑛𝑑 

𝜀2 = ‖𝑋
→
𝑒2 − 𝑋

→
𝑎‖ ≤ 𝜀3 = ‖𝑋

→
𝑒3 − 𝑋

→
𝑎‖ 

𝑤𝑖𝑡ℎ 

𝑚 = 𝑚1 +𝑚2 

[Eq 70] 

where m is the resultant weight factor (mass) of the sum of voxel 1 and voxel 2 weight factors 

(masses). Then we will show that in the objective function corresponding to two voxels, the bounds 

are lower than the objective function for one voxel. For economy of writing, the weight factors are 

m, m1, and m2, so we have 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ 2𝑚1 × (𝜀1 + ‖𝑥
→− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀2 + ‖𝑥

→− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) 

 

[Eq 71] 

Now, we suppose that we have found an optimal IRC point, such as 

𝑋
→
𝑓𝑜𝑟−𝑣𝑜𝑥𝑒𝑙1−𝑎𝑛𝑑−𝑣𝑜𝑥𝑒𝑙2

∗
= 𝑋
→
2

∗
 

So we get 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ 2𝑚1 × (𝜀1 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀2 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) 

 

[Eq 72] 
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And we start to carry on the development of the inequalities 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ 2𝑚1 × (𝜀1 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀2 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)

≤ 

≤ 2𝑚1 × (𝜀3 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀3 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) 

[Eq 73] 

 

Then we continue with the development of the inequality of [Eq 73] 

 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ 2𝑚1 × (𝜀3 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀3 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)

≤ 

≤ 2𝑚1 × (𝜀3 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) + 2𝑚2 × (𝜀3 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦) ≤ 

≤ [(𝜀3 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)] × (2𝑚1 + 2𝑚2) = [(𝜀3 + ‖𝑥

→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)] × 2𝑚 

[Eq 74] 

According to [Eq 70]. Now, we consider that the optimal point (for the two voxels that result from the 

division of the voxel of [Fig 7]), 

 

�⃗�∗∗
2 , is obviously nearer from voxel 1 and voxel 2 ICRs respectively, than the optimal IRC for the sum 

of these 

two voxels, which in this case coincides with the coordinates of the 2). Then 

 

 
X e3 (because there is only one voxel = voxel 1 + voxel 

𝑋
→
𝑒3 = 𝑋

→
𝑓𝑜𝑟−𝑜𝑛𝑒−𝑣𝑜𝑥𝑒𝑙

∗
= 𝑋
→
1

Therefore, we have 

‖𝑋
→
2

∗
− 𝑋
→
𝑎‖ ≤ ‖𝑋

→
1

∗
− 𝑋
→
𝑎‖ 

[Eq 75] 

We apply this inequality on [Eq 74] in this way 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ [(𝜀3 + ‖𝑥
→
2

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)] × 2𝑚 ≤ [(𝜀3 + ‖𝑥

→
1

∗
− 𝑥→𝑎‖) × (𝜀𝑥 + 𝜀𝑦)] × 2𝑚

= 

= 𝜀𝑉−𝑓𝑜𝑟−𝑜𝑛𝑒−𝑣𝑜𝑥𝑒𝑙 

𝑛𝑎𝑚𝑒𝑙𝑦 

𝜀𝑉−𝑓𝑜𝑟−𝑡𝑤𝑜−𝑣𝑜𝑥𝑒𝑙𝑠 ≤ 𝜀𝑉−𝑓𝑜𝑟−𝑜𝑛𝑒−𝑣𝑜𝑥𝑒𝑙

[Eq 76] 

 

In consequence, the second part of the Theorem 3 is proven, and the complete Theorem 3 

demonstrated. We have now the certainty that the smaller voxels size, the smaller magnitude of 

errors, and also it has been calculated some approximated upper bounds for the errors. 
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Till now, we have developed the formula of volume errors for a small number of voxels. Now, it 

corresponds to a corollary to show the general formula for N voxels. It is an interesting fact, as it has 

been proven, that the longer number of voxels, the smaller distance between the Optimal IRC and 

the Approximated IRC, which is another factor that determines the upper bound of the volume 

error value. 

 

All in all, what has been proven is the optimization convexity of the model, its smoothness, and 

uniqueness of solution. Additionally, the mathematical function of the model is continuous and 

Gateaux, Frechet, and Strict differentiable. Therefore, the IRC Numerical Reuleaux Method 

constitutes an acceptable theoretical frame to carry out an approximation for the determination of a 

pseudo-rigid body IRC. 

 

The simulations and experimental work constitute also an essential part for this model, and although 

there would be more theoretical points and properties to be developed and demonstrated in future, 

it has been checked enough all this theory to pass on the practical matters directly. 

 

5.3.-General Voxel-Volume Error Boundaries 

Now we get the General Formula for the Voxel-Volume error Boundaries through the Corollary 2. 

 

Corollary 2.-The boundaries for the volume error in the Numerical Reuleaux Method for IRC 

determination in 2D read 

 

 

 

or 

𝜀𝑉−𝑡𝑜𝑡𝑎𝑙 =∑
𝑚𝑖

∑ 𝑚𝑗
𝑁
𝑗=1

× (𝜀𝑖 + ‖𝑥
→− 𝑥→𝑎‖

𝑁

𝑖=1

) × (𝜀𝑥 + 𝜀𝑦) 

where 

𝜀𝑖 = ‖𝑋
→
𝑒𝑖 − 𝑋

→
𝑎‖  for each voxel 

[Eq 78] 

                                                                                  

 

