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I. INTRODUCTION, DEFINITIONS AND NOTATIONS

In 2007 Banerjee and Datta [6] introduced the definition of relative order of an entire function f(z,,z,) with respect
to an entire function g(z,,z,) as follows.
Let g(z4,2) be an entire function holomorphic in closed polydisc {(zy,2,): |z;| < rj;j = 1,2} and let
G(ry,ry) = max{g(zl,zz); Z]-| <rj;j= 1,2}

The relative order of fwith respect to g, denoted by p,(f) and is denoted by

pg(h) = inf{u > 0:F(ry,ry) < G(rf, r;l); forr; > R(w),r, = R(u)}.
In this paper we introduced the idea of relative order of entire functions of several complex variables.
Note: Subscript v,, denote n variables.
Definition 1. The order Y~ p; and lower order Y~ A¢ of an entire function f are defined as

. logl2] Vo M _ logl2] Vo M
Yipr=  lim  sup—e——f_ and “A;= lim _log” " Mp
1l I 00 log(ry.ra.....rn) 1 Tgpeealy =00 108(r1.Iz.....lp)
. . .- R R R
Vn = Vn < 1 2 n Vn
using the inequalities , “» ¢ M¢ < R — M¢(R)
{cf.[2]},for0<r; <R;,0<r1r, <R, .... ,0<r, <R,
. logl2] Vo M _ . logl2l Ve
Vo pg = lim sup—e— £ and ViAs= lim inf—& ___7f_
1,020 I'n—> log(ry.rz.....In) 1,020 rp—0o log(rq.r3.....0)
Let L. = L(ry, 1y, 13, ....., 1) be a positive continuous function slowly increasing
ie., L(ary,ars,, .....,ary)~L(ry, 1y, ..., 1)

asry,ry,.....,ry — oo for every positive constant a. Singh and Barker [24] defined in the following way.
Definition 2.[24] A positive continuous function L(ry, 1y, ....., 1) is called a slowly changing function. If
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1 L(krq, kry, ..., Kkry)
ke = L(ry, 1y, cenve, )
The notion of L — order and L — lower order for entire functions, introduce the Somasundaram and Thamizharasi
in [7]
The more generalized concept for L — order and L. — lower order for entire functions are L* — order, and L* —
lower order respectively. Their definitions are as follows:

< k&, for rq, 1y, ....., 1y, = r(€) and uniformly for k(= 1).

Definition 3. [7] The L* — order, " p} and L* — lower order AL of an entire function fare defined as
log!?! ¥ Mg (1)

v, _L* .
" = lim su and
Pt T1,T2,00In >0 P log[(r;.r5 ... ... ry,) el(rurz, .rn))]
V4 L* _ . log[z] ‘M (1)
A= rq,r hrnr —>ooln 1 L(ry,r,erpn)
PR SIS ogl(ry.ry ... .. ry) e )]

If an entire function g is non-constant then M,(r) is strictly increasing and continuous. Its inverse
Vi Mglz (If(0,0, ... ... ,0)|, ) - (0, ), exists and is constant
lim  "Mg'(r) =
1,20, >0

Banerjee and Datta [6] introduced the definition of relative order of an entire function f of several complex variables

w.r.t. an entire function of several complex variables g, denoted by “» pg(f) as follows

Vi pg(f) = inf{u > 0; " Me(r) < ¥ Mg(r#),forall ry, 1y, ... ... Ty > 1) > 0}

. log "Mz " M¢(r)
= lim S
r1,2,m,In >0 log(r1r2 ...... I'n)
The above definition coincides with classical one {cf.[8]}.
Similarly, we can define the relative lower order of an entire function f of several complex variables with
respect to  another entire  function of several complex variables g denoted by

, forg(zq,23, ... ... Zy) = exp(z1.Z5 .. ... Zn)

log "Mz M, (r
V"/lg(f) = lim in g g @)
11,1250 Ty lOg(T1T2 ...... Tn)
Datta and Maji [14] gave an another definition of relative order and relative lower order of an entire function of
several complex variables with respect to another entire function of several complex variables in this following.

