
IJSRSET2051012 | Published : 22 April 2020 [(5) 10 : 34-38]

Innovation 2020
Organised by

Computer Engineering Department, Dr. D. Y. Patil School of Engineering, Lohegaon,

Pune, Maharashtra, India in association with

International Journal of Scientific Research in Science, Engineering and Technology

34

Autonomous vehicle controls using Reinforcement Learning
Mukesh Iyer, Jai Baheti, Rajmohan Bajaj, Nilesh Nanda, Dr. Sunil Rathod

Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Lohegaon Savitribai Phule Pune

University, Pune, Maharashtra, India

ABSTRACT

In this paper, we explore a reinforcement learning algorithm to train an agent to drive a vehicle in the OpenAI Gym

environment called CarRacing-v0. Gym is an open-source repository created by OpenAI which provides a toolkit

for developing and comparing various Reinforcement learning algorithms. The gym library is a collection of

environments that can be used to work out reinforcement learning algorithms. Learning to drive in the CarRacing-v0

environment is challenging since it requires the agent to finish the continuous control task by learning from pixels.

To tackle this challenging problem, we explored an approach called Deep Q Learning. In this paper we further

demonstrate a method to train the agent which learns from raw pixels without providing any hand-crafted features.

Some minor environment specific changes were made but the base agent was not provided any knowledge regarding

car racing.

Keywords : OpenAI Gym, Reinforcement Learning, CarRacing-v0

I. INTRODUCTION

Now-a-days self driving cars are more and more

popular for quick transportation, safety and economic

advantages but these cars would only follow orders

about destination and route, and may only adopt

some lane-tracking or car-following guidance

whereas in order to make autonomous driving a truly

ubiquitous technology, paper advocates for agents

that can learn the ability to drive and navigate in

absence of maps and explicit rules, relying just like

humans, on a comprehensive understanding of the

immediate environment and the various objects in the

environment, predict their possible future behaviors

and interactions, and then plan how to control it in

order to safely move closer to their desired

destination while obeying the rules of the

environment. This is a difficult challenge for

machines that humans solve well, contributing to

knowledge. Thus making reinforcement learning a

promising approach. Reinforcement Learning is an

area of machine learning, aiming at learning the

optimal behaviour in an environment by maximizing

the cumulative reward. The concept of deep

reinforcement learning was introduced recently and

was tested with success in games like Go [1] or Atari

2600 [2], proving the capability to learn and

understand a good representation of the environment.

Reinforcement Learning allows the agent to learn its

behaviour based on feedback that is received from the

environment. This behaviour can be learnt at the

beginning once and for all, or keep on adapting as

time goes by. If the problem is modelled properly,

some Reinforcement Learning algorithms can

perform remarkably well and converge to the global

optimum; this is the ideal behaviour that maximises

the reward. This automated learning scheme implies

that there is no or little need for a human. The time

spent on designing a solution will be less, since there

is no requirement for hand crafting complex sets of

https://github.com/openai/gym

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

© 2020 IJSRSET | Volume 5 | Issue 10 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

 35

rules as with Expert Systems. The motive of this paper

is to train an agent using the Deep Q Learning

algorithm, which can drive in the OpenAI Gym

CarRacing-v0 environment. The environment

consists of a randomly generated two-dimensional

world of racetrack with grass and boundaries. The

goal here is to reach the end of the track in as little

time as possible.

 Figure 1 : OpenAI Gym CarRacing-v0 Environment

II. METHODOLOGY

Papers like Playing Atari with Deep Reinforcement

Learning on NIPS in 2013 [2] and Human-level

control through deep reinforcement learning on

Nature in 2015 [4] introduced the concept of Deep Q

Networks. DQN is inspired from Q-Learning, where

Q-Learning is a model free reinforcement learning

algorithm. The main task of a Q-Learning is to learn a

policy, which guides an agent to take the best action

under any circumstances. Model of the environment

isn’t required. Thus, the connotation of “model-free”.

