Innovation 2020

Organised by

Computer Engineering Department, Dr. D. Y. Patil School of Engineering, Lohegaon, Pune, Maharashtra, India in association with International Journal of Scientific Research in Science, Engineering and Technology

An Automated System on Collision Alert for Vehicle Safety on Road

Rachana Kumari, Komal R, Deepak Yadav, Prof. Monika Dangore

Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Lohegoan, Savitribai Phule Pune University, Pune, Maharashtra, India

ABSTRACT

There are various reasons due to which accident rates are increasing, some of the reasons are the negligence of the driver, fog, smog, smoke, etc. because of which people are losing their life. In this project, we are going to take note of how we can reduce these accidents by other means which will help to detect the problem in the first place.so, in this project we are basically, calculating or measuring the safety distance between the driving car and front object to avoid the collision.

Keywords : Electromechanical, Automated Braking System, Sensors, Notification, Alert.

I. INTRODUCTION

Automated collision alert system works to avoid accidents or damage. Whenever the sensor detects any obstacle the car automatically adjust accordingly, for instance, it calculates the required speed, proper distance to be maintained between vehicles. So according to the speed of a car, the system will calculate the safety distance. If the obstacle is not in the safety distance then the system will generate alert to apply the brake but in case if the driver doesn't respond then the system will automatically apply the brake. So, in this way it helps to prevent collisions that lead to the safety of vehicles on road.

Figure 1: System Architecture

II. LITERATURE SURVEY						Using	Volume	obstacle	less
		TABLE	[Ultrasonic	3, Issue 4,	and sends	I/O	
	Ι ΙΤΈΡ ΔΤΙ ΙΡΕ ΟΙ ΙΡΙ/ΕΥ ΤΑΡΙ Ε					Sensor.	April	signal to	pins so
							2017	the	it can
Sr.	Paper	Author	Method	Limita				Aurduino	be
No.	Name		Proposed	tions				Nano for	used
1.	The	Sehun	GPS to	Collis				processing	for
	Vehicle	kim,	collect	on is				safe	limite
	Collision	First	vehicle	detect				distance	d
	Warning	ACIS/JN	data on	ed				and	numb
	System	U	AIS and	within				accordingl	er of
	based on	Internati	depending	30met				y buzzer	things.
	GPS	onal	upon	ers.				and brake	_
		Conferen	vehicle's	Auto				id applied.	
		ce	speed ,dire	matic	4.	Collision	Anil	The	The
			ction and	brakin		Detection	Kumar	location of	syste
			distance	g		System for	Gupta,	the all the	m is
			waring is	system		vehicles in	Interatio	vehicles is	not
			generated.	is not		Hilly and	nal	send to	suitab
				there.		Dense Fog	conferenc	server	le for
2.	Performan	N.Sreera	The	Perfor		Affected	e on	using GPS,	poor
	ce Study	man,	distance of	mance		Area to	Issues	there	conne
	On IR	IRJET,	any	Study		Generate	and	processing	ctivit
	Sensor For	Volume:0	obstacle, a	On IR		Collision	Challeng	is done,	v
	Automobil	5	stationary	Sensor		Alerts.	es in	and if any	area.
	e Braking	Issue:03	or a	For			Intelligen	vehicle	the
	System	Mar-2018	moving	Auto			t	comes	proces
			vehicle or	mobil			Computi	nearer	sing
			a road	e			ng	then the	time is
			block is	Brakin			Technolo	safe	guite
			sensed by	g			gues(ICIC	distance,	high.
			an	Syste			т),	then alert	0
			infrared	m.			August	is	
			sensor and				2014.	generated.	
			it is					0	
			provided						
			to the						
			microcont						
			roller						
3.	Automatic	J. V. Sai	Ultrasonic	Aurdu					
	Braking	Ram,	Sensor	ino					
	System	IRJET,	detects the	Nano					

III. TAXONOMY CHART

TABLE III TAXONOMY CHART

	Processi ng on Server	Automa tic Brake	Alerts Generat ion	Feasibili ty in any weather
The Vehicle Collision Warning System based on GPS		X		X
Performa nce Study On IR Sensor For Automob ile Braking System	X			X
Automati c Braking System Using Ultrasoni c Sensor.	\checkmark		X	\checkmark
Collision Detection System for vehicles in Hilly and Dense Fog Affected Area to Generate Collision Alerts		X		

IV. Algorithm

A. Algorithm for Safe distance Calculation-

Input : Obstacle Output : Alert

Steps:

- 1. Ultrasonic senor transmits ultrasonic waves.
- 2. If an obstacle is there, the UV rays get reflected back and then single is passed to Uno Arduino.
- 3. Arduion finds the safe distance and threshold distance.
- 4. On reaching the safe distance , Arduion generates alert.