Definition 4. [14] The relative order “» pgy(f) and relative lower order Vo Ag(f) of an entire function of several
complex variables f with respect to another entire function g of several complex variables are defined by

log "M;1V M. (r log "WM7Y M, (r
pg(F) = lim 9 Mg MO gy = tim g2 Mo MO
1,72 eeeeen T =00 log(riry ... ... ) 1,72, e0enen Ty =00 log(riry ... ... 1)
Definition 5. ([18][17]) The relative L* — order of an entire function f of several complex variables with
respect to an entire function g of several complex variables defined by

Yi pg =inf {,u >0:" Me(r) < Mg{(rl.r2 ...rn)eL(TlfrZ'"'Tn)},for all ry, 1y, .o, 1y > 1o(0) > 0}

_ oy log Mzt" My (1)
= im sup
T4 eree =00 log[(r1.75 ... ... 1,) eL(rir2, )]
analogously, relative L* — lower order defined by
WAL= ; log Mg " My (r)
n = m n
T1T2,0e T > log[(ry.15 ... ... 1) eLurzmn))]

Datta, Biswas and Ali[19] also gave another definition which as follows:

Definition 6. [19] The relative L* — order “"pL (f) and the relative L* — lower order " AL (f) of an entire
function f of several complex variables with respect to g are as follows
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. log M7tV M, (r)
v, oL — ; g f
P5 D) = e P gy ry o) ety "
. log M7tV M, (r
WAL ()= lim inf gMy M)

Tirtn=0 o 1og[(1r1.75 ... 1) eLurzemn))]

In this paper we study some comparative growth properties of maximum term and maximum modulus of
composition of entire functions of several complex variables with respect to another entire function on the basis of
relative L* — order and relative L* — lower order. We do not explain the some standard definition and notations
in the theory of entire functions of several complex variables as those are available in [9].
In this paper we use some lemmas.
Lemma 1. ([1],[12]) Let f and g be two entire functions of several complex variables. Then for every « > 1 and
0<r, <R,0<71,<Ry,.....0<1r, <R,

v a aRq R, R,

"Ufog (1) < Pl (R1 TR —r R 7ﬂn,ug(r))

Lemma 2. ([1],[12]) Let f and g be any two entire functions of several complex variables with g(0,0, ....0) = 0.
Then for all sufficient large values of r;, 15, ... ... T

1 1 R{ R R
v, 1 12 n
ufog(r) = Ellf (gﬂg (T’T’ ’T)>

Lemma 3. ([12],[10]) If f and g are any two entire functions of several complex variables then for all sufficient
large values of 1,15, ... ... T

Yn Mfog (11,72, e oo \Tn) = Mg (V” M, (r)).

Lemma 4. ([10],[12]) If f and g are any two entire functions of several complex variables with g(0) = 0. Then
for all sufficient large values of 1y, 75, ... ... T

1 T T
Vv 1 72 n
anog(T) = Mf <§Mg (E,?, v s ,3))

Lemma 5. ([14],[12]) If f be entire functions and @ > 1,0 < 8 < a, Then for all sufficient large values of

pr(ary, ary, ... ... ,arm) = V”uf(r).
In this section we prove some main results.

Theorem A. Let f and h be any two entire functions of several complex variables with 0 < ‘%A% (f) <

Y pE' (f) < 0. Also let g be an entire function of several complex variables with " 25" > 0 and g(0,0, ....0) = 0.
Then for every positive constant P and real number x.