Q-Learning finds an optimal action-selection policy,

it maximizes the expected value of the total reward

over any and all successive steps, starting from the

current state. Before learning begins, Q-table is

initialized, Q-Table is just a simple lookup table

where we calculate the maximum expected future

rewards for action at each state. Basically, the agents

will be guided to the best action at each state by the

table.

To solve a real-world problem, Q-table is not a

feasible solution, owing to continuous state and action

spaces. Moreover, a Q-table is environment-specific

and not generalized. Therefore, there is a requirement

for a model which can map the state information

provided as input to Q-values of the possible set of

actions.

 Figure 2 : Q-Learning

This is where a neural network comes to play the role

of a function approximator, which can take state

information input in the form of a vector, and learn to

map them to Q-values for all possible actions.

 Figure 3 : Deep Q-Learning

Well, all the environments like CarRacing-v0 have

one thing in common and that is, all are made of

pixels. If the pixels can be provided to a model that

can be mapped to actions then it can be generalized

across all games [5]. DeepMind's implementation of

convolutional neural networks had game image

frames, where the inputs and the outputs were the Q-

values for each possible action in that environment.

Therefore, for our environment or any other gaming

environment, a deep Q-network (DQN) consists of

consecutive frames as the input to capture the motion

and outputs Q-values for all possible actions in the

http://www.ijsrset.com/
https://arxiv.org/pdf/1312.5602.pdf
https://arxiv.org/pdf/1312.5602.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

© 2020 IJSRSET | Volume 5 | Issue 10 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

 36

game. Since a deep neural network is being used as a

function approximator of the Q-function, this process

is called deep-Q learning.

Originally, the observations obtained from the

environment were colored RGB images with a black

bar at the bottom to display score number. Since these

observation images are the training inputs for the

neural network, they were pre-processed to remove

unwanted information and improve the training

results.

The three channel image was converted to a single

channel grayscale.

 Figure 4 : Image Transformations

The essence of deep Q-learning is the estimation of

Q∗ (s, a) using the neural network parametrized by a

vector θ.

In RL, the policy or value functions play a vital role in

sampling actions. However, this changes frequently as

we know better what to explore. As we play out the

game, we know better about the ground truth values

of states and actions. So our target outputs are

changing also. Now, we try to learn a mapping f for a

constantly changing input and output. Luckily, both

input and output can converge. So if in both input

and output, we slow down the changes enough, we

may have a chance to model f while allowing it to

evolve.

Experience replay: For instance, last million

transitions are put (or video frames) into a buffer and

sample a mini-batch of samples of size 32 from this

buffer to train the deep network. An input dataset is

formed which is stable enough for training. As we

randomly sample from the replay buffer, the data is

more independent of one another. RL training is

sensitive to optimization methods. Changes in input

during the training cannot be handled as the Simple

learning rate schedule is not dynamic enough. Many

RL training uses RMSProp or Adam optimizer. This

DQN is trained with Adam.

 Figure 5 : DQN Pseudocode

where ϕ preprocess lasts 4 image frames to represent

the state. To capture motion, we use four frames to

represent a state. At training iteration i we write the

network parameters as θi . The loss at this step is

given by the temporal difference error.

Differentiating with respect to θi , we find that loss is

minimized when the Bellman equation is satisfied, i.e.

This in conjunction with the fact that neural

networks are universal function approximators

implies that, given sufficient training data, a DQN

will learn the optimal values of Q.

DQN uses ϵ-greedy to select the first action.

In our implementation of DQN we use a simple fully

connected architecture where the first layer has 512

nodes. The first layer was fully connected to the

second layer which consisted of 11 nodes . We used

the ReLU and Linear activation function. We used an

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

© 2020 IJSRSET | Volume 5 | Issue 10 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

 37

exploration rate of γ = 0.1 and a learning rate of λ =

0.01.

III. MODEL EVALUATION

We evaluated our model using conventional CPUs

and training 200 episodes took about 12 hours.