Proof.-It is only necessary to see that the exact 

IRC vector, 

X ei is different for each voxel, and this reason 

determined the 

different values in every 𝜀𝑦𝑖 . Therefore, the total error boundary will be a sum, and the mass weight 

factors are expressed in the same sum form. We can also show the weight factors in an integral form, 

by using the notation of [Eq 5.1]. 
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VI. Computational Simulations 

 

For the sake of simplicity, we divide the simulations trials into two groups, namely, 2D and 3D. The 

first one is substantially less complicated than the second for a number of reasons. When the NRM is 

applied on, the mathematical development into the computing program involves the finding of the 

solution of a linear equations system through the inversion of a matrix, which is 2x2 in 2D, and 3x3 

in 3D. The Algebraic development of the software in 2D is therefore simpler, and the inversion of 

the matrix becomes less difficult and more accurate, since it is less frequent, under random 

simulations conditions, that this matrix could be singular. The 3D simulations show more technical 

difficulties, not only for the 3x3 matrix, but also for the longer number of sentences into the 

program. In addition, when working in 3D with a solid whose geometry changes during the 

movement, it is crucial the selection of the meshing of the pseudo-rigid body to form suitable 

geometrical groups of the three Reuleaux segments. They originate planes whose intersection could 

not occur when they are almost parallel [Subsection 6.4]. This fact yields to obtain a singular and/or 

almost singular group of ill-posed matrices into the program, which is rather complicated and 

inconvenient. Several linear algebraic methods to overcome this difficulty in 3D are explained 

clearly in this section. For this purpose, there are some brief examples about the geometrical 

meshing choice, and programming techniques are detailed with a synthesis of the code that has been 

used for 2D Simulations (1 Voxel). The appropriate selection of the meshing for the Reuleaux 

segments is crucial, mostly in 3D, to avoid parallelism in the planes intersections. Therefore, this 

suitable geometrical choice yields to overcome the possibility to obtain in the running program high 

error values increments for low random deformation changes, and/or singular matrices. Finally, we 

can assert that there is a clear difference of Error (≈10%) between 1 Voxel 3D and 2 Voxels 3D 

[Tables 4,5]. This implies that these primary Simulations attemps are supporting the initial 

theoretical calculations. 

6.1.-Basic Mechanics Geometry 

 

We introduce here some basic geometrical ideas to make easy understand the following Subsection 

6.2 of Error Determination Techniques. There are two Fundamental-Basic Theorems and one 

Remark to catch up the basic concepts and results of this paper, 

Basic Theorem 1.-(Extensively demonstrated in Classical Mechanics [1.1]).-The position of a solid 

body can be determined at any time instant by two unique points of the body in 2D, and three 

points in 3D. 

Basic Theorem 2.-(Extensively demonstrated in Classical Mechanics [1.1]).-Any arbitrary movement 

in 2D or 3D is composed by a translation and a rotation. 

Therefore, according to Theorem 2, the Reuleaux Point defines the Instantaneous Center of Rotation 

of the rigid or pseudo- rigid body. The vector that joins the Reuleaux Point with the Coordinates 

Origin corresponds to the translation vector of the movement. 

 

Remark.-The Reuleaux Method gives a unique solution when the movement is pure in 3D. That is, 

there are coordinates variations in the three axes. When the movement is performed into a plane, 

the Reuleaux Method solution is an axis of Rotation (the movement is really in 2D). 
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The significance of these Basic Theorems is that we have a simulated movement wich can be 

decomposed into a translation and a rotation. The rotation is around the IRC calculated through the 

NRM, and the translation is the distance from the Coordinates Center to that IRC. Therefore, to 

avoid higher error values when optimizing the rotation matrix, we have to carry out an inverse 

translation of the PRB to the Coordinates Center. This translation is made resting to all the PRB 

points the IRC point coordinates. With this information, it is easy to understand the following 

Subsection 6.2. 

 

6.2.-Error Determination Techniques 

The calculations of Errors are given by the classical RMS numerical formulas [13,14,20,27,29,36,40]. 

The method that has been implemented has the following steps, namely, 

1.-Calculation of the Approximated Reuleaux Point (Approximated Instantaneous Center of 

Rotation). This determination is geometrical, and takes a series of geometrical steps (with one or two 

voxels in this case, and using the computing program [Subsection 6.5]. We will denote this point as 

PR . 

2.-Translation of the Initial true Points (P1), and Final true Points (P2), around the Coordinates 

Origin. Then, we calculate the optimal Rotation Matrix A. The steps are as follows, 

Given, 

PR : Reuleaux Point . 

P1 : Initial Points Matrix.  

P2 : Final Points Matrix.  

Find the Matrix A, such as, 

A x (P1 – PR) = (P2 – PR) 

 

This matrix A is optimized with Matlab Optimization Toolbox (MOT), and its elements are 

determined. To calculate the RMS Error values, the steps are the following, 

Given,  

AApproximated ,  

we calculate, 

AApproximated x (P1 – PR)  P2 Approximated at Origin (we call it P20 ) 

Now, we translate the 

approximated points from the 

Origin to the initial position, 

P2 Approximated = P20 + PR 

 

The RMS Error value will be, 

 

 

 

 

where N is the 

Points 

Number. 

 

 

 

 

[Eq 77] 
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This Error value corresponds to the Average Quadratic Error for 2 (X,Y) variables in 2D, and three variables 

(X,Y,Z) in 3D. We have not calculated the independent error value for each variable. Finally, the 2D and 3D 

pseudo-orthogonal matrices of the rotation around the IRC are defined. 