, log :u}_llvn .ufog(r)
lim 1 P P P -
Tzt {log pp s (b, 18, 1014
Proof. If x is such that 1 + x < 0, then the theorem is obvious. So we suppose that 1 4+ x > 0. From lemma (2)
and lemma (5), we have for all sufficiently large values of r;, 15, ... ... , T, that

D) "ppog(r) = py (iug (1—1,%, %”))

Since uj,* is an increasing function, it follows from (1) for all sufficiently large values of 74,75, ... ... Ty 1.8,
ufllv",ufog(r) > 'uﬁlllf <%#g (%1,%2, ,%))

i.e., log y,‘Lanufog(r) > log py tuy (i#g (1—1,%, ,%”))

109 15 gop 1) = 01 + (5 1) ) g fggty (5 e ) 1 (gt (1 B )|
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1V, Vo AL (F) — nn Tn 1, Mmn In
logun™ "Usoq(r) = 0(1) + ( A5 (f) e) [logug (4 RS 4) +0(1)+ L<24,ug (4 TR 4)
* (1173 ey) Vn’l.tLI*_g
e, (2) log i ipog(r) 2 0(1) + (V25 () — &) {Tzzet plarsvr)} +
1 n . * .
L (Z“g (2—1,%, %)) where we can choose 0 < & < mm{"nlﬁ (), 2L (f)}
also for all sufficiently large values of 1,75, ... ... , T, -We get that

_ * P _P P
log uptue (rf,r5, i) < (V“ pE () + E) log {(rlprzp ety ek Tn)}

} _ * P _P P
i.e., log ity (f,rf e i) < (0 (F) + €) log {7 ..l eHCT7E i)
1+x

. -— 1+ *
ie.,(3) {loguptus (v, .....mD)} Y < (V“p,’; ) +s) (Plog{(rfrf ...vxP) +
L, rd, )™

There for (2) and (3), it follows for all sufficiently large values of 7,75, ... ... , T, that

@ log pii* " trog (1)
— 1+x
{log puitue f v, i)}
7T 7 "l e 1 T 7
v, 9L* _ 172 ee eee n ,L(ry,r, ) = 1 72 n
001y + (%3 (1) = &) [WgTnerturem} ™ (G, (3 5o p)
= v . 1+x
( ok (f) + e) Alog{Gfrf ...t + L, rf, o DY+
Vi Ab*—s
Since ——————— - o as T1, T2y een e ,Tp = 00, the theorem follows from (4)

10g (1172 et ) 1+
Theorem (A) state the following theorem without proof.

Theorem B. Let f and h be any two entire functions of several complex variables with 0 < " AL (f) < 0 0or 0 <

YnpE (f) < 0. Also let g be an entire function with Y125 > 0 and g(0,0, ....0) = 0. then for every positive
constant P and real number x.

, log .uf_zlvn :ufog(r)
Lim sup -1 P ,.P Py1+x)
Tt {lOg Py b (1,735 Tn) x}
Theorem (A4) and theorem (B) and using lemma (4) verify the following two theorems.

Theorem C. Let f and h be any two entire functions of several complex variables with 0 < "nA%f(f) <

Y pE' (f) < 0. Also let g be an entire function of several complex variables with " 25" > 0 and g(0,0, ....0) = 0.
Then for every positive constant A and real number x.

log py Ve r
lim g Un .ufog( )

T4, T2 0enen =00 {log .uf_Lll-’lg (T1P' rZP’ L J’rf)“x} -
Theorem D. Let f,g and h be any three entire functions of several complex variables g with non zero L* —

lower order, g(0,0,....0) =0 and either 0 < % Aﬁ*(f) <oor0<™ p,L:(f) < oo, Then for every positive
constant P and real number x.

lim Ssu log M’;l - Frog ) = oo
T, T2 T =00 P {log My tug (s, REOaEd'

TheoremE. Let f and h be any two entire functions of several complex variables with 0 < anﬁ*(f) <

Y pE (f) < o0 and g be an entire function with non zero L* — lower order, and g (0,0, ....0) = 0. Then for any
positive integer a and S,
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. l0g"?) g o (exp (exp(rfl, T8, ., 1))
lim  sup = o,

Tz T2 Jog up iy (exp (rf, rZB, e rf)) + "K(r,a,L)
vnK(r,a, L): {0, if (rry ... )P =0 {L (exp(exp(rf‘,rz"‘, ..,r,?)))} as 11,12, v o , Ty — 0.
L(exp (exp(r{, vy, .....,%))) other wise.

