

# Statistical Measures of Writing style by using K-Characteristics Criteria

Dr. Ashok Y. Tayade

Assistant Professor, Department of Statistics, Dr. B. A. M. University, Aurangabad, Maharashtra, India

## ABSTRACT

This research article is contributes to the writing style which has, as a discipline, recognized itself in the recent years. We have considered some statistical parameters and large sample test is taken in consideration to the data for K-Characteristics. The data is collected from the book of former Priminister Pandit Jawaharlal Nehru. **Keywords :** Statistical Methods, K-Characteristics Criteria, Large Sample Test.

#### I. INTRODUCTION

In this chapter a criterion is examined for measuring writing style of Pandit Jawaharlal Nehru. Nehru's book, entitled "The Discovery of India" (1946) is used for collection of data.

Yule (1944) derived a "Characteristics" to measure writing style which is independent of sample size. K – Characteristics is discussed in detail in the book entitled "The statistical study of literary Vocabulary (1944) by Yule. This book contains eleven chapters. Chapter first, second and third discussed theoretical part of the K- characteristics. In chapter four practical examples are presented.

A number of characteristics have been suggested in the literature to describe writing style of an author. Some others have fancy for writing long sentences while others use small sentences. Apparently sentence-length would be a criterion to distinguish writing style of authors. If we examine passages of writing of an author, we notice certain words are repeated in this writing. Moreover some authors have tendency to use certain particular words. Naturally words with their frequencies vary from author to author. Thus a criterion can be formulated based on words with their frequencies.

This characteristic is independent of size of sample within the limits of fluctuations of sampling. This seemed to be an important result. Yule (1944) noticed this by taking a series of samples spread over one and same work.

It is noted that the characteristics remained the same within the limits of fluctuation of sampling, whether the distribution was based on either one or two or three or four or five thousand occurrences. Therefore one was able to compare two distributions without regard to the number of occurrences.

The results gave one confidence in the general notions on which the theory was based. Next, the characteristics having been obtained, it was obviously desirable to find out the extent to which it would be likely to vary in the data drawn from different but similar work of one and the same author.

Yule (1944) considered this point and formulated a criterion based on facts. For this purpose Yule (1944) imagined the frequency of words to be similar to the

frequency of accidents within a given period. In the distribution of accidents we have the intervals without accident. However in the word distribution such a thing is not possible.

## II. K- Characteristics and large sample test

It is noted that Yule (1944) was a Cambridge statistician who pioneered several impotent stylostatistical measures. His main concern was to devise a criterion which would apply largely independently of sample size. This work is based on tables showing the number of words used once, twice, thrice,...etc., by an author in his / her writing . Commonsense suggests that there ought to be something the same or rather approximately the same within the limits of fluctuations of sampling. The equivalent for the word distribution would be the (unknown) total of words at risk. The characteristics of the accident-distribution are independent of the period of exposure to risk. The characteristics are also independent of S1. If we express this characteristics in terms of the two sums S1 and S2, we get the expression  $(S_2-S_1) / (S_1)^2$  must also be independent of S1, where S1 and S2 are respectively the first and second moments (i.e.  $\mathrm{S}_1 = \sum_{i=1}^n \mathrm{fx}$  ,  $\mathrm{S}_2 = \sum_{i=1}^n \mathrm{fx}^2$  ). The above expression is therefore constant for the decapitated distribution. In actual example it is found that, since S1<sup>2</sup> greatly exceeds S2, the above expression gives a very small decimal. It is inconvenient working with small decimals and for practice handier to multiply the expression by 10,000 thus the characteristics is given by

$$K = 10000 \frac{S_2 - S_1}{S_1^2}$$

where,  $S_1$  and  $S_2$  are respectively the first and second moments.

It has been noted that for large samples an estimate of a parameter may be obtained by calculating from the sample values, the value of parameter. For sample of size n, the standard error gives valid measure of precision, provided that the sampling distribution of the statistic under discussion approaches normality and that n is large.

## III. Methodology

In this present chapter, Jawaharlal Nehru's work entitled "The Discovery of India" (1946) is considered. The book was written by him in the prison of Ahmadnagar fort during the five months, April to September 1944.

The principal merit of the Discovery is that it let us sees the mind of its author and helps us to forget the links of our racial memory and firmly turns our face to the culture. The Discovery of India is a happy blending of the past with the present. Jawaharlal Nehru projected India's illustrious past in comparison with the present. And through this he tried to present both the aspects in front of the minds of his countrymen to let them decide, to retrieve what they had lost, what they had forsaken and what exactly they needed to retrieve. Nehru took the solid material of history to bring forth yet another image of India into focus. This work exposed Nehru to a crosssection of world opinion.

The Discovery of India is a work of perennial value. Written in 1944 in the confines of the Ahmadnagar fort, it has an edge over his two other major works, "Glimpses of World History" and "Autobiography" in so far as the writer stands mellowed. It shows a much more balanced mind, a mind which always tried to look beyond the narrow confinements around him. The book shows a vision which never ceased to work and which ultimately made the man one of the greater visionaries of his time. For the sake of comparison we have selected five samples from his book. Each sample contains one thousand words. Further count of words occurring once, twice, thrice has been determined for each sample. The following data are complete in the sense that each sample contains one thousand words. The number of different words occurred how many times and the total number of words occurred i.e. the total frequencies of each sample are shown below:

| NO. Of different |          | Number of v | words occurring ( | per 1000 words) |          |
|------------------|----------|-------------|-------------------|-----------------|----------|
| Words,           | Sample-I | Sample-II   | Sample-III        | Sample-IV       | Sample-V |
| ( X)             | А        | В           | С                 | D               | Е        |
| 1                | 283      | 267         | 277               | 240             | 293      |
| 2                | 61       | 64          | 50                | 51              | 68       |
| 3                | 32       | 32          | 23                | 20              | 18       |
| 4                | 10       | 13          | 14                | 10              | 13       |
| 5                | 07       | 05          | 06                | 05              | 08       |
| 6                | 05       | 05          | 01                | 07              | 02       |
| 7                | 02       | 07          | 06                | 06              | 03       |
| 8                | 02       | 02          | 04                | 03              | 04       |
| 9                |          | 03          | 01                | 03              |          |
| 10               | 01       | 02          | 01                | 01              | 03       |
| 11               | 02       |             | 01                | 01              |          |
| 12               | 01       | 02          | 01                | 02              | 01       |
| 13               | 02       | 01          |                   |                 | 01       |
| 14               | 02       |             | 01                | 01              | 01       |
| 15               | 01       | 01          |                   |                 |          |
| 16               | 01       | 01          | 01                |                 | 01       |
| 17               |          |             | 01                |                 |          |
| 18               |          |             |                   |                 | 01       |
| 20               |          |             |                   | 01              |          |
| 22               |          |             | 01                | 01              |          |
| 23               | 01       |             | 01                | 01              |          |
| 24               |          |             | 01                | 01              | 02       |
| 27               |          | 01          |                   |                 |          |
| 29               |          |             |                   | 01              | 01       |
| 30               | 01       | 01          |                   | 01              |          |
| 32               |          |             |                   |                 | 01       |
| 34               | 01       |             |                   |                 |          |
| 39               |          |             |                   | 01              |          |
| 40               |          |             | 01                |                 |          |
| 41               |          | 01          | 01                |                 |          |

## TABLE NO. 3.1

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 1

\_\_\_

\_\_\_

\_\_\_

44

\_\_\_

314

| 45    |     | 01  |     | 01  |     |
|-------|-----|-----|-----|-----|-----|
| 47    |     |     |     |     | 01  |
| 50    |     |     |     | 01  |     |
| 54    | 01  |     |     |     |     |
| 55    |     |     |     | 01  | 01  |
| 61    |     |     | 01  |     |     |
| 70    |     |     | 01  |     |     |
| 72    | 01  |     |     |     |     |
| 79    |     | 01  |     |     |     |
| Total | 417 | 410 | 395 | 360 | 424 |

#### **IV. Statistical Measures**

In table no. 3.1 the data are presented. It was considered to one thousand occurrences, so as to give a fairly substantial basis for the characteristics. We formed five of such samples say A, B, C, D and E, and by adding together the number of times the words occurred in any two of them A and B, A and C, B and C and so on, we could get a sample based on 2000 occurrences. By adding together the number of times the words occurrences, by adding together the number of times the word occurred in any three we could get a sample based on 3000 occurrences. By adding together the number of times these occurred in all four we could get a sample based on 4000 occurrences. And finally by adding together the number of times the words occurred in all the five, we could get a sample based on 5000 occurrences. This combined data are shown in table numbers 4.1, 4.2, 4.3 and 4.4.

The work was continued in precisely the same way. The combined samples are AB, AC, AD, AE, BC, BD, BE, CD, CE, and DE; ABC, ABD, ABE, ACD, ADE, ACE, BCD, BCE, BDE and CDE ; ABCD, ABCE, ACDE, BCDE, and ABDE and finally ABCDE. The addition of two samples per 2000, of three samples per 3000, of four samples per 4000 and of all the five samples per 5000 respectively is compiled. The distributions are shown in table 3.1 and 4.1 to 4.4. The table 3.1 gives the five distribution for the initial samples A, B, C, D and E for 1000 occurrences each : the actual number of occurrences S1 is calculated in col.(3) of table no. 4.5, and their range is from 978 to 1002. Table no. 4.1 gives the ten distributions based on the possible pairs of A, B, C, D and E, each distribution being therefore based on 2000 occurrences each. Table no. 4.2 shows the ten distributions based on the possible triplets of A, B, C, D and E, each distribution being therefore consisted of 3000 occurrences each. Table no. 4.3 presents the five distribution based on the possible four distributions of A, B, C, D and E, each distribution being therefore based on 4000 occurrences each. Table no. 4.4 gives a distribution based on 5000 occurrences formed by all five samples taken together. The combined samples data are presented in the following tables:

|                  |     |     | Num | ber of w | vords oc | curring | (per 200 | 0 words | )   |     |
|------------------|-----|-----|-----|----------|----------|---------|----------|---------|-----|-----|
| NO. Of different | 1   | 2   | 3   | 4        | 5        | 6       | 7        | 8       | 9   | 10  |
| words, ( X)      | AB  | AC  | AD  | AE       | BC       | BD      | BE       | CD      | CE  | DE  |
| 1                | 550 | 560 | 523 | 576      | 544      | 507     | 560      | 517     | 570 | 533 |
| 2                | 125 | 111 | 112 | 129      | 114      | 115     | 132      | 101     | 118 | 119 |
| 3                | 64  | 55  | 52  | 50       | 55       | 52      | 50       | 43      | 41  | 38  |
| 4                | 23  | 24  | 20  | 23       | 27       | 23      | 26       | 24      | 27  | 23  |
| 5                | 12  | 13  | 12  | 15       | 11       | 10      | 13       | 11      | 14  | 13  |
| 6                | 10  | 06  | 12  | 07       | 06       | 12      | 07       | 08      | 03  | 09  |
| 7                | 09  | 08  | 08  | 05       | 13       | 13      | 10       | 12      | 09  | 09  |
| 8                | 04  | 06  | 05  | 06       | 06       | 05      | 06       | 07      | 08  | 07  |
| 9                | 03  | 01  | 03  |          | 04       | 06      | 03       | 04      | 01  | 03  |
| 10               | 03  | 02  | 02  | 04       | 03       | 03      | 05       | 02      | 04  | 04  |
| 11               | 02  | 03  | 03  | 02       | 01       | 01      |          | 02      | 01  | 01  |
| 12               | 03  | 02  | 03  | 02       | 03       | 04      | 03       | 03      | 02  | 03  |
| 13               | 03  | 02  | 02  | 03       | 01       | 01      | 02       |         | 01  | 01  |
| 14               | 02  | 03  | 03  | 03       | 01       | 01      | 01       | 02      | 02  | 02  |
| 15               | 02  | 01  | 01  | 01       | 01       | 01      | 01       |         |     |     |
| 16               | 02  | 02  | 01  | 02       | 02       | 01      | 02       | 01      | 02  | 01  |
| 17               |     | 01  |     |          | 01       |         |          | 01      | 01  |     |
| 18               |     |     |     | 01       |          |         | 01       |         | 01  | 01  |
| 20               |     |     | 01  |          |          | 01      |          | 01      |     | 01  |
| 22               |     | 01  | 01  |          | 01       | 01      |          | 02      | 01  | 01  |
| 23               | 01  | 02  | 02  | 01       | 01       | 01      |          | 02      | 01  | 01  |
| 24               |     | 01  | 01  | 01       | 01       | 01      | 02       | 02      | 03  | 03  |
| 27               | 01  |     |     |          | 01       | 01      | 01       |         |     |     |
| 29               |     |     | 01  | 01       |          | 01      | 01       | 01      | 01  | 02  |
| 30               | 02  | 01  | 02  | 01       | 01       | 02      | 01       | 01      |     | 01  |
| 32               |     |     |     | 01       |          |         | 01       |         | 01  | 01  |
| 34               | 01  | 01  | 01  | 01       |          |         |          |         |     |     |
| 39               |     |     | 01  |          |          | 01      |          | 01      |     | 01  |
| 40               |     | 01  |     |          | 01       |         |          | 01      | 01  |     |
| 41               | 01  | 01  |     |          | 02       | 01      | 01       | 01      | 01  |     |
| 44               |     |     |     | 01       |          |         | 01       |         | 01  | 01  |
| 45               | 01  |     | 01  |          | 01       | 02      | 01       | 01      |     | 01  |
| 47               |     |     |     | 01       |          |         | 01       |         | 01  | 01  |
| 50               |     |     | 01  |          |          | 01      |          | 01      |     | 01  |
| 54               | 01  | 01  | 01  | 01       |          |         |          |         |     |     |
| 55               |     |     | 01  | 01       |          | 01      | 01       | 01      | 01  | 02  |
| 61               |     | 01  |     |          | 01       |         |          | 01      | 01  |     |

TABLE NO. 4.1 : Ten Samples (per 2000 words)

| 70    |     | 01  |     | 01  | 01  |     |     | 01  | 01  |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 72    | 01  | 01  | 01  |     |     |     |     |     |     |     |
| 79    | 01  |     |     |     | 01  | 01  | 01  |     |     |     |
| Total | 827 | 812 | 777 | 841 | 805 | 770 | 834 | 755 | 819 | 784 |

TABLE NO. 4.2 : Ten Samples (per 3000 words)

|                  |     |     | Numbe | er of wo | rds occu | irring (p | er 3000 | words) |     |     |
|------------------|-----|-----|-------|----------|----------|-----------|---------|--------|-----|-----|
| NO. Of different | 1   | 2   | 3     | 4        | 5        | 6         | 7       | 8      | 9   | 10  |
| words, (A)       | ABC | ABD | ABE   | ACD      | ADE      | ACE       | BCD     | BCE    | BDE | CDE |
| 1                | 827 | 790 | 843   | 800      | 816      | 853       | 784     | 837    | 800 | 810 |
| 2                | 175 | 176 | 193   | 162      | 180      | 179       | 165     | 182    | 183 | 169 |
| 3                | 87  | 84  | 82    | 75       | 70       | 73        | 75      | 73     | 70  | 61  |
| 4                | 37  | 33  | 36    | 34       | 33       | 37        | 37      | 40     | 36  | 37  |
| 5                | 18  | 17  | 20    | 18       | 20       | 21        | 16      | 19     | 18  | 19  |
| 6                | 11  | 17  | 12    | 13       | 14       | 08        | 13      | 08     | 14  | 10  |
| 7                | 15  | 15  | 12    | 14       | 11       | 11        | 19      | 16     | 16  | 15  |
| 8                | 08  | 07  | 08    | 09       | 09       | 12        | 09      | 10     | 09  | 11  |
| 9                | 04  | 06  | 03    | 04       | 03       | 01        | 07      | 04     | 06  | 04  |
| 10               | 04  | 04  | 06    | 03       | 05       | 05        | 04      | 06     | 06  | 05  |
| 11               | 03  | 03  | 02    | 04       | 03       | 03        | 02      | 01     | 01  | 02  |
| 12               | 04  | 05  | 04    | 04       | 04       | 03        | 05      | 04     | 05  | 04  |
| 13               | 03  | 03  | 04    | 02       | 03       | 03        | 01      | 02     | 02  | 01  |
| 14               | 03  | 03  | 03    | 04       | 04       | 04        | 02      | 02     | 02  | 03  |
| 15               | 02  | 02  | 02    | 01       | 01       | 01        | 01      | 01     | 01  |     |
| 16               | 03  | 02  | 03    | 02       | 02       | 03        | 02      | 03     | 02  | 02  |
| 17               | 01  |     |       | 01       |          | 01        | 01      | 01     |     | 01  |
| 18               |     |     | 01    |          | 01       | 01        |         | 01     | 01  | 01  |
| 20               |     | 01  |       | 01       | 01       |           | 01      |        | 01  | 01  |
| 22               | 01  | 01  |       | 02       | 01       | 01        | 02      | 01     | 01  | 02  |
| 23               | 02  | 02  | 01    | 03       | 02       | 02        | 02      | 01     | 01  | 02  |
| 24               | 01  | 01  | 02    | 02       | 03       | 03        | 02      | 03     | 03  | 04  |
| 27               | 01  | 01  | 01    |          |          |           | 01      | 01     | 01  |     |
| 29               |     | 01  | 01    | 01       | 02       | 01        | 01      | 01     | 02  | 02  |
| 30               | 02  | 03  | 02    | 02       | 02       | 01        | 02      | 01     | 02  | 01  |
| 32               |     |     | 01    |          | 01       | 01        |         | 01     | 01  | 01  |
| 34               | 01  | 01  | 01    | 01       | 01       | 01        |         |        |     |     |
| 39               |     | 01  |       | 01       | 01       |           | 01      |        | 01  | 01  |
| 40               | 01  |     |       | 01       |          | 01        | 01      | 01     |     | 01  |
| 41               | 02  | 01  | 01    | 01       |          | 01        | 02      | 02     | 01  | 01  |
| 44               |     |     | 01    |          | 01       | 01        |         | 01     | 01  | 01  |
| 45               | 01  | 02  | 01    | 01       | 01       |           | 02      | 01     | 02  | 01  |