The Optimized Matrix in 2D Formula reads, 

  [Eq 78] 

 

The Optimized Matrix in 3D Formula reads, 

 

 

[Eq 79] 

 

6.3.-2D Simulations Results 

 

In these Tables Subsection, a synthesis of 2-10 2D Simulations for 1 and 2 voxels is shown. It is seen clearly the 

difference of Error between 1 and 2 voxels. This Subsection comprises a sufficient amount of numerical data in 

the Tables where it is possible to check the initial simulations results and carry out the most convenient 

comparisons. In Fig 8 it is displayed a basic scheme of the random changes of shape that have been carried out 

for the simulations. 

 

6.4.-3D Simulations Results [Numerical Data at Appendices] 

 

In these Tables Subsection, a synthesis of 11 3D Simulations for 1 and 2 voxels is shown. It is seen clearly the 

difference of Error between 1 and 2 voxels. This Subsection comprises a sufficient amount of numerical data in 

the Tables 4,5, where it is possible to check the initial simulations results and carry out the most convenient 

comparisons. In Fig 9 it is displayed a basic scheme of the random changes of shape that have been carried out 

for the simulations. 

 

6.5.-Software Details, Algebraic Techniques, and Geometrical Meshing Approximations 

 

In Figure 10, we display a basic Matlab program used for random Simulations in 2D [19,43]. The program starts 

with a variation of the coordinates X and Y of the final position of the PRB. The body of the programs deals 

with algebraic and geometrical calculations to find out the intersection point of the perpendiculars to the 

Reuleaux segments at their middle points. The primary structure of the code is simple, although it becomes 

rather long when the number of voxels increases, and the PRB movement is in 3D. This is the simplest 

Program, but the software used in these calculations was rather more complicated because of refinement and 

error reductions methods. 

An important technical problem that arose in the 3D Simulations, was the correct selection of the Reuleaux 

points of the PRB to trace the Reuleaux segments that join the inital position with the final one. The reason is 

that this geometrical choice, if not selected correctly, can create a parallelism among the planes which are 

perpendicular to the Reuleaux segments middle points. If so, the consequence would be one or several singular 

matrices into de computing program. 
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Therefore, the choice of the geometrical meshing to overcome this difficulty, is to try to select the points meshing 

in different planes, avoiding as much as possible the coincidence of one or more coordinates [8,15.2]. In other 

words, to select as much geometrical variety as possible in 3D. 

But in case that the previous problem is not conveniently set, there is a number of numerical and computational 

solutions to cope with this difficulty. When a linear system is almost Ill-posed or rather Ill-posed, we can try, 

among many other options, a LU or QR Factorization, the Jacobi Method, the Gauss-Seidel Method, the Basic 

Power Method, and others [19,21,36]. On the whole, there is a wide range of possibilities to resolve this 

computational/numerical challenge [13,27]. 

6.6.-A Monte-Carlo Method Overview 

When the PRB is rather large, the computational work could become inmense, if working with a high number 

of voxels. In this case, a Theoretical Monte-Carlo Algorithm has been designed to overcome this technical 

difficulty [10,31]. When using Monte-Carlo, we only have to determine the approximated IRC for a random 

number of voxels, and set the desired tolerance into the program. The reader can obtain information about this 

simple algorithm, which still can be refined and improved [10,31] by the user. 

 

VII. Computational Aerospace and Biomechanical Applications 

This section presents applications of NRM in aerospace and biomechanics. There are more research fields 

where NRM can be applied, for example, dynamics of mechanical systems with deformable-moving parts. The 

numerical Reuleaux method (NRM) is a geometricalcomputational algorithm to determine the instantaneous 

rotation center (IRC) for a deformable or pseudo-rigid body (PRB) in arbitrary movement. In recent 

International Scientific Contributions/Publications, the forward mathematical IRC problem (FP) was 

presented/determined for deformable solids, that is, given a defined arbitrary movement and random 

deformation, find the approximated IRC. We develop complementary simulations for this FP to corroborate its 

theoretical validation, and subsequently inverse methods are carried out. In other words, given an arbitrary 

rotation angle and a fixed IRC, find the optimal PRB deformation. 

 

Furthermore, given a desired IRC, determine both the optimal rotation angle and deformation parameters for a 

movement. Analytic and numerical methods are carried out for these objectives with designed software both in 

Freemat and Matlab usually. Checking the results was carried out with FORTRAN 77 and 90 in many cases. 

The principal algorithm for the mathematical model, was set as both forward and inverse problem optimization 

as, 

𝑓(𝑥→) =∑
∫ 𝜌𝑖(𝑥𝑖

→ )𝑑𝑣
𝑉𝑖

∑ ∫ 𝜌𝑗(𝑥𝑗
→ 

𝑉𝑗
)𝑑𝑣𝑗

𝑛
𝑗=1

× ‖𝑥→− 𝑥𝑖
→ ‖

2
𝑛

𝑖=1

 

[Eq 80] 

From this nonlinear optimization model, it is possible to select a desired IRC at any movement in function of 

the deformation and initial and final position, exclusively for a determined deformation, or combination of 

these physical conditions. In the following Figure 1, an aerospace illustrated example with an helicopter 

movement, provided the helicopter can change at flight its volume and gravity center, is presented.  In Figure 

7.1, it is explained for easy understanding a simple application.  
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Figure 7.1.-Concept of NRM Mathematical Model application for aerospace fuselage changes. 