Proof. Takingx = 0 and P = 1 in theorem (A) we obtain for all sufficiently large values of 1,75, ... ... , T, and for
k>1

log ui " tpog (1) > k log Vo s (r)
k
e i gog () > it oy ()

i.e.(5)  upt " ipog(r) > uptVous(r)
therefore from (5), we get for all sufficient large values of 1,1, ... ... , Ty, that

log My tsog(exp (exp(ri',rst, ., 15))) > iy Mitpog (exp (exp (', 75, v, 1))
i.e., log My pisog(exp (exp(rf, s, ..., 1))

> (Vn A () - g) Jlog{exp(exp(rf, 1§, ....., %)) expL(exp (exp(r, &, ..., )}
i.e., log My puspog(exp (exp(ry,rs, ..., )

> (Vn A () - s) Aexp(r{,rs, .. 1) + Lexp (exp(rf, vy, .., 58D}

log My, tiog(exp (exp(rf,rst, ..., 1))
> (") = &) fexptrtort ) (14

log? My psog(exp (exp(ri, 78, ., 59)

L(exp (exp(r{, s, ..., r,{"))))}

exp(r, 1y, .., 1)

L(exp (exp(r&, r&, ..., ¢
> 0(1) + logexp(rif, v, ..., %) + log {1 + (exp (exp(ri’ 73 z )))}

exp(r{, 13", o, )

log!?] Mﬁlyfog(exp (exp(r{, 75, ..., )

L(exp (exp(r&, ri,....,.t%
>0(1)+(rf‘.r2“.....r,f‘)+log{1+ (exp (exp(r{', 13 n)))}

exp(r*,rst, .., 1)
109" My toq (exp (xp(rf', 7§ oo, 7))
>0(1) + (g e . )% + L(exp (exp(r{, rs, ....., 1))
L(exp (exp(ri, vy, .....,155))
exp(urry .....1%)

— loglexp{L(exp (exp(r{,rs, .....,55)))}] + log {1 +
log[Z] M};ll'lfog (exp (exp(rlai rZa' ey rrix)))

>0+ (st ....n) + L(exp (exp(r{, 15, .., 1Y)

1 N L(exp (exp(r{, s, ..., 55))) ]
exp{L(exp (exp(r{", 75", ..., 1N} exp{L(exp(r¥, 18, ..., i) exp(rirst ... 158)
i.e., log® My uso,(exp (exp(ri,rg, ..., 150)))
>0(1) + (rla_ﬁrza_ﬂ ..r:_ﬁ) (rf.rf rf) + L(exp (exp(r{,rs, ..., 15¥))).

again we have for all sufficiently large values of 1,7, ... ... , Ty, that

log llﬁlllf (exp (rlﬁjrzﬁ' ..,Tf)) < (Vn pfl{* () + S) log {exp (rlﬁ_ rzﬁ o Tnﬁ) eL(exp(rf,rzﬁ,.....,rf))}

B) +L (exp (rf'rzﬁ' rf))}
B

Ty
rnﬁ) + L (exp (rf,rzﬁ, I o ))}

+log[

log pup ug (exp (rlﬁ,rzﬁ, ..,rf)) < (V“ pE () + s) {log exp (rf.rzﬁ

log it us (exp (rf,rzﬁ, ..,rnﬁ)) < (V"pﬁ*(f) + 5) {(rf.rzﬁ .
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log u,jlyf (exp (rf.rf rf)) — (Vn pE () + s) L (exp (Tlﬁ,rzﬁ, ..,rf