| 47    |      |      | 01   | 01   | 01   | 01   |      | 01   | 01   | 01   |
|-------|------|------|------|------|------|------|------|------|------|------|
| 50    |      | 01   |      | 01   | 01   |      | 01   |      | 01   | 01   |
| 54    | 01   | 01   | 01   | 01   | 01   | 01   |      |      |      |      |
| 55    |      | 01   | 01   | 01   | 02   | 01   | 01   | 01   | 02   | 02   |
| 61    | 01   |      |      | 01   |      | 01   | 01   | 01   |      | 01   |
| 70    | 01   |      |      | 01   |      | 01   | 01   | 01   |      | 01   |
| 72    | 01   | 01   | 01   | 01   | 01   | 01   |      |      |      |      |
| 79    | 01   | 01   | 01   |      |      |      | 01   | 01   | 01   |      |
| Total | 1222 | 1187 | 1251 | 1172 | 1201 | 1236 | 1165 | 1229 | 1194 | 1179 |

TABLE NO. 4.3: Five Samples (per 4000 words)

| NO Of lifferent Westle  | Nun  | nber of words | occurring (pe | er 4000 words | 3)   |
|-------------------------|------|---------------|---------------|---------------|------|
| NO. Of different words, | 1    | 2             | 3             | 4             | 5    |
| ( <b>A</b> )            | ABCD | ABCE          | ACDE          | BCDE          | ABDE |
| 1                       | 1067 | 1120          | 1093          | 1077          | 1083 |
| 2                       | 226  | 243           | 230           | 233           | 244  |
| 3                       | 107  | 105           | 93            | 93            | 102  |
| 4                       | 47   | 50            | 47            | 50            | 46   |
| 5                       | 23   | 26            | 26            | 24            | 25   |
| 6                       | 18   | 13            | 15            | 15            | 19   |
| 7                       | 21   | 18            | 17            | 22            | 18   |
| 8                       | 11   | 12            | 13            | 13            | 11   |
| 9                       | 07   | 04            | 04            | 07            | 06   |
| 10                      | 05   | 07            | 06            | 07            | 07   |
| 11                      | 04   | 03            | 04            | 02            | 03   |
| 12                      | 06   | 05            | 05            | 06            | 06   |
| 13                      | 03   | 04            | 03            | 02            | 04   |
| 14                      | 04   | 04            | 05            | 03            | 04   |
| 15                      | 02   | 02            | 01            | 01            | 02   |
| 16                      | 03   | 04            | 03            | 03            | 03   |
| 17                      | 01   | 01            | 01            | 01            |      |
| 18                      |      | 01            | 01            | 01            | 01   |
| 20                      | 01   |               | 01            | 01            | 01   |
| 22                      | 02   | 01            | 02            | 02            | 01   |
| 23                      | 03   | 02            | 03            | 02            | 02   |
| 24                      | 02   | 03            | 04            | 04            | 03   |
| 27                      | 01   | 01            |               | 01            | 01   |
| 29                      | 01   | 01            | 02            | 02            | 02   |
| 30                      | 03   | 02            | 02            | 02            | 03   |
| 32                      |      | 01            | 01            | 01            | 01   |
| 34                      | 01   | 01            | 01            |               | 01   |

| 39    | 01   |      | 01   | 01   | 01   |
|-------|------|------|------|------|------|
| 40    | 01   | 01   | 01   | 01   |      |
| 41    | 02   | 02   | 01   | 02   | 01   |
| 44    |      | 01   | 01   | 01   | 01   |
| 45    | 02   | 01   | 01   | 02   | 02   |
| 47    |      | 01   | 01   | 01   | 01   |
| 50    | 01   |      | 01   | 01   | 01   |
| 54    | 01   | 01   | 01   |      | 01   |
| 55    | 01   | 01   | 02   | 02   | 02   |
| 61    | 01   | 01   | 01   | 01   |      |
| 70    | 01   | 01   | 01   | 01   |      |
| 72    | 01   | 01   | 01   |      | 01   |
| 79    | 01   | 01   |      | 01   |      |
| Total | 1582 | 1646 | 1596 | 1589 | 1611 |