The biomechanical application that is presented here refers to the movement of a spine artificial intervertebral 

disk. In Figure 7.2, it is shown how the voxelization can be done to determine the IRC when the spinal column 

moves, forward, backwards, lateral, oblique, etc. In Figure 7.3, a real radiological simulation is presented. The 

simulation gives an approximation of the IRC and was carried out in a water tank (tissue radiation-attenuation) 

with depth similar to the human body depth of spinal column within human body 
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Fig 7.2.-Approximations for voxelization of the artificial lumbar disk to set the 3D simulations numerically for 

inverse determination of IRC (3D). The complete volume of the disk is almost covered, so the 3D simulation 

data could be approximated to the whole disk dynamics. We set 3 voxels for the most part of this volume of the 

disk, and next contributions will share all the resting wings-volume with 5 voxels. Note that the dark points 

over the disk surface correspond to radiological markers (60% tantalum composition after experimental 

optimization, that can be used during/after surgery to obtain an optimal setting of the disk. Sub-optimal 

position of the disk after operation could yield to paresthesias,  severe radicular/disk pain, mobility difficulties, 

and in the long term increase of the biased position of the disk. This simulation was done by Casesnoves in 

Biomechanics Laboratory of  Nottingham University in 2007.  

 

 

 

 

 

 

 

 

 

 

Fig 7.3.-Radiological Simulation for IRC approximate Determination with Implant Deformation. 
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A compliant artificial disk manufactured with composites and its radiological simulation for an exaggerated 

lumbar spine flexion-compression.These markers (Mixed Tantalum 60% from ref 7, principal) can be used for 

imaging position determination [ref 7]. We used, as said,  for the realistic radiological screen-photography of 

this simulation a Siemens Siremobil 4K, C-Arm RX-Machine properly manufactured for surgical theatre. 

Distances are measured with a radiological rule that appears in image.This type of radiological apparatus are 

used in surgery to fit exactly the position of the artificial implant. The mechanical reason is that the arm of the 

machine can be moved along several angles/distances, in such a way that avoiding surgical sterilized blanketts 

and covers, or any anatomical part of the patient which is hindering the imaging-geometrical setting for good 

visualization at screen. In addition, in spinal surgery, and specially in lumbar disk pathology, it is not 

unfrequent to find obese patients who create radiological difficulties that can be overcome by the mechanical 

adaptation of this C-Arm machine. It was proven mathematically/simulations [Casesnoves,4,5,6,7],that the 

IRC/IAR of this implant can be approximated with these radiological imaging techniques using the Numerical 

Reuleaux Method. Furthermore, the precision of this IRC/IAR determination could be improved by using 

better imaging-radiological equipment, MRI or CT techniques, or standard radiological simulators [designed by 

Casesnoves,2008,proceedings of SIAM Conference in Computational Science/Engineering, 2009].   

 

VIII. Discussion, Conclusions, and Applications 

 

The Theoretical frame of the NRM has been conveniently proven through the most important laws of the 

Optimization Theory. The Convexity, Existence of a Global Minimum in 2D and in 3D (when the movement is 

pure in 3D) has been mathematically demonstrated. Other Nonlinear properties of the Objective Funtion(s) 

have also been proven. We can assert that the Theory of the NRM is according to the current criteria about the 

feasibility to get a suitable Large-Scale Optimization process. The Simulations can be considered valid to go 

ahead towards a contundent and/or definite confirmation of the Model in experimental dynamics. This fact was 

confirmed in the subsequent publications from 2007The last stage would be an Experimental series of 

Laboratory work to mesh definitely the link between the theory and the practice. 

 

The Simulations results show a clear Statistical advantage for the model when a large number of voxels is 

selected. In 2D, the Average Error difference, in favour of the 2 voxels frame, is ≈ 6% , and in the 3D 

simulations it raises to ≈ 10%. We cannot assert definitely the veracity of the Theory until a large number of 

further simulations will be carried out in future publications. These simulations would involve a random 

selection of rotation angles, initial position in the 2D or 3D space, and carry out the trials with different 

geometrical shapes. The applications of the Model could be focused on Engineering Mechanics and Industrial 

Machinery, Bioengineering, or Biomechanics [11], among several others. 

 

The mathematical background of the NRM has been properly set at initial stages. Further improvements and 

better Objective Functions could be designed in new research. The results of the Primary Simulations show a 

difference of error in favour of the higher voxels number frame(s). However, longer and better Statistical trials 

will be convenient and necessary. The Future research is focused on Mechanical Engineering and Machinery, to 

apply the NRM directly on technical practice. The fields of Bioengineering, Biomechanics [1.1,10,11,12,27] , and 

Medical Devices Design [11], also constitute important application fields. 
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Fig 3 (Appendix 1).- A simple scheme of the idea of the Numerical Reuleaux Method with additional 

explanations. We can see how the changes of shape and volume are causing a variation on the IRC position. 

The optimal IRC is calculated by a LSM which obtains the best approximated point whose sum of distances to 

all the sparsed particular IRCs for each voxel is minimal. 
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Fig 3 Complementary (1).-2D Geometric demonstration of the circle that is obtained when applying the RM for a 

rigid body. We see how the RM takes those fixed points of the Rigid Body, at initial and final positions, and then 

we draw the perpendicular to the middle points. The Reuleaux segments are the cords of the rotation circle, and 

the perpendiculars are radii of that circle. The lower Figure from a Biomechanics Paper (Chen, J, and Others. The 

limitations of the Instantaneous Centre of Rotation in joint research. Journal of Oral rehabilitation. 1999.) shows 

how the IRC is analyzed through a sequence of movements, and the variation of its position in 2D. We show also 

clearly the movement decomposition in a translation respect to the coordinates origin, and a rotation respect to 

the IRC (Reuleaux Center). This is shown in the following Figure 3C(2). 