)> < rfrf etb

i.e.,(6) STy
"o (F) + ¢
Now from (5) and (6), it follows for all sufficiently large values of ry, 75, ... ... , Ty, that
e, (7)  log® uptuse,(exp (exp(rf,rs, ..., i)
>0(1)
a-B_a-fB a-fB
T, T, ol
+( 2 - ZL* z [logy,;luf (exp (rlﬁ,rzﬁ, ,rf))
"o (f) +e
- (Vn pﬁ*(f) + s) L (exp (rf.rf rf))] + L(exp (exp(r{, 1y, ..., 155))).
. log™ pi ppog (exp (exp(ri',f, ..., i)
i.e.,(8) . ;
log uy s (exp (rl I A ))
- L(exp (exp(ri, rs, .....,55))) + 0(1)
- log py s (exp (rf,rf, rf))
(a=pB)_ (a=Pp) (a=p) (V“pL* )+ s) L (exp (rﬁ P rﬂ))
r 7, e Ty . h 10120
() + € log uptug (exp (rf,rzﬁ, rf)
again from (7) we get for all sufficiently large values of 1,75, ... ... , T, that
log™ i prog (exp (exp(ri’,f', ..., 1))
log uy*1is (exp (rf,rf, rf)) + L(exp (exp(r®, 18, .., 55)))
o)+ (rl(a_ﬂ)rz(a_ﬂ) ..r,fa_ﬁ)) L exp (rlﬁ,rzﬁ, ..,rf)
=
log py s (exp (rf,rzﬁ, rf)) + L(exp (exp(r, 18, oo, 155)))
(a=B),.(a=PB) (a-B)
T, T v _
(1 VZ - I >logyh1yf ((exp (rf,rf,.....,rf))
n "pp, (f) +€
log uy s (exp (rf,rf, rf)) + L(exp (exp(r&, 1, .., 55)))
+ L(exp (exp(r{,rs, ..., 1))
log uy s (exp (rf,rf, rf)) + L(exp (exp(r&, 1, .., 55)))
O(1)+(r§a_ﬁ)rga_ﬁ) ..... r.gla_ﬁ))L exp(rf,rg,.....,rﬁ)
) 109! uit ppog(exp (exp(ri rg,....r5))) L(exp (exp(r¥rF,..7T))
te. (9) 2 5B B g e 2 _ B BB +
log uj, uf(exp(rl Ty ey ))+L(exp (exp(r{rss ) log Mhlﬂf<exp(r1 ,rz,.....,rn)>

L(exp (exp(r§r,...r%)))

V,
"ok (e + 1
L(exp (exp(r§.r,....r%)))

log ”Elﬂf(exP(rf'rz ,.....,Tg))

log ILE1”f(exP(Tf’r§"w'rg)>

" L(exp (exp(r§.r§....r%)))

1+

Casel. If rlﬁrzﬁ ..rf = O{L(exp (exp(r{, rs, ....., %))} then it follows from (8) that
. log[Z] luf_lliufog (exp (exp(rlal r2a: ey rTix)))
1,1 lln}” —00 B _B B =%
112 e n IOng—lluf<exp(r1,rz,.....,rn ))
CaseIl. rfrzﬁ - rf # O{L(exp (exp(r{,rs, .....,1:¥)))} then the following two sub cases.

Subcase (a) If L(exp (exp(r{,r5, ..., 1¥))) = 0 {log [Ty (exp (rlﬁ, P rf))}, then we get from (9) that
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-1
i _ log"?) i pog (exp (exp(ri, s, o 7))

T2 “log u;* U (exp( A B ..,rf)) + L(exp (exp(rf, vy, ..., 1))
Subcase (b) If L(exp (exp(rf, s, ....., %))~ log y,;luf (exp (rlﬁ,rzﬁ, ..,rf)) then

. L(exp (exp(r&r&,..r<%
lim (exp (exp(r{ ; : n))ﬁ)
T2 ey Th—=® log Hﬁluf(exl’(ﬁ g ey Tn ))