TABLE NO. 4.4: Five Samples (per 5000 words)

| NO. Of different Words, | Number of words occurring (per 5000 words) |
|-------------------------|--------------------------------------------|
| х                       | ABCDE                                      |
| 1                       | 1360                                       |
| 2                       | 294                                        |
| 3                       | 125                                        |
| 4                       | 60                                         |
| 5                       | 31                                         |
| 6                       | 20                                         |
| 7                       | 24                                         |
| 8                       | 15                                         |
| 9                       | 07                                         |
| 10                      | 08                                         |
| 11                      | 04                                         |
| 12                      | 07                                         |
| 13                      | 04                                         |
| 14                      | 05                                         |
| 15                      | 02                                         |
| 16                      | 04                                         |
| 17                      | 01                                         |
| 18                      | 01                                         |
| 20                      | 01                                         |
| 22                      | 02                                         |
| 23                      | 03                                         |
| 24                      | 04                                         |
| 27                      | 01                                         |

| Dr. Ashok Y. Tayade Int | J Sci Res SciEng | Technol.January-I | February-2020;7 | (1): 312-326 |
|-------------------------|------------------|-------------------|-----------------|--------------|
|-------------------------|------------------|-------------------|-----------------|--------------|

| 29    | 02   |
|-------|------|
| 30    | 03   |
| 32    | 01   |
| 34    | 01   |
| 39    | 01   |
| 40    | 01   |
| 41    | 02   |
| 44    | 01   |
| 45    | 02   |
| 47    | 01   |
| 50    | 01   |
| 54    | 01   |
| 55    | 02   |
| 61    | 01   |
| 70    | 01   |
| 72    | 01   |
| 79    | 01   |
| Total | 2006 |
|       |      |

## TABLE NO. 4.5: STATISTICAL CONSTANTS

| 1       | 2    | 3          | 4     | 5      | 6          | 7      | 8        |
|---------|------|------------|-------|--------|------------|--------|----------|
| Samples | So   | <b>S</b> 1 | S2    | М      | $\sigma^2$ | σ      | K        |
| А       | 417  | 978        | 13938 | 2.3453 | 27.9240    | 5.2843 | 135.497  |
| В       | 410  | 1002       | 14820 | 2.4439 | 30.1737    | 5.4930 | 137.6289 |
| С       | 395  | 997        | 16322 | 2.5240 | 34.9509    | 5.9119 | 154.1729 |
| D       | 360  | 998        | 15396 | 2.7722 | 35.0816    | 5.9230 | 144.5570 |
| Е       | 424  | 998        | 13186 | 2.3538 | 25.5587    | 5.0555 | 122.3690 |
|         | Mear | 1          |       | 2.4878 | 30.7378    | 5.5335 | 138.8450 |
| AB      | 827  | 1978       | 28690 | 2.3918 | 28.9709    | 5.3825 | 68.2738  |
| AC      | 812  | 1960       | 30260 | 2.4138 | 31.4396    | 5.6071 | 73.6672  |
| AD      | 777  | 1976       | 29534 | 2.5431 | 31.5429    | 5.6163 | 70.5787  |
| AE      | 841  | 1976       | 27124 | 2.3496 | 26.7315    | 5.1702 | 64.4065  |

| BC   | 805  | 1982 | 31074  | 2.4621  | 32.5393 | 5.7343  | 74.0570 |
|------|------|------|--------|---------|---------|---------|---------|
| BD   | 770  | 1998 | 30148  | 2.5948  | 32.4203 | 5.6939  | 70.5160 |
| BE   | 834  | 1998 | 27938  | 2.3957  | 28.2486 | 5.3159  | 64.9799 |
| CD   | 755  | 1980 | 31718  | 2.6225  | 35.1331 | 5.9273  | 75.8545 |
| CE   | 819  | 1980 | 29508  | 2.4176  | 30.1845 | 5.4940  | 70.2173 |
| DE   | 784  | 1996 | 28582  | 2.5459  | 29.9750 | 5.4749  | 66.7317 |
| Mean |      |      | 2.4737 | 30.7186 | 5.5385  | 69.9283 |         |
| ABC  | 122  | 2960 | 45012  | 2.4223  | 30.9676 | 5.5648  | 47.9958 |
| ABD  | 1187 | 2976 | 44086  | 2.2072  | 30.8546 | 5.5547  | 46.4175 |
| ABE  | 1251 | 2976 | 41876  | 2.3789  | 27.8148 | 5.2740  | 43.9222 |
| ACD  | 1172 | 2958 | 45656  | 2.5239  | 32.5856 | 5.7084  | 48.7990 |
| ADE  | 1201 | 2974 | 42520  | 2.4763  | 29.2718 | 5.4103  | 44.7116 |
| ACE  | 1236 | 2958 | 43446  | 2.3932  | 29.4231 | 5.4243  | 46.2732 |
| BCD  | 1165 | 2980 | 46470  | 2.5579  | 33.3456 | 5.7746  | 48.9730 |
| BCE  | 1229 | 2980 | 44260  | 2.4247  | 30.1338 | 5.4894  | 46.4844 |
| BDE  | 1194 | 2996 | 43334  | 2.5092  | 29.9970 | 5.4769  | 44.9397 |
| CDE  | 1179 | 2978 | 44904  | 2.5259  | 31.7063 | 5.6308  | 47.2753 |
| Mean |      |      | 2.4719 | 30.6100 | 5.5308  | 46.5792 |         |
| ABCD | 1582 | 3958 | 60408  | 2.5019  | 31.9251 | 5.6502  | 36.0340 |
| ABCE | 1646 | 3958 | 58198  | 2.4046  | 29.5751 | 5.4383  | 34.6233 |
| ACDE | 1596 | 3956 | 58842  | 2.4787  | 30.7245 | 5.5430  | 35.0711 |
| BCDE | 1589 | 3978 | 59656  | 2.5035  | 31.2756 | 5.5924  | 35.1847 |
| ABDE | 1611 | 3974 | 57272  | 2.4668  | 29.4655 | 5.4282  | 33.7485 |