 

 

Fig 3C (2).-Here is the basic scheme of the translation that has to be done to calculate the distances and 

movement angles from the Coordinates Center to the Rigid Body Position. The Rotation angle around the 

Reuleaux IRC is θ1. Vector Calculations are as follows 
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Fig 3C(3).-Here is an example of application of the Reuleaux Method for Rigid Bodies on Biomechanics. The 

sketch shows how the 2D IRC of the vertebrae during a movement of extension is determined (in 2D the IRC is 

not properly an ‘IRC’. We get the Geometric place of an Axis of Rotation for any slide of the body that we get 

in 2D (or any infinitesimal 2D planar slide), not formally a point. However, if we have a Body that rotates in 

2D, and we get the Geometrical Space position, we can carry out reasonable approximations to select an 

optimal point of that Axis, that could be considered as the Approximated IRC for the entire Body). This 

Reuleaux 2D method is extensively used in Spinal Biomechanics with important and practical Bioengineering 

applications. We see in the sketch how two points of the vertebrae are selected, and the Reuleaux segments are 

traced. The intersection of the middle points perpendiculars to these segments give the IRC in 2D. These 

techniques are applied usually in Radiology and Magnetic Resonance to determine the IRC in Lumbar Spine 

Biomechanics Research. Measurements and calculations are also frequently made in vitro with anatomical 

specimens, and also with Spine Simulators. However, further physiological measurements advances could be 

developed through similar or new Imaging Techniques. 
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Fig 4.-Basic scheme of the initial assumption [2.1] with additional comments. The volume of the rigid body 

is the same despite the drawing errors, before and after the movement. 

 

Fig 5.-Basic scheme of the simple model for two IRCs in a two-voxels division. This is a simplified sketch to 

make a concept caption easy. 
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Fig 5.1.-The basic scheme for the demonstration of the Theorem 1. 
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Fig 6.-Basic scheme for the demonstration of the Theorem 3.The distance h, [Eq 56], is equal to A’A’’. 
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Fig 7.-This is the basic scheme to show the second part of Theorem 3. Some IRC points are not included into 

the figure because of their long distances. 
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Fig 8.-Basic scheme of the random deformation of the final position that was carried out in the 2D simulations. 

The deformations were both in X axis direction and Y axis direction. 

2D SIMULATIONS FOR 1 VOXEL 

Simulation Random Value of 

Deformation(s) 

(Approximated) and 

Coordinate(s) where they 

are applied on 

RMS Error 

(Average for X 

and Y 

Coordinates*) 

IRC 

Approximated 

for 1 Voxel 

Optimized 

Rotation Matrix 

(Pseudo- 

Orthogonal) 

Comments 

1 Y  +0.5   -0.5 0.2506 X=3.3820  

Y=4.7512 

A=-0.1121  

B=-0.9932 

 

 

2 Y  +1    -0.5 0.1294 X=2.8750  

Y=3.7500 

A=0.2000  

B=-0.9714 

 

 

3 Y  +0.25    -0.25 0.1411 X=3.6652  

Y=4.8393 

A=-0.1984  

B=-0.9624 

 

 

4 Y   +0.25     -1 0.3534 X=3.8750 

Y=4.8750 

A=-0.1957 

B=-0.8478 

 

 

5 Y   +0.35     -0.75 0.2571 X=3.6907  

Y=4.7715 

A=-0.1969  

B=-0.9238 

 

 

6 X= (rand (1)-0.5) 0.1323 X=3.6422 A=-0.2130  

  Y= (rand (1)-0.5)  Y=5.0310 B=-0.9746 

7 X= (rand (1)-0.5) 0.0243 X=3.6775 A=-0.0480  

  Y= (rand (1)-0.5)  Y=4.7751 B=-0.9988 

8 X= (rand (1)-0.5) 0.2385 X=3.5757 A=-0.3130  

  Y= (rand (1)-0.5)  Y=5.0774 B=-0.9410 
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Table 1.-These are the results for 2D Simulations with one voxel. The average error is about 20%. The 

optimized elements of the Pseudo-Orthogonal matrix are shown. Note that this rotation matrix is defined after 

the translation of the approximated IRC to the Coordinates System Center. 

 

2D SIMULATIONS FOR 2 VOXELS 

Simulation Random Value of 

Deformation(s) 

(Approximated) and 

Coordinate(s) where they are 

applied on 

RMS Error 

(Average for X 

and Y 

Coordinates*) 

IRC 

Approximated 

for 2 Voxels 

Optimized Rotation 

Matrix 

(Pseudo-

Orthogonal) 

Comments 

1 Y +0.5 -0.5 0.1713 X=3.3800  

Y=4.7500 

A=-0.1121  

B=-0.9932 

 

 

2 Y +1 -0.5 0.0942 X=3.4661  

Y=4.6232 

A=0.2000  

B=-0.9714 

 

 

3 Y +0.25 -0.25 0.0668 X=3.5124  

Y=4.4365 

A=-0.1984  

B=-0.9624 

 

 

4 Y   +0.25    -1 0.3793 X=5.5937 

Y=4.1250 

A=-0.1957 

B=-0.8478 

 

 

5 Y +0.35 -0.75 0.0746 X=3.5239  

Y=4.3929 

A=-0.1969  

B=-0.9238 

 

 

6 X=(rand (1)-0.5) 

Y=(rand (1)-0.5) 

0.0975 X=3.5962  

Y=4.5042 

A=-0.2130  

B=-0.9746 

 

 

7 X=(rand (1)-0.5) 

Y=(rand (1)-0.5) 

0.1321 X=3.4598  

Y=4.6784 

A=-0.0480  

B=-0.9988 

 

 

9 X= (rand (1)-0.5) 0.1316 X=3.4509 A=-0.3787  

  Y= (rand (1)-0.5)  Y=3.5111 B=-0.9241 

10 X= (rand (1)-0.5) 0.2876 X=3.5941 A=-0.3239  

  Y= (rand (1)-0.5)  Y=5.1193 B=-0.9365 

AVERAGE N/A 0.1946 X=3.5428  

Y=4.6501 

N/A  

 

Comments The deformations do not  

exceed 

one unit in absolute value. 