= 1 and we obtain from (9)

i i log™ i prog(exp (exp(rf, 78, ..., 1))
71,172,000y >0 log IJ,h Mf (exp ( B B ey Tnﬁ)) + L(exp (exp(rla, T'Za, ey rfrtlx)))
combining case | and case Il we obtain that

. log?! pp oy (exp (exp(rf, vg, ..., 150)))
lim = 0o

72T =0 4 u,‘llyf (exp (rf,rzﬁ, ..,rf)) + L(exp (exp(r{%, 155, oo, 15)))
v K(r o L) 0,if ri'ry". =0 {L (exp(exp(rf‘,rz‘x, .....,rrf‘)))}
VT = as 14,7y, v o Ty = 00
L(exp (exp(ri, ri, ....., %)) otherwise.

this proves the theorem.
TheoremF. Let f,g and h be any three entire functions of several complex variables such that Y pg* <
AR (F) < Y pk (f) < co. Then forany g > 1,

log .uf_zl Yn :ufog (T)

lim = 0.
T172) 00 ™=

“log uy " s (). " k(r, g, L)
1,if L (ug(ﬁrl,ﬂrz, .....,ﬁrn)) = 0{rfrf ....1% eLnuTznn)}

AS Ty, T e ey Ty = 0 and for some a < 0 2% ()

L (,ug (Bry, BTy, e -, Brn)) ,otherwise.
Proof. Taking Ry = Bry,R, = By, ....., R, = Br, in lemma (1) and in view of lemma (5) we have for all
sufficiently large values ry, 75, ... ... , T, that

Yo .ufog(r) < (0( i 1) #f <(Ba_ﬁl) #g(ﬁrl’ﬁTZ! "'ﬁrn)>

K(r,g;L)_

j Vo - - F
e, "ppog(T) < puf ((a DD g (BT, B2, .....,Brn)>

Since uy,* is an increasing function, it follows from above for all sufficiently large values of r;,75, ... ... , T, that

itV ipog (1) < wita &u (Br1, BTz, oo, BT)
S ARV [ Ve

. - - 2a?
ie, logup*“pupog(r) < loguytus (#('g_l)ug(ﬁn,ﬁrz, . .,ﬁrn)>

2
2B B i)

. _ * L ﬁ
ie., loguy" " ppog(r) < (V"pﬁ (f) + S) log pg(Bry, Bra, ..., Br)e ( ) +0(1)

i.e.,(10) log iz "iyog(r) < ("o (1) + ) [log g (Bra, Bra, ... Br) L (g (Bro, B .., Bri)) + O(1)]
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; -1V,
e, logup "Upog(T)

(V“ pb*(f)+8>

< ("ok () +€) | (B o)t Prafre i) +1 (g Brs, B e, B2

+0(1)

i.e.,(11) log uyt" Hrog(T)

V L*
N "p (f)+8>
< ("ok () + ) [{(Brirs et f("H ) (1o (B, Bra, ... Br)
also we obtain for all sufficiently large values of 1, 1, ... ... , Ty, that
log uptu(r) = (V" )L’;: ) — s) log[(rlrz ..rn)e’“(rl'rl'"""'rn)]
ie., loguythu(r) = (V" 2 (F) - e) log[(ryry ... 1)@t T1 T2 |

VooL*
"2 (f)—£>
i.e.,(12) pptou(r) = [(nry ... ..rn)e’“(rl'rz'"""'rn)]< "

now from (11) and (12) we get for all sufficiently large values of 1,75, ... ... , T, that
log up Ve r
(13) g Un .ufog( )
ui ()
Vo L*
. "p (f)+£>
("o () + &) [{(Brars . ) e (") (1g(Bry, Bz, ... BT)

<

vV, L*
"A (f)—£>
[(ry75 ... 1) L0720 m)]( "

"pk < " AE (f) , we can choose (> 0)
(14) Ya pg* +e< W /'lg — &
Casel.Let L (yg(ﬁrl,ﬂrz, .....,Brn)) = 0{(7"1“1”2“ e 1Y) @1 T2 rn)}

since "

