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ABSTRACT 

 

Solving of Fractional differential equations of fractional (i.e., non-integer) order in an accurate, reliable and 

efficient way is much more difficult than in the standard integer-order case; moreover, the majority of the 

computational tools do not provide built-in functions for this kind of problem. In this paper was included the 

effective families of numerical methods for fractional-order problems, and the major computational issues such 

as the efficient treatment of the persistent memory term and the solution of the nonlinear systems involved in 

implicit methods using MATLAB routines specifically devised for solving three families of fractional-order 

problems: fractional differential equations (FDEs) (also for the non-scalar case), multi-order systems (MOSs) of 

FDEs and multi-term FDEs (also for the non-scalar case); some examples are provided to illustrate the use of the 

routines. 

Keywords: Fractional Differential equations (FDEs); numerical methods; multi-term equations; product 

integration (PI); fractional linear multi-step methods (FLMMs); MATLAB routines. 

 

I. INTRODUCTION 

 

The increasing interest in applications of fractional 

calculus has motivated the development and the 

investigation of numerical methods specifically 

devised to solve fractional differential equations 

(FDEs). Finding analytical solutions of FDEs is, indeed, 

even more difficult than solving standard ordinary 

differential equations (ODEs) and, in the majority of 

cases, it is only possible to provide a numerical 

approximation of the solution. 

 

Although several computing environments (such as, 

for instance, Maple, Mathematical, MATLAB and 

Python) provide robust and easy-to-use codes for 

numerically solving ODEs, the solution of FDEs still 

seems not to have been addressed by almost all 

computational tools, and usually, researchers have to 

write codes by themselves for the numerical 

treatment of FDEs. When numerically solving FDEs, 

one faces some non-trivial difficulties, mainly related 

to the presence of a persistent memory (which makes 

the computation extremely slow and expensive), to 

the low-order accuracy of the majority of the 

methods, to the not always straightforward 

computation of the coefficients of several schemes, 

and so on.  

 

Writing reliable codes for FDEs can be therefore a 

quite difficult task for researchers and users with no 
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particular expertise in computational mathematics, 

and it would be surely preferable to rely on efficient 

and already tested routines. 

 

The aim of this paper is to illustrate the basic 

principles behind some methods for FDEs, thus to 

provide a short tutorial on the numerical solution of 

FDEs, and discuss some non-trivial issues related to 

the effective implementation of methods as, for 

instance, the treatment of the persistent memory 

term, the solution of equations involved by implicit 

methods using MATLAB routines for the solution of a 

wide range of FDEs. 

  

II. Preliminary Material on Fractional Calculus 

 

As the starting point for introducing fractional-order 

operators, the Riemann–Liouville (RL) integral; for a 

function y(t) L1([t0, T])  (as usual, L1 is the set of 

Lebesgue integrable functions), the RL fractional 

integral of order a > 0 and origin at t0 is defined as: 
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It provides a generalization of the standard 

integral, which, indeed, can be considered a particular 

case of the RL integral (1) when a = 1. The left inverse 

of  is the RL fractional derivative: 
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Where, m = [] is the smallest integer greater or equal 

to a and Dm, y(m) or dm/dtm denotes the standard 

integer-order derivative. 

 

An alternative definition of the fractional derivative, 

obtained after interchanging differentiation and 

integration in Equation (2), is the so-called Caputo 

derivative, which, for a sufficiently differentiable 

function, namely for yAm [t0, T] (i.e., y(m-1) absolutely 

continuous), is given by: 
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  is a left inverse of the RL integral,  

where Tm-1[y; t0](t) is the Taylor polynomial of degree 

m-1 for the function y(t) centered at t0, that is: 
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More generally speaking, by combining 

(Lemma 2.3) and (Theorem 3.8), it is also possible to 

observe that for any  > , it holds: 
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A relationship that will be useful, in a 

particular way, on multi-term FDEs. 

The two definitions (2) and (3) are 

interrelated, and indeed, by deriving both sides of 

Equation (4) in the RL sense, it is possible to observe 

that: 
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and, consequently: 
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Observe that in the special case 0 < a < 1, the above 

relationship becomes: 
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  Clearly showing how the Caputo derivative is a 

sort of regularization of the RL derivative at t0. 

Another feature that justifies the introduction of the 

Caputo derivative is related to the differentiation of 

constant function; indeed, since: 
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In several applications, it is preferable to deal with 

operators for which the derivative of a constant is 

zero as in the case of Caputo’s derivative. 

 

One of the most important applications of Caputo’s 

derivative is however in FDEs. Unlike FDEs with the 

RL derivative, which are initialized by derivatives of 

non-integer order, an initial value problem for an 

FDE (or a system of FDEs) with Caputo’s derivative 

can be formulated as: 
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where f (t, y) is assumed to be continuous and 
1

0

)1(

0,0 )(,...,)( −myyy  are the assigned values of the 

derivatives at t0. Clearly, initializing the FDE with 

assigned values of integer-order derivatives is more 

useful since they have a more clear physical meaning 

with respect to fractional-order derivatives. 

 

The application to both sides of Equation (6) of the RL 

integral



0t

, together with Equation (4), leads to the 

reformulation of the FDE in terms of the weakly-

singular Volterra integral equation (VIE): 
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The integral Formulation (7) is surely useful since it 

allows exploiting theoretical and numerical results 

already available for this class of VIEs in order to 

study and solve FDEs. 