Given 

Error values 

about 20%. 

*See Error 

Calculations 

 The elements of 

the 

pseudo-

orthogonal 

 

 the dimensions of the PRB, 

these 

Formulas. matrix are 

almost null, 

 values are rather high.  which makes 

the matrix 

   rather singular. 
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8 X=(rand (1)-0.5) 

Y=(rand (1)-0.5) 

0.0949 X=3.5908 

Y=4.5430 

A=-0.3130 

B=-0.9410 

 

 

9 X=(rand (1)-0.5) 

Y=(rand (1)-0.5) 

0.1138 X=3.4946  

Y=4.6597 

A=-0.3787  

B=-0.9241 

 

 

10 X=(rand (1)-0.5) 

Y=(rand (1)-0.5) 

0.0744 X=3.4671  

Y=4.3416 

A=-0.3239  

B=-0.9365 

 

 

AVERAGE N/A 0.1299 X=3.7085  

Y=4.5055 

N/A  

 
Comments In the second part of the 

simulations (6-10), we 

introduced more arbitrary 

variation of 

volume. 

Lower figures 

compared 

to 1 Voxel 2D 

simulations 

(about 6%). 

   

 

Table 2.-Here we show results for 10 random simulations in 2D, 2 voxels. Error value on average is about 13%. 

 

2D SIMULATIONS FOR 2 VOXELS WITH LARGE DEFORMATION 

Simulation Random Value of  

Deformation 

RMS Error  

(Average for X and Y 

Coordinates*) 

IRC 

Approximated for 

2  

Voxels 

        Optimized 

Rotation  

Matrix 

1 X1=+0.5  

X2=-0.5 

0.1724 X=3.5734  

Y=4.0949 

A=0.1958  

B=-0.9748 

2 X1=+0.75  

X2=-0.75 

0.1822 X=3.4458  

Y=4.5478 

A=-0.1431  

B=-1.0053 

AVERAGE N/A 0.1773 X=3.5096 

Y=4.3214 

N/A 

Comments  Although the deformation 

is rather large, the Error 

values are about 18%. Note 

that there are only two 

random Simulations in this 

case. 

*See Error Calculations 

Formulas. 

  

 

Table 3.-This table shows the results for a reduced group of two random large-deformation 2D simulations for 2 

voxels. The resulting RMS error on average is about 18%. 
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Fig 9.-Basic scheme of the random deformation of the final position that was carried out in the 3D simulations. 

 

3D SIMULATIONS FOR 1 VOXEL 

Simulation Random Value of 

Deformation(s) 

(Approximated) 

and Coordinate(s) 

where they are 

applied on 

RMS Error 

(Average for 

X,Y and 

Z Coordinates*) 

IRC 

Approxim

ated for 1 

Voxel 

Optimized Rotation Matrix  

 (Pseudo-Orthogonal) 

Optimization  

Residuals 

1 Y=0.5 , -0.5 

Z=-1 , -1 

0.2172 X=3.8958 

Y=4.2333 

Z=4.8167 

 

 

-------- 

 

 

 

2 Y=-1 , -0.2 

Z=-1 , -1 

0.1862 X=3.3367 

Y=4.6848 

Z=3.0315 

A(1)=-0.0725  A(4)=-1.1730 

A(7)=0.2084 

A(2)=1.1427 A(5)=-0.3561 

A(8)=-0.4101 A(3)= 0.0166 

A(6)=-0.0332 A(9)=0.9522 

 

 

 

3 Y=0.25 , -0.25 

Z=-1 , -1 

0.1596 X=3.6504 

Y=4.4048 

Z=4.0280 

A(1)=0.0481 A(4)=-1.0233 

A(7)=0.1930 A(2)=0.9072 

A(5)=-0.0711 A(8)=-0.3723 

A(3)=-0.0035 A(6)=0.0238 

A(9)=0.9859 

 

 

 

4 Y=-0.5 , -0.5 

Z=-1 , -1 

0.2939 X=4.3438 

Y=3.9375 

Z=6.3125 

A(1)=0.2172 A(4)=-1.1517 

A(7)=0.1544 A(2)=0.6178 

A(5)=-0.2379 A(8)=-0.2718 

A(3)=0.0286 A(6)=0.1552 

A(9)=1.0203 

ResNorm(1)=0.5213 

ResNorm(2)=1.1059 

ResNorm(3)=0.2636 
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5 Y=-0.2 , -0.2 