AS 17,1y e ey Ty = 00 and for some a < 0 A4 (f)

as a < " % (f) we can choose £(> 0) in such way

(15)  a< "2 ()

since L (,ug(ﬂrl,ﬁrz, .....,ﬂrn)) = 0{(r{r§ ... %) e Lurztn) }

as 1q,1y, e e , T, = o we get onusing (15)
L (g (Bry,Brs, .. Bri))
(rlarza e T#)G“L(rl’rb------vrn) - 0 as rl’ TZ’ ...... ’ rn -

i.e.,(16) L(Hg(ﬁrl,ﬁrz, .....,’Brn))

Vi, L* _
(.. eL(ryry, e, Tn)]< A () £>
now in view of (13), (14) and (16) we obtain

(17) i 09H g

1,172,000 Th =™

0.

i (r)
Casell.If L (,ug(ﬁrl,ﬁrz, .....,,Brn)) # O{(rfrg ... .1®) e®Lurzeemn)}
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AS T, 19, wen e , 1, = o0 and for some a < " A% (f) then we get from (13) that for a sequence of values of
71,12 e one , I, tending to infinity.
lOg Mf_ll Y Hfog (T)

ity (-1 (g Bra B, . )

V., L*
W AGED] G ....rn)eL(m---mn>]< ok (1ve)

(Vn AL (f)—8>
(175 ... .1y @LCrLT2,10)] L (/Jg(ﬁrl,ﬁ?”z, e ﬁTn))

. AGED)

V L*
"A (f)—£>
[(7'17'2 __rn)eL(rl,rz,......,rn)]< h

now using (14) it follows from (17)

log u; 'V r
(18) lim g Un l'lfog( ) - 0.
11,720y Tp—o0
172 i (). L (g (Bry, Bra e, 1))
combining (17) and (18) we obtain
log Mi:lvﬂ .ufog(r)

lim =0
11T ereen Th—™  _
v 1 (). L (g (B, Bra oo, B1))
where
1,if L (ug (Bry, Pra, ... ..,Brn)) = 0{(r1"‘r2‘" I e“L(Tlfrzf"""'rn)}
as 1y, 1y, . ... , T, = o0 and for some a < " A% (f)

L (ug (Bry, By won .., ﬁrn)) ,otherwise.
thus the theorem is established.

v,K(r,g;L)_

Theorem G. Let f,g and h be any three entire functions of several complex variables such that “+pk (f) <
o0, "2k (g) > 0 and Y1 pL’ < co. Then for any g > 1,
(@) if L (g (Bri, Brzs ., Br)) = 0 {log o (r)} then
logl? =1V - v, L
lim sup 9 My " Hpog (1) <_'Ps
112, ey T >0 _ *
v log i g (r) + L (1g (Bry, frs o, B1)) 25 (9)
(B) if log 1z "1y (r) = O{L (g (Bru, Bz, .., ) )} then
lo [2],,-1V, r
lim g~ Up :ufog( )
[T T Tp—00 —
v log Vo gy (r) +L(yg(ﬁrl,ﬁrz,.....,ﬁrn))

109 4 pog () OWTL(1g(Brufrynnffri)
10g kg (BT1.B72,-sBT) 108 Hg(BT1,BT21mmsBT)

=0

Proof. Taking log {1 +

we have from (10) for all sufficiently large values of 1,75, ... ... Ty
o) +1L (,ug (Bry, Bry, ... ,ﬂrn))
log ug(Bry, Bras ev .o, BT3)

log!?! ,u}_ll\/n.ufog(r) < (Vnp{(f) + g) dog pg(Bry, Bra, ..., fr) |1 +
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, -1V, " *
e, log® upt o prog (1) < log (" pk () + ¢)

o) +1L (,ug (Bry, Bry, ... ,ﬁrn))
l0g ttg (Br1, Bra, -, Bi)