| Mean  |      |      | 2.4711 | 30.5932 | 5.5304  | 34.9323 |         |
|-------|------|------|--------|---------|---------|---------|---------|
| ABCDE | 2006 | 4956 | 73594  | 2.4706  | 30.5831 | 5.5302  | 27.9449 |

Now let us examine the characteristics K. The values of K for each distribution are given in table no. 4.5, column 8. For the initial sample A, B, C, and E of 1000 occurrences each, the D characteristics range from 135.497 to 154.1729, a range of 18.6759 units. The mean value of this first group is 138.8450. For the second group of distributions, based on 2000 occurrences each, the range of K values is 64.4065 for AE to 75.8545 for CD. The mean value of this group is 69.9283. For the third group, based on 3000 occurrences each, the range of values is from 43.9222 for ABE to 48.9730 for BCD. The mean value K of this group is 46.5792. For the fourth group the mean value of K is 34.9323. Finally, for the total distribution based on the whole 4956 occurrences, the value of K is 27.9449. All the values of group are around their mean values, because of the fluctuations of sampling. The mean values of K-characteristics for all groups show a steady continuous decrease with increasing size of samples.

The effect sample size on values of characteristics K is shown below:

| No of words (Per) | K- Characteristics |
|-------------------|--------------------|
| 1000              | 138.8450           |
| 2000              | 69.9283            |
| 3000              | 46.5792            |
| 4000              | 34.9323            |
| 5000              | 27.9449            |

**TABLE NO. 4.6** 

An examination of the above values of Kcharacteristics shows that characteristics are decreasing as the size of sample increases.

Brief inspection shows how greatly this behaviour differs from that of the mean and variance; etc. The means are given in table no. 4.5 of column 5, for A, B, C, D and E. Range is from 2.3453 to 2.7722, with a general average of 2.4878. For the second group the general average of mean is 2.4737, for the third it is 2.47195, and for the fourth group it is 2.4711 and for the final table the mean is 2.4706. The values of characteristics are at first large then the values get smaller as sample size increases. For the complete distribution the mean would of course be directly proportional to S<sub>1</sub> column 6 and 7 of table no. 4.5 show that mean values are nearly constant. The characteristics appear to be constant in each group.

#### V. SUMMARY

Five independent samples each of one thousand words were selected from the book entitled "The Discovery of India" (1946) by Pandit Jawaharlal Nehru. Values of characteristics K formulated by Yule (1944) and modified by Herdan (1964) signifying the style were calculated for each of the samples.

We determine the standard error of the characteristics K with the help of large sample theory. Five values of the characteristics K were tested for their equality with the help of normal distribution. It was noted that differences between the values of characteristics K considered two by two, were not significant at 5% level of significance.

The number of different words which constitute the working vocabulary of a writer is necessarily limited. As such this must result in particular words being drawn upon oftener as the number of occurrences increase. Consequently, the number of occurrences per word, i.e. the ratio between the number of occurrences and vocabulary, increases with number of occurrences. Similarly, the standard deviation must increase with number of occurrences because the number of different words, the vocabulary, does not argument so fast as does the range of the frequency with which words are used. This suggests that a statistic which is independent of the vocabulary N might satisfy the fundamental relation between sample statistics. Such a statistics is  $V/_{\sqrt{N}}$  , that is the coefficient of variation divided by  $\sqrt{N}$ .  $V/\sqrt{N}$  is independent of N and should therefore represent a parameter of the word count which satisfies the basic requirements for sample statistics that remains sensibly constant irrespective of sample size, and thus characterizes the population.

So far calculating the moments, i.e. mean, variance, covariance and standard error etc., the following derivation is considered. Suppose that the two following conditions are satisfied: H is continuous function of  $m_{\nu}$  and  $m_{\rho}$ , where  $m_{\nu}$  and  $m_{\rho}$  are respectively v<sup>th</sup>and  $\rho^{th}$  sample moments about the sample mean.

 $m_1 = 0$ ,  $m_2 = s^2$ H(m<sub>v</sub>, m<sub>p</sub>)

The theorem is given on the page 353 of Harald Cramer's book entailed 'Mathematical Methods of Statistics' (1958).

$$\begin{split} E(H) &= H_0 + O(1/n) \\ D^2(H) &= \mu_2(m_v) \ H_1^2 \ + \mu_1(m_v \ , \ m_\rho) \ H_1H_2 + \ \mu_2(m_\rho) \ H_2^2 \ + \\ 0(1/n^{3/2}) \end{split}$$

Where,  $H_0 + H(\mu_v, \mu_\rho)$ ,  $H_1 = \frac{\partial}{\partial m_v} H(m_{v_{\perp}} m_{\rho}) | m_v = \mu_v, m_\rho = \mu_\rho$ ,

$$H_2 = \frac{\partial}{\partial m_{\rho}} H(m_{v}, m_{\rho}) \mid m_v = \mu_v, m_{\rho} = \mu_{\rho}$$