Z=-1 , -1 

0.2365 X=3.7608 

Y=4.3394 

Z=4.4112 

A(1)=0.0813 A(4)=-1.1353 

A(7)=0.1897 A(2)=0.8472 

A(5)=-0.2799 A(8)=-0.3564 

A(3)=-0.0022 A(6)=0.0634 

A(9)=0.9949 

ResNorm(1)=0.0788 

ResNorm(2)=1.0020 

ResNorm(3)=0.4292 

6 X=0.4134  

Y=0.1324  

Z=-0.4025 

0.5987 X=7.7715 

Y=4.7658 

Z=4.7216 

A(1)=0.5283 A(4)=-0.5297 

A(7)=0.5741 A(2)=0.5339 

A(5)=-0.8028 A(8)=-0.5066 

A(3)=0.1193 A(6)=0.2633 

A(9)=0.6296 

ResNorm(1)=1.4699 

ResNorm(2)=2.1709 

ResNorm(3)=1.7316 

7 X=0.5202  

Y=0.2746 

0.0699 X=3.4493 

Y=4.1399 

Z=3.0385 

A(1)=0.1606 A(4)=-1.0005 

A(7)=0.3285 A(2)=0.9384 

A(5)=0.2185 A(8)=-0.2128 

A(3)=-0.0107 A(6)=0.0642 

A(9)=0.9654 

ResNorm(1)=0.3505 

ResNorm(2)=1.8242 

ResNorm(3)=3.5055 

8 X=0.4966  

Y=0.5283  

Z=0.2760 

0.1363 X=-0.1468  

Y=-0.5177  

Z=-8.8113 

A(1)=-0.0681 A(4)=-0.4082 

A(7)=0.2342 A(2)=0.8699 

A(5)=0.6216 A(8)=-0.0915 

A(3)=-0.0401 A(6)=0.2569 

A(9)=0.9458 

ResNorm(1)=0.0870 

ResNorm(2)=2.0753 

ResNorm(3)=0.3441 

9 X=-0.2240  

Y=0.1797  

Z=0.3102 

0.1355 X=2.5615 

Y=4.0430 

Z=1.1660 

A(1)=-0.0728 A(4)=-0.9745 

A(7)=-0.1602 A(2)=1.1269 

A(5)=0.3880 A(8)=-0.2173 

A(3)=0.0426 A(6)=0.1223 

A(9)=0.8202 

ResNorm(1)=0.1249 

ResNorm(2)=1.5417 

ResNorm(3)=0.8120 

10 X=0.0787  

Y=0.1014  

Z=-0.0933 

0.0649 X=3.5825 

Y=4.4535 

Z=3.7836 

A(1)=0.0252 A(4)=-0.9551 

A(7)=0.1843 A(2)=0.9507 

A(5)=0.0518 A(8)=-0.4058 

A(3)=-0.0026 A(6)=-0.0006 

A(9)=0.9899 

ResNorm(1)=0.0082 

ResNorm(2)=0.0006 

ResNorm(3)=0.5599 

11 X=0.0662  

Y=-0.2012  

Z=-0.4430 

0.0834 X=3.7216 

Y=4.4707 

Z=4.3570 

A(1)=0.0519 A(4)=-0.9726 

A(7)=0.1543 A(2)=0.9078 

A(5)=-0.0946 A(8)=-0.4708 

A(3)=-0.0017 A(6)=0.0283 

A(9)=1.0464 

ResNorm(1)=0.0302 

ResNorm(2)=0.0711 

ResNorm(3)=0.8382 

AVERAGE N/A 0.1984 X=3.6297 

Y=3.9050 

Z=2.8050 

N/A N/A 

Comments We have detailed 

one deformation 

for each 

Similar value 

compared to 

1Voxel 2D 

In 

Simulatio

n 8 there 

The optimization Process was 

carried out with Matlab row 

by row independently. That 

The Optimization is 

made row by row. We 

have three rows in 
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coordinate, but 

there are 

sometimes 

additional 

deformation in 1-4 

more coordinates. 

Simulations. 

*See Error 

Calculations 

Formulas. 

is an 

important 

difference 

in z 

coordinat

e, which 

makes 

the 

average 

value 

biased. 

explains why we have got 3 

Residual Norms values. 

the matrix of 

Equation 81. 

Therefore, there are 

three ResNorm 

values. 

ResNorm is the 

residual after the 

Optimization. 

 

Table 4.-The results for 11 random simulations in 3D for 1 voxel. The average RMS error is about 20%. 

 

3D SIMULATIONS FOR 2 VOXELS 

Simulation Random Value 

of 

Deformation(s) 

(Approximated) 

and 

Coordinate(s) 

where they are 

applied on 

RMS Error 

(Average for 

X,Y and 

Z Coordinates*) 

IRC 

Approximate

d for 2 

Voxels 

      Optimized Rotation  

Matrix 

(Pseudo-Orthogonal) 

Optimization  

Residuals 

1 Y=0.5 , -0.5 0.0892 X=3.7500 A(1)=0.1331 A(4)=-

0.9845 A(7)=0.2705 

ResNorm(1)=0.7085 

 0.5 , -0.5  Y=4.3667 A(2)=0.8691 A(5)=-

0.0096 A(8)=-0.2658 

ResNorm(2)=0.9913 

 Z=4.1167 A(3)=0.0322 A(6)=-

0.0250 A(9)=0.9646 

ResNorm(3)=0.8755 

2 Y=-1 , -0.2 0.0973 X=3.2429 A(1)=-0.0054 A(4)=-

1.1257 A(7)=0.3639 

ResNorm(1)=1.7523 

 -0.2 , -0.2  Y=4.5924  

Z=2.8399 

A(2)=1.2301 A(5)=-

0.2349 A(8)=-0.3527 

A(3)=0.0372 

A(6)=0.0634 

A(9)=0.9931 

ResNorm(2)=0.8797 

ResNorm(3)=0.4367 

3 Y=0.25 , -0.25 0.0621 X=3.6250 A(1)=0.0617 A(4)=-

0.9865 A(7)=0.2930 

ResNorm(1)=0.1505 

 0.25 , -0.25  Y=4.4524 A(2)=0.9378 A(5)=-

0.0103 A(8)=-0.2872 

ResNorm(2)=0.2711 
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 Z=3.8274 A(3)=0.0088 A(6)=-