B. Algorithm for automatic braking -

Input : Threshold distance

Output : Automatic brake is applied on the vehicle

Steps:

1. If drive fails to take any action and the threshold distance is reached,

2. Automatic brake is applied and the vehicle is stopped before collision.

V. RESULT

Figure 2: Car at initial state

The ultrasonic sensor emits sound to detect the presence of an object in front, if it receives back the sound, it indicates the presence of an object.

Figure 3: At range 1 system generates alarm

Once the object is detected the buzzer beeps giving a warning to the driver to apply brakes.

Figure 4: At range 2 system applies automatic brakes

If the car is less than threshold range from the object detected then the motor automatically stops. Hence the car is stopped preventing the accident from occurring.

The below image show the output of the working system on Arduion IDE.

Figure 5: Output on Arduino IDE.

VI. Advantages

- 1. Avoids Accidents.
- 2. In area of poor connectivity and poor visibility (foggy area) accidents can be avoided.
- 3. First generates Alert and if no action is taken Automatic braking is applied.

VII. Limitations

- 1 Can detect obstacle upto 100 cm (1m).
- 2 Can detect obstacle in front of the car only.

VIII. Future work

The project work is no more exhaustive as it can be further accomplished by using different range sensors and actuating mechanism.

IX. CONCLUSION

The following conclusions that can be made on automatic braking system using ultrasonic sensor are:

1. Arduino UNO microcontroller is user friendly and helps learners. Mechanical engineers in providing better coding/ programming for automatic braking. 2. Ultrasonic sensor is inexpensive compared to other [3] sensors and provides better sensing span within 100m.

3.Automatic braking system take decision based on microcontroller inputs and begins the braking automatically and regulate the vehicle in advance to any harmful accidents situations. Thus, implementing this System can reduce the close impact likely accidents. Also, it can be concluded that the present ^[5] project work is no more exhaustive as it can be further accomplished by using different range sensors and actuating mechanism. Present paper work becomes a prepared reckoner for engineers in future project growth. ^[6]

X. ACKNOWLEDGEMENT

It gives us a great pleasure in presenting the paper on An Automated system on collision alert for vehicle safety on road. We would like to express our special thanks of gratitude to our Guide, Prof. Monika Dangore, and Dr. Pankaj Agarkar, HOD Computer Engineering Department, for giving us all the help and support we needed during course of the Paper writing work. We would also like to thank Dr. Ashok Kasnale, Principal, Dr. D Y Patil school of Engineering, who motivated us and created a healthy environment for us to learn in the best possible way.

X. REFERENCES

- [1] Sehun Kim, Sunghyun Lee, Inchan Yoon, Miji Yoon, Do-Hyeun Kim "The Vehicle Collision Warning System based on GPS" First ACIS/JNU International Conference on Computers, Networks, Systems, and Industrial Engineering.
- [2] N.Sreeraman, G.Sathyapriya, G.Ganesan, G.Ajithkumar, S.Praveen Kumar "Performance Study On IR Sensor For Automobile Braking System", Volume:05 Issue:03|Mar-2018.

Vipul Shinde, Rohan Thorat, Trupti Agarkar, "Automatic Car Driving System Using Fuzzy", Volume:05|Issue:03|Mar-2018.

- A.joseph Godfrey, V.Sankaranarayanan, "A New
 Electric Braking System With Energy
 Regeneration For a BLDC Motor-Driven Electric
 Vehicle", Volume: 21 | Issue: 04 | August 2018.
-] Bhaskara. P, Eriki Ananada. K, Venkataramana, "Arduino Based Automated Braking Control System To Enhance The Safety At Low Light And Long Stressed Drive Condition",Volume:04|Issue:2|2018.
-] Anil Kumar Gupta, Garurav Wable, Tarun Batra ,"Collision Detection System for vehicles in Hilly and Dense Fog Affected Area to Generate Collision Alerts", 2014 Interational conference on Issues and Challenges in Intelligent Computing Technologues(ICICT), August 2014.
- J. V. Sai Ram, K.M.S.V. Manikanta, G. Pavanth,
 B.Jagadeep, "Automatic Braking System Using Ultrasonic Sensor", Volume 3, Issue 4, April 2017.