In the present case,

$$H(\mathbf{m}_{v}, \mathbf{m}_{\rho}) = \frac{S}{\overline{X}} , H(\mu_{v}, \mu_{\rho}) = \frac{\sigma}{m}$$
  
Where m is the population mean and  $\mu_{2} = \sigma^{2}$ 

$$H_{1} = \frac{\partial}{\partial s} \left(\frac{s}{\bar{x}}\right)_{\overline{x}=m} = \frac{1}{m}^{2}$$
$$V(s) = \frac{\mu_{4} - \mu_{2}^{2}}{4\mu_{2}n}$$
$$H_{2} = \frac{\partial}{\partial \overline{x}} \left(\frac{s}{\overline{x}}\right) = -\frac{\sigma}{m^{2}}$$
$$V(\overline{x}) = \frac{\mu_{2}}{n}$$

Appling the theorem,

$$D^{2}\left(\frac{s}{\overline{x}}\right) = V(s)\left[\frac{\partial}{\partial s}\left(\frac{s}{\overline{x}}\right)\right]^{2} + 2Cov(s,\overline{x})H_{1}H_{2} + V(\overline{x})\left[\frac{\partial}{\partial \overline{x}}\left(\frac{s}{\overline{x}}\right)\right]^{2} - \dots + (*)$$
$$\therefore Cov(s,\overline{x}) = E[(s-\sigma)(\overline{x}-m)] \quad , \quad s-\sigma = \sqrt{m_{2}} - \sqrt{\mu_{2}}$$

We have,

$$\sqrt{m_2} - \sqrt{\mu_2} = \frac{m_2 - \mu_2}{2\sqrt{\mu_2}} - \frac{(m_2 - \mu_2)^2}{2\sqrt{\mu_2} (\sqrt{m_2} + \sqrt{(\mu_2)^2})}$$
  
$$\therefore Cov(s, \overline{x}) = E \left[ \frac{m_2 - \mu_2}{2\sqrt{\mu_2}} (\overline{x} - m) \right]$$
  
$$- E \left[ \frac{(m_2 - \mu_2)^2}{2\sqrt{\mu_2} (\sqrt{m_2} + \sqrt{(\mu_2)^2})} \right]$$
  
$$\therefore Cov(s, \overline{x}) = \frac{Cov(\overline{x} - m_2)}{2\sqrt{\mu_2}} = \frac{1}{2\sqrt{\mu_2}} \frac{(n - 1)}{n^2} \mu_3$$
  
$$= \frac{1}{2\sqrt{\mu_2}} \frac{\mu_3}{n}$$

By neglecting the second term which is small, the equations (\*) reduces to,

According to Herdan (1964), the characteristic K should be (book page-70),

$$V_H = \frac{V_x}{\sqrt{N}} = \frac{\sigma}{m\sqrt{N}}$$

Where N is vocabulary,

$$V_H = \frac{s}{\overline{x}} \frac{1}{\sqrt{N}} = K' \quad \text{----Suppose------} (2)$$

Subsequently,

With the help of this formula we calculate the moments of distribution A, B, C, D and E. First we determine the raw moments, and then the central moments of distributions. We use the equation (2) for calculating K' characteristic, and equation (3) for the values of standard errors. The values of above constants are presented below :

TABLE NO. 5.1. : The values of constants

| Samples | <i>K'</i> | Standard |  |
|---------|-----------|----------|--|
| Samples | Λ         | Error    |  |
| А       | 0.110336  | 0.005915 |  |
| В       | 0.1110039 | 0.007375 |  |
| С       | 01178504  | 0.003665 |  |
| D       | 0.1126054 | 0.001302 |  |
| E       | 0.1043092 | 0.002293 |  |
| AB      | 0.0782543 | 0.002622 |  |
| AC      | 0.0815193 | 0.001752 |  |
| AD      | 0.0792271 | 0.001157 |  |
| AE      | 0.0758792 | 0.001495 |  |
| BC      | 0.0816576 | 0.001948 |  |
| BD      | 0.0790784 | 0.001396 |  |
| BE      | 0.0768222 | 0.001829 |  |
| CD      | 0.0822556 | 0.001    |  |
| CE      | 0.0794089 | 0.0012   |  |
| DE      | 0.0768027 | 0.001    |  |

For estimating  $D^2(V_H)$  from sample values, we have

$$D^{2}(V_{H}) = \frac{\left(m_{4} - m_{2}^{2}\right)\overline{X}^{2} - 4\overline{X}(m_{2}m_{3}) + 4m_{2}^{3}}{4\overline{X}^{4}m_{2}(nN)}$$

Where,

$$m_2 = s^2$$
,  $m_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}) \sum_{i=1}^n (x_i - \bar{x})^r$ ,  
 $r = 2,3, ...$ 

Next we consider the problem whether the characteristics derived from different samples, are the same. For this purpose let  $V_H$  and  $V'_H$  be the two characteristics based on two different but independent samples.

We have,

$$E(V_{H}) = K$$
And  $(V'_{H}) = K'$ 
Let  $Z = V_{H} - V'_{H}$ 

$$E(Z) = K - K'$$
and  $V(Z) = D^{2}(V_{H}) + D^{2}(V'_{H})$  since the samples are independent.