0.0109 A(9)=0.9772 

ResNorm(3)=0.7238 

4 Y=0.75 , -1 0.1316 X=3.8516 A(1)=0.2245 A(4)=-

1.0476 A(7)=0.2347 

ResNorm(1)=1.8483 

 0.75 , -1  Y=4.2188  

Z=4.2734 

A(2)=0.8096 A(5)=-

0.0479 A(8)=-0.2545 

A(3)=0.0823 A(6)=-

0.0432 A(9)=0.9402 

ResNorm(2)=2.6963 

ResNorm(3)=1.0630 

5 Y=0.35 , 0.35 0.0869 X=3.6700 A(1)=0.0906 A(4)=-

1.0392 A(7)=0.2821 

ResNorm(1)=0.3206 

 -0.75 , -0.75  Y=4.4197 A(2)=0.9124 A(5)=-

0.0905 A(8)=-0.2805 

ResNorm(2)=1.3471 

 Z=3.9297 A(3)=0.0171 A(6)=-

0.0146 A(9)=0.9716 

ResNorm(3)=0.7781 

6 X=0.4134 0.1934 X=7.6358 A(1)=0.6503 A(4)=-

0.3884 A(7)=0.5600 

ResNorm(1)=5.3957 

 Y=0.1324  

Z=-0.4025 

 Y=4.6284  

Z=8.8630 

A(2)=0.8495 A(5)=-

0.3681 A(8)=-0.7985 

A(3)=0.0468 

A(6)=0.0950 

A(9)=0.5469 

ResNorm(2)=4.1993 

ResNorm(3)=1.5121 

7 X=0.5202 0.0616 X=3.5000 A(1)=0.0516 A(4)=-

0.9936 A(7)=0.3030 

ResNorm(1)=0.1116 

 Y=0.2746  Y=4.3200 A(2)=0.9298 

A(5)=0.1444 A(8)=-

0.2770 

ResNorm(2)=0.3168 

 Z=3.3200 A(3)=0.0017 

A(6)=0.0221 

A(9)=0.9843 

ResNorm(3)=0.7078 

8 X=0.4966 0.1096 X=4.9076 A(1)=-0.2764 A(4)=-

0.1817 A(7)=0.2264 

ResNorm(1)=0.4021 

 Y=0.5283  

Z=0.2760 

 Y=6.9978 

Z=10.2205 

A(2)=1.0263 

A(5)=0.1785 

A(8)=0.0549 A(3)=-

0.0507 A(6)=0.1973 

A(9)=1.0269 

ResNorm(2)=2.8940 

ResNorm(3)=0.2720 

9 X=-0.2240 0.1581 X=-3.7884 A(1)=0.7478 A(4)=-

0.8034 A(7)=0.0088 

ResNorm(1)=4.0591 

 Y=0.1797  Y=7.0361 A(2)=0.7073 

A(5)=0.3705 A(8)=-

0.2146 

ResNorm(2)=2.8513 
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 Z=0.3102  Z=-16.2613 A(3)=0.2451 

A(6)=0.1839 

A(9)=0.9355 

ResNorm(3)=0.5123 

10 X=0.0787 0.0241 X=3.5000 A(1)= -0.0269 A(4)=-

0.0910 A(7)=0.3264 

ResNorm(1)=0.1143 

 Y=0.1014  

Z=-0.0933 

 Y=4.5570  

Z=3.5570 

A(2)=0.09943 

A(5)=0.0515 A(8)=-

0.3295 A(3)=-0.0036 

A(6)=0.0009 

A(9)=1.0127 

ResNorm(2)=0.0750 

ResNorm(3)=1.0067 

11 X=0.0662 0.0994 X=3.5000 A(1)=-0.2053 A(4)=-

0.7983 A(7)=0.4157 

ResNorm(1)=1.5171 

 Y=-0.2011  Y=4.7978 A(2)=0.8607 

A(5)=0.1255 A(8)=-

0.2476 

ResNorm(2)=1.7608 

 Z=-0.4430  Z=3.7978 A(3)=-0.0143 

A(6)=0.0291 

A(9)=1.0398 

ResNorm(3)=2.0541 

AVERAGE N/A 0.1010 X=4.0883 N/A N/A 

   Y=4.9443   

   Z=2.9531   

Comments  It is clearly 

about 10% 

less than 

1Voxel 3D 

Large 

deviations in 

some values. 

  

 Simulations, 

and even 

 

 lower than 2 

Voxels 2D 

 

 Simulations. 

But we 

 

 consider that.  

 

Table 5.-Here we show the results for 11 3D simulations with 2 voxels. We find out acceptable Error values of 

about 10% on average. Statistically speaking, about 25 Simulations samples would be more contundent to set 

the proof. 
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Fig 10.-On the left, we show an example of the simplest Matlab program for the determination of the IRC 

through the NRM in 2D. We have taken only two Reuleaux Segments. Usually, when working with 1 voxel, 

we take 4 Reuleaux Segments, 2 on the top-border points of the PRB, and other 2 on the inferior-border part of 

the PRB, and calculate the average value for the 2 IRCs obtained. The reader can edit more improved and 

refined programs with this frame, both in 2D and 3D. 
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% Random Values Deformations a=(rand(1)-0.5) 
b=(rand(1)-0.5) 
% Points of Voxel(s) x1=2; 

y1=7; x2=1; y2=6; x11=6; y11=6+a x22=5; y22=7+b 

% straight lines (Reuleaux 

% Segments) Equations m1=(y11-y1)/(x11-x1); 

m2=(y22-y2)/(x22-x2); m11=-1/m1; 
m22=-1/m2; 
% middle points mpx1=(x1+x11)/2; mpy1=(y1+y11)/2; mpx2=(x2+x22)/2; 

mpy2=(y2+y22)/2; b1=mpy1-m11*mpx1; b2=mpy2-m22*mpx2; 

% Reuleaux point b=[-b1 

-b2]; m=[m11 -1 
m22 -1]; 

r=inv(m)*b xr=r(1,1) 
yr=r(2,1) 
% translated points to the 

% Coordinates Center (initial 

% position ti, final position tf) xti=[x1-xr 

y1-yr x2-xr y2-yr] 
xtf=[x11-xr 

y11-yr x22-xr y22-yr] 
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