 

The nonlocal nature of FDEs: the presence of a real 

power in the kernel makes it not possible to split the 

solution of Equation (7) at any point tn as the solution 

at some previous point tn - h plus the increment term 

related to the interval [tn – h, tn], as is common with 

ODEs. 

 

Furthermore, as proved by Lubich [9], the solution of 

the VIE (7) presents an expansion in mixed (i.e., 

integer and fractional) powers: 
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Thus showing a non-smooth behavior at t0; as is well-

known, the absence of smoothness at t = t0 poses some 

problems for the numerical computation since 

methods based on polynomial approximations fail to 

provide accurate results in the presence of some lack 

of smoothness. 

 

III. Multi-Step Methods for FDEs 

 

Most of the step-by-step methods for the numerical 

solution of differential equations can be roughly 

divided into two main families: one-step and multi-

step methods. 

 

In one-step methods, just one approximation of the 

solution at the previous step is used to compute the 

solution and, hence, they are particularly suited when 

it is necessary to dynamically change the step-size in 

order to adapt the integration process to the behavior 

of the solution. In multi-step methods, it is instead 

necessary to use more previously evaluated 

approximations to compute the solution. 

 

Because of the persisting memory of fractional-order 

operators, multi-step methods are clearly a natural 

choice for FDEs; anyway, although multi-step 

methods for FDEs are usually derived from multi-step 

methods for ODEs, when applied to FDEs, the 

number of steps involved in the computation is not 

fixed, but it increases as the integration proceeds 

forward, and the whole history of the solution is 

involved in each step’s computation. 

 

Multi-step methods for the FDEs (6) are therefore 

convolution quadrature formulas, which can be 

written in the general form: 
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where n and cn are known coefficients and tn = t0 + 

nh is an assigned grid, with a constant step-size h > 0 

just for simplicity; the way in which the coefficients 

are derived depends on the specific method. In 

particular, the following two classes of multi-step 

methods for FDEs are as follow: 

 

• product-integration (PI) rules, 

• fractional linear multi-step methods 

(FLMMs). 

Both families of methods are based on the 

approximation of the RL integral in the VIE (7) and 

generalize, on different bases, standard multi-step 

methods for ODEs. They allow one to write general-

purpose methods requiring just the knowledge of the 

vector field of the differential equation. 

 

The several other approaches have been however 

discussed in the literature: see, for instance, the 

generalized Adams methods, extensions of the Runge-

Kutta methods, generalized exponential integrators, 

spectral methods, spectral collocation methods, 

methods based on matrix functions, and so on. In this 

paper, for brevity, we focus only on PI rules and 

FLMMs, and we refer the reader to the existing 

literature for alternative approaches. 

 

IV. Applicative Example 

 

A classical fractional-order dynamical system 

consisting of the nonlinear Brusselator system: 
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and the computation for (a1, a2) = (0.8, 0.7), (A, B) = 

(1.0,3.0) and (x0, z0) = (1.2, 2.8) by means of the 

following MATLAB lines: 

alpha = [0.8,0.7] ; 

A = 1 ; B = 3 ; 

param = [ A , B ] ; 

f_fun = @(t,y,par) [ ... 

par(1) - (par(2)+1)*y(1) + y(1)̂ 2*y(2) ; ... 

par(2)*y(1) - y(1)̂ 2*y(2) ] ; 

J_fun = @(t,y,par) [ ... 

-(par(2)+1) + 2*y(1)*y(2) , y(1)̂ 2 ; ... 

par(2) - 2*y(1)*y(2) , -y(1)̂ 2 ] ; 

t0 = 0; T = 100 ; 

y0 = [1.2 ; 2.8] ; 

After showing in Figure 1 the behavior of the solution, 

the errors and the EOCs are presented in Table 1. 

 

 

Figure 1. Behavior of the solution of the Brusselator 

multi-order system (MOS) in the phase plane (a) and 

in the (t, x) and (t, z) planes (b). 

 

Table 1. Errors and EOC at T = 100.0 for the 

Brusselator system of FDEs with (a1, a2) = (0.8, 0.7), (A, 

B) = (1.0, 3.0) and (x0, z0) = (1.2, 2.8). 
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h 
PI 1 Exp1 PI 1 Impl PI 1 Exp1 PI P.C 

Error EOC Error EOC Error EOC Error EOC 

2-2 4.64(-1)  1.03(0)  4.90(-2)  1.16(0)  

2-3 2.32(-1) 0.996 5.20(-1) 0.988 7.48(-3) 2.643 2.92(-1) 1.994 

2-4 1.22(-1) 0.926 2.25(-1) 1.211 2.85(-3) 1.460 5.80(-2) 2.333 

2-5 6.86(-2) 0.834 9.84(-1) 1.191 7.63(-4) 1.903 1.28(-2) 2.179 

2-6 3.69(-2) 0.896 5.20(-1) 1.124 1.92(-4) 1.991 3.41(-3) 1.910 

2-7 1.92(-2) 0.941 5.20(-1) 1.071 4.60(-5) 2.060 1.01(-3) 1.758 

 

V. CONCLUSIONS 

        

In this paper have been presented the existing 

methods for numerically solving systems of FDEs and 

have been discussed their application to multi-order 

systems and linear multi-term FDEs. This paper is 

particular focused on the efficient implementation of 

product integration rules and presented MATLAB 

routines by providing a tutorial guide to their use. 

Their application has been moreover illustrated in 

details by means of example. 
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