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ABSTRACT 

 
In this paper, we explore a reinforcement learning algorithm to train an agent to drive a vehicle in the OpenAI Gym 

environment called CarRacing-v0. Gym is an open-source repository created by OpenAI which provides a toolkit 

for developing and comparing various Reinforcement learning algorithms. The gym library is a collection of 

environments that can be used to work out reinforcement learning algorithms. Learning to drive in the CarRacing-v0 

environment is challenging since it requires the agent to finish the continuous control task by learning from pixels. 

To tackle this challenging problem, we explored an approach called Deep Q Learning. In this paper we further 

demonstrate a method to train the agent which learns from raw pixels without providing any hand-crafted features. 

Some minor environment specific changes were made but the base agent was not provided any knowledge regarding 

car racing.  

Keywords : OpenAI Gym, Reinforcement Learning, CarRacing-v0 

 

I. INTRODUCTION 

 

Now-a-days self driving cars are more and more 

popular for quick transportation, safety and economic 

advantages but these cars would only follow orders 

about destination and route, and may only adopt 

some lane-tracking or car-following guidance 

whereas in order to make autonomous driving a truly 

ubiquitous technology, paper advocates for agents 

that can learn the ability to drive and navigate in 

absence of maps and explicit rules, relying just like 

humans, on a comprehensive understanding of the 

immediate environment and the various objects in the 

environment, predict their possible future behaviors 

and interactions, and then plan how to control it in 

order to safely move closer to their desired 

destination while obeying the rules of the 

environment. This is a difficult challenge for 

machines that humans solve well,  contributing to 

knowledge. Thus making reinforcement learning a 

promising approach. Reinforcement Learning is an 

area of machine learning, aiming at learning the 

optimal behaviour in an environment by maximizing 

the cumulative reward. The concept of deep 

reinforcement learning was introduced recently and 

was tested with success in games like Go [1] or Atari 

2600 [2], proving the capability to learn and 

understand a good representation of the environment. 

Reinforcement Learning allows the agent to learn its 

behaviour based on feedback that is received from the 

environment. This behaviour can be learnt at the 

beginning once and for all, or keep on adapting as 

time goes by. If the problem is modelled properly, 

some Reinforcement Learning algorithms can 

perform remarkably well and converge to the global 

optimum; this is the ideal behaviour that maximises 

the reward. This automated learning scheme implies 

that there is no or little need for a human. The time 

spent on designing a solution will be less, since there 

is no requirement for hand crafting complex sets of 

https://github.com/openai/gym
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rules as with Expert Systems. The motive of this paper 

is to train an agent using the Deep Q Learning 

algorithm, which can drive in the OpenAI Gym 

CarRacing-v0 environment. The environment 

consists of a randomly generated two-dimensional 

world of racetrack with grass and boundaries. The 

goal here is to reach the end of the track in as little 

time as possible. 

 

 
   Figure 1 : OpenAI Gym CarRacing-v0 Environment  

 

II.  METHODOLOGY 

 

Papers like Playing Atari with Deep Reinforcement 

Learning on NIPS in 2013 [2] and Human-level 

control through deep reinforcement learning on 

Nature in 2015 [4] introduced the concept of Deep Q 

Networks. DQN is inspired from Q-Learning, where 

Q-Learning is a model free reinforcement learning 

algorithm. The main task of a Q-Learning is to learn a 

policy, which guides an agent to take the best action 

under any circumstances. Model of the environment 

isn’t required. Thus, the connotation of “model-free”. 

Q-Learning finds an optimal action-selection policy, 

it maximizes the expected value of the total reward 

over any and all successive steps, starting from the 

current state. Before learning begins, Q-table is 

initialized, Q-Table is just a simple lookup table 

where we calculate the maximum expected future 

rewards for action at each state. Basically, the agents 

will be guided to the best action at each state by the 

table. 

To solve a real-world problem, Q-table is not a 

feasible solution, owing to continuous state and action 

spaces. Moreover, a Q-table is environment-specific 

and not generalized. Therefore, there is a requirement 

for a model which can map the state information 

provided as input to Q-values of the possible set of 

actions. 

 

          

   
 

                         Figure 2 : Q-Learning  

 

This is where a neural network comes to play the role 

of a function approximator, which can take state 

information input in the form of a vector, and learn to 

map them to Q-values for all possible actions. 

 

 
 

 Figure 3 : Deep Q-Learning 

 

Well, all the environments like CarRacing-v0 have 

one thing in common and that is, all are made of 

pixels. If the pixels can be provided to a model that 

can be mapped to actions then it can be generalized 

across all games [5]. DeepMind's implementation of 

convolutional neural networks had game image 

frames, where the inputs and the outputs were the Q-

values for each possible action in that environment. 