Consider the hypothesis,  $H_0: K = K'$  against  $H_1: K \neq K'$ 

We consider the normal test based on large samples,  $y = \frac{Z}{\sqrt{V(Z)}} \sim N(0, 1)$ , for large n

Making use of the above equations for calculating the values of y, the calculated values of pairs A-B, C-D, A-D, A-E, B-C, B-D, B-E, C-D, C-E, D-E, AB-CD, AD-CE, BC-DE are shown below:

TABLE NO. 5.2 : Values of y

| Sample Pairs | y calculated |
|--------------|--------------|
| A-B          | -0.005793    |
| C-D          | 0.0744148    |
| A-D          | -0.0267124   |
| A-E          | 0.0665231    |
| B-C          | -0.0651586   |
| B-D          | -0.0172128   |
| B-E          | 0.0681615    |
| C-D          | 0.0744162    |

| C-E   | 0.1754327  |
|-------|------------|
| D-E   | 0.1383622  |
| AB-CD | 0.0667309  |
| AD-CE | 0.00308357 |
| BC-DE | 0.0945367  |

We observe that the values of calculated y lie between -1.96 to 1.96, which are critical points of a standardized normal variate at 5% level of significance. So these are not significant. The difference of K - K' is just due to the fluctuations of sampling. The sample data do not provide sufficient evidence against the null hypothesis which may therefore be accepted. Thus the characteristics K' remains the same.

#### The value of K-Characteristics:

We combine all the five independent values of K'characteristics and determine unique value of Kcharacteristics i.e.  $\overline{K'}$ ,

$$\overline{K'} = \frac{(K_1 + K_2 + K_3 + K_4 + K_5)}{5}$$
= 138.84496  

$$V(\overline{k'}) = \frac{V(K_1 + K_2 + K_3 + K_4 + K_5)}{n^2}$$
= 6.147556  
S.E.(\overline{k'}) = 2.4794265  
\therefore The Confidence - Interval for ',  

$$K' \pm \sqrt{V(\overline{K'})}$$

 $138.84496 \pm 2.4794265$ 

#### VI. CONCLUSION

Five independent samples each of one thousand words were selected from the book entitled, " The Discovery of India" (1946) by Pandit Jawaharlal Nehru. Values of K characteristic formulated by Yule(1944) and modified by Herdan (1964) signifying the style were calculated for each of the sample.

It is noted that difference among the values of characteristics K' signifying the author's style, were statistically insignificant. Further the value of characteristics K', signifying the author's style, dcreases as the sample size increases.

#### VII. REFERENCES

- Yule G. Udny(1944): The Statistical Study of Literary Vocabulary, Cambridge University Press.
- [2]. Yule Udny G. And Kendall M.G.(1968): An Introduction to the theory of statistics, Fourteenth edition, Revised and Enlarged, Universal Book Stall, New Delhi.
- [3]. Williams C.B.(1946) : Yule's Characteristic" and the "Index of Diversity", Nature, Vol. 157, p.-482.
- [4]. Prabhu-Ajgaonkar S.G(1969): Determination of phonemic and Graphemic frequencies by sampling Techniques, Deccan College, deccan College Post-graduate and Research Institute, Poona,
- [5]. Prabhu-Ajgaonkar S.G(1973): Frequency count and sampling method, Journal of Ganganatha, The Kendriya Sanskrit Vidyapeetha, Allhabad, Vol. XXIX, Parts, pp.-1-4.
- [6]. Prabhu-Ajgaonkar S.G(1975): On determining Average Number of phonemes per word, Natural Science Journal, Marathwada University, Vol. XIV, Science 7.
- [7]. Herdan Gustav(1956): Languqge asChoice and Chance., P. Noordhoff Ltd., Groninggen, Holland.
- [8]. Herdan G.(1964): Quantitative Linguistics, Butter Worth and Company(Publishers)Ltd.
- [9]. Herdan Gustav(1966 b): "How can Quantitative Methods Contribute to Our Undersanding of Language Mixture and Language Borrowing?" in Statistique et Analyse Linguistique., Paris, pp.-17-36.

- [10]. Herdan Gustav(1953): Language in the light of the theory of information, part-I, Metron., Vol. XVII, Nos.1-2, pp.-89-125.
- [11]. Herdan Gustav(1955): " A New Derivation and Interpretation of Yule's Characteristics-K," Journal of Applied Mathematics and Physics(ZAMP), VI, pp.-332-334.
- [12]. Herdan Gustav(1955): Language in the light of the theory of information, Part-II, Metron, Vol. XVII, Nos. 3-4,pp.-93-121.
- [13]. Herdan Gustav(1958 a): The relation between the dictionary distribution and the occurrence distribution of word-length and its importance for the study of quantitative linguistics, Biometrika, Vol. 45, pp.-222-228.
- [14]. Herdan Gustav(1958 b): The mathematical relation between Greenberg's index of linguistic diversity and Yule's Characteristics, Biometrika, Vol.45,pp.-268-270.
- [15]. Herdan Gustav(1960): Type-taken Mathematics: A Text-Book of Mathematical Linguistics, Mouton and Co., The Hague.
- [16]. Herdan Gustave(1961): A critical examination of Simon's model of certain distribution function in linguistics, Applied Statistics, Vol. X, No. 2, pp.-65-76.
- [17]. Herdan Gustav(1962): Calculus of Linguistic Observations, Mouton and Co., The Hague.
- [18]. Herdan Gustav(1966 a): The Advanced Theory of Language as Choice and Chance, New York.
- [19]. Nehru Pandit Jawaharlal(1946): "The Discovery of India", Second Edition, Meriden Books Ltd, London.

## Cite this article as :

Dr. Ashok Y. Tayade, "Statistical Measures of Writing style by using K-Characteristics Criteria", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 7 Issue 1, pp. 312-326, January-February 2020. Journal URL : http://ijsrset.com/IJSRSET207350