 Figure 6 : Episode and Reward Graph - I

It seemed that the initial training didn't actually train

at all. When we looked at the actual gameplay, we

could see that the car drove only straight and in

corners didn’t even try to turn. We investigated

things further and in several cases, when we restarted

the whole learning process, it got stuck by always

turning left. So we most probably experienced the

explore exploit dilemma. In order to reduce that, we

tried to increase the batch size.

 Figure 7 : Episode and Rewards Graph - II

It seemed to be a little bit better, but not by a big

factor. And the scores went up and down always very

rapidly (a little bit less than in our initial model

though). The actual gameplay was improved a little

bit - now before the left turns, the car slightly turned

to left and the same thing with right corners (only to

the right), but after that the car went straight to the

grass and the episode restarted. The performance of

our models are not appreciable. However, it must be

recognized that reinforcement learners require many

epochs to reach a decent solution, and we believe that

we were an order of magnitude off in the number of

necessary simulations that we ran on each of our

models. What we are happy about is the clear upward

trend in our rewards as the epochs rolled by.

Knowing this, we are confident that our best model

would have reached a reasonable solution given

ample time and computational power.

IV. CONCLUSION

None of us had experience in implementing

reinforcement learning algorithms prior to this

project, and unfortunately much of our research time

was spent trying to make up for this. Of course we

would have preferred to use this time to improve our

methodology to achieve more convincing results.

Though the results didn’t live up to our expectations,

we learned a lot in the process. Our original proposal

for this project was to train the model using multiple

RL algorithms like DDPG, DDQN and PPO. It wasn’t

until the status update when we found out our

problem was much harder than we first expected.

This forced us to do a lot of our own research on

DQNs and be able to somewhat successfully.

V. REFERENCES

[1] Silver, D., Huang, A., Maddison, C. et al.

Mastering the game of Go with deep neural

networks and tree search. Nature 529, 484–489

(2016). https://doi.org/10.1038/nature16961

[2] Volodymyr Mnih, Koray Kavukcuoglu, David

Silver, Alex Graves, Ioannis Antonoglou,

http://www.ijsrset.com/
https://arxiv.org/search/cs?searchtype=author&query=Mnih%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Kavukcuoglu%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Silver%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Silver%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Graves%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Antonoglou%2C+I

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

© 2020 IJSRSET | Volume 5 | Issue 10 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

 38

Daan Wierstra, Martin Riedmiller.

arXiv:1312.5602. https://arxiv.org/abs/1312.5602

[3] Mnih, V., Kavukcuoglu, K., Silver, D. et al.

Human-level control through deep

reinforcement learning. Nature 518, 529–533

(2015). https://doi.org/10.1038/nature14236

[4] Shashank Kotyan, Danilo Vasconcellos

Vargas, Venkanna U. Self Training

Autonomous Driving

https://arxiv.org/abs/1904.12738

[5] Wal, Douwe van der and Wenling Shang.

“Advantage Actor-Critic Methods for

CarRacing.” (2018).

https://esc.fnwi.uva.nl/thesis/centraal/files/f285

129090.pdf

[6] Simon Kardell, Mattias Kuosku, “Autonomous

vehicle control via deep reinforcement

learning”, 2017

[7] Alex Kendall, Jeffrey Hawke, David Janz,

Przemyslaw Mazur, Daniele Reda, John-Mark

Allen, Vinh-Dieu Lam, “Alex Bewley, Amar

Shah “Learning to Drive in a Day”, September

2018

[8] Mayank Bansal, Alex Krizhevsky, Abhijit Ogale,

“ChauffeurNet: Learning to Drive by Imitating

the Best and Synthesizing the Worst”,

December 2018

[9] Nihal Altunas, Erkan Imal, Nahit Emanet,

Ceyda Nur Ozturk, “Reinforcement learning-

based mobile robot navigation”, March 2016.

http://www.ijsrset.com/
https://arxiv.org/search/cs?searchtype=author&query=Wierstra%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Riedmiller%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Kotyan%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Vargas%2C+D+V
https://arxiv.org/search/cs?searchtype=author&query=Vargas%2C+D+V
https://arxiv.org/search/cs?searchtype=author&query=U%2C+V