Therefore, for our environment or any other gaming 

environment, a deep Q-network (DQN) consists of 

consecutive frames as the input to capture the motion 

and outputs Q-values for all possible actions in the 

http://www.ijsrset.com/
https://arxiv.org/pdf/1312.5602.pdf
https://arxiv.org/pdf/1312.5602.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
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game. Since a deep neural network is being used as a 

function approximator of the Q-function, this process 

is called deep-Q learning.  

 

Originally, the observations obtained from the 

environment were colored RGB images with a black 

bar at the bottom to display score number. Since these 

observation images are the training inputs for the 

neural network, they were pre-processed to remove 

unwanted information and improve the training 

results. 

The three channel image was converted to a single 

channel grayscale. 

 
                Figure 4 : Image Transformations 

 

The essence of deep Q-learning is the estimation of 

Q∗ (s, a) using the neural network parametrized by a 

vector θ.  

In RL, the policy or value functions play a vital role in 

sampling actions. However, this changes frequently as 

we know better what to explore. As we play out the 

game, we know better about the ground truth values 

of states and actions. So our target outputs are 

changing also. Now, we try to learn a mapping f for a 

constantly changing input and output. Luckily, both 

input and output can converge. So if in both input 

and output, we slow down the changes enough, we 

may have a chance to model f while allowing it to 

evolve. 

Experience replay: For instance, last million 

transitions are put (or video frames) into a buffer and 

sample a mini-batch of samples of size 32 from this 

buffer to train the deep network. An input dataset is 

formed which is stable enough for training. As we 

randomly sample from the replay buffer, the data is 

more independent of one another. RL training is 

sensitive to optimization methods. Changes in input 

during the training cannot be handled as the Simple 

learning rate schedule is not dynamic enough. Many 

RL training uses RMSProp or Adam optimizer. This 

DQN is trained with Adam. 

 

 
       Figure 5 : DQN Pseudocode 

 

where ϕ preprocess lasts 4 image frames to represent 

the state. To capture motion, we use four frames to 

represent a state. At training iteration i we write the 

network parameters as θi . The loss at this step is 

given by the temporal difference error. 

 
Differentiating with respect to θi , we find that loss is 

minimized when the Bellman equation is satisfied, i.e.  

 
This in conjunction with the fact that neural 

networks are universal function approximators 

implies that, given sufficient training data, a DQN 

will learn the optimal values of Q.  

DQN uses ϵ-greedy to select the first action.  

In our implementation of DQN we use a simple fully 

connected architecture where the first layer has 512 

nodes. The first layer was fully connected to the 

second layer which consisted of 11 nodes . We used 

the ReLU and Linear activation function. We used an 

http://www.ijsrset.com/
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exploration rate of γ = 0.1 and a learning rate of λ = 

0.01.  

 

III. MODEL EVALUATION  

 

We evaluated our model using conventional CPUs 

and training 200 episodes took about 12 hours.  

 
             Figure 6 : Episode and Reward Graph - I 

 

It seemed that the initial training didn't actually train  

at all. When we looked at the actual gameplay, we 

could see that the car drove only straight and in 

corners didn’t even try to turn. We investigated 

things further and in several cases, when we restarted 

the whole learning process, it got stuck by always 

turning left. So we most probably experienced the 

explore exploit dilemma. In order to reduce that, we 

tried to increase the batch size. 

 

 
            Figure 7 : Episode and Rewards Graph - II 

 

It seemed to be a little bit better, but not by a big 

factor. And the scores went up and down always very 

rapidly (a little bit less than in our initial model 

though). The actual gameplay was improved a little 

bit - now before the left turns, the car slightly turned 

to left and the same thing with right corners (only to 

the right), but after that the car went straight to the 

grass and the episode restarted. The performance of 

our models are not appreciable. However, it must be 

recognized that reinforcement learners require many 

epochs to reach a decent solution, and we believe that 

we were an order of magnitude off in the number of 

necessary simulations that we ran on each of our 

models. What we are happy about is the clear upward 

trend in our rewards as the epochs rolled by. 

Knowing this, we are confident that our best model 

would have reached a reasonable solution given 

ample time and computational power. 

   

IV. CONCLUSION 

 

None of us had experience in implementing 

reinforcement learning algorithms prior to this 

project, and unfortunately much of our research time 

was spent trying to make up for this. Of course we 

would have preferred to use this time to improve our 

methodology to achieve more convincing results. 

Though the results didn’t live up to our expectations, 

we learned a lot in the process. Our original proposal 

for this project was to train the model using multiple 

RL algorithms like DDPG, DDQN and PPO. It wasn’t 

until the status update when we found out our 

problem was much harder than we first expected. 

This forced us to do a lot of our own research on 

DQNs and be able to somewhat successfully. 
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