+log!® py(Bry, Bry, ..., 1) + log |1 +

fe., 10g® 1t g (r) < log (o () + ) + ("6 () + €) tog|(rams . m)etBrafrbr)

0(V) + L (g (Bry, Brz, - 1))

+ log<1+
g l0g ttg (Br1, Bra, -, Bi)

e, log®l i tyag(r) < log (M ok + &) + (0 (1) + ) log (B ...l 7))

0(1) + L (1g(Bry, Bra .. B1))

+logq1+
7 l0g it (BT, B2, - B1)

e 10g" uptopog(r) < 0 + (Mol + )

0(1) + L (g (Bry, Bry, ... 1))
10g 115 BTy, BTz, s B)

+ log{(Bry, BTy e, B1y) + L(ry, 1oy e, )}

e, (19)  logB® upt Y prog(r) < 0(1) + (“ph +e)

0(1) + L (g (Bry, Bra ... 1))

log “g(ﬁrl'BrZI -----rBrn)
again from the definition of relative L* — lower order of an entire function of several complex variables with
respect to another entire function of several complex variables in term of their maximum terms we have for all
sufficiently large values of 4,75, ....., 1, = o that

ie, loguphuy(r) = (V" A (9 - S) log[(ryry wo.. 1)1 T2r) |

ie, loguptVhuy(r) = (V" A (g) - s) [log((riry oo 1) + Ly, 7oy e, 1))

+ {log(r1.75 o) + L(ry, 7oy e, )} + (V" pL + e) log B+

log uy*Vou, (r
i.e., (20) log(riry .. 1) + L(r, 19, e, 1) < gHn_"Hg(™)
(25 (9) - &)
hence from (19) and (20), it follows for all sufficiently large value of ry, 7, ....., 1,
log[z] .uf_Ll\/n Mfog(r)
vV, ,L*
"pg tE -
<o)+ Z log up* " g (r)

REAOEE
0(1) + L (g (Bry, fra, .. B1))
0g ttg BTy, Bra, -\ Bi)

+ (Vnpg + s) log B+
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e log"™ i " prog (1)
log 1" " g (r) + L (1tg (B, B, .., Bri))
o) + (V“pg + s) log B
log i g () + L (g (Bra B o, 1)
hips + e log pp* " g (r)
"3 (9) —e) log it ug(r) + L (1tg (Bru, Bras ., )
N o) +1L (,ug(ﬁrl, Bry, .., ﬁrn))
(109 1 g ) + L (1tg (B, Bros 0, 5120 | 10 g (Bris B, ., B2)

i.e.,(21) log ™ ™ rog ()

log 1 "1ty (1) + L (1 (Brs, B3, .., Br2))

o) +(“ph +¢)log B
L (Hg (B, Bra) e s ﬁ’"n))

hpk’ + &

YAk () —e

log " " g (r)

L (kg Brio B e B '

1
+

s L (Mg(ﬁrl,ﬁrz, ..,Brn))

log uy* " g (r)

log itV gy (r)

1+ L (,Ug (ﬁrl'ﬁrb T ,Brn))

lOg .u'g(ﬂrlfﬁrb

., Br)

since L (,ug(ﬁrl,ﬁrz, ...,Brn)) =0 {log p Y ,ug(r)} asry,ry,..., T, = ©and (¢ > 0),
we obtain from (21) that

i.e., (22)

log[z] .uf_ll " Hfog (T‘)

Y p 5*

lim  sup
125000 Th—®

log Mﬁl A ,ug(T) +L ('ug(‘Brl,‘Brz, ..,,Brn)) v, /1%; @)

again if log u " ug(r) = 0{L (yg([)’rl,ﬂrz, ﬂrn))} then from (3.21) we get

log[z] #711 Y .ufog(r)

=0

lim

" o g g (r) + L (g (Bry, B, e, B1))
thus from (22) and (23), the theorems ‘are established.
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