
IJSRSET1848196 | Received : 10 Jan 2018 | Accepted : 28 Jan 2018 | January-February-2018 [(4) 6 : 323-330]

© 2018 IJSRSET | Volume 4 | Issue 6 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
 Themed Section : Engineering and Technology

323

Task Scheduling using Adaptive PSO Algorithm in Cloud Computing
Environment

1B. SivaRama Krishna, 2 Dr. T. V. Rao
1Research Scholar, Department of Computer Science and Engineering, ANU, India

2 HoD, Department of Computer Science and Engineering, PVPSIT, India

ABSTRACT

Task scheduling problem is one of the most important steps in using cloud computing environment capabilities.

Different experiments show that although having an optimum solution is almost impossible but having a sub-

optimal solution using heuristic algorithms seems possible. In this paper three heuristic approaches for task

scheduling on cloud environment have been compared with each other. These approaches are PSO algorithm,

ACO and adaptive PSO algorithm for efficient task scheduling. In all these three algorithms the goal is to

generate an optimal schedule in order to minimize completion time of task execution.

Keywords— Cloud environment, ACO, PSO, Task scheduling.

I. INTRODUCTION

Cloud computing has emerged as one of the most

progressive, proficient and accommodating technical

platform for users of all capacities. It is accepted

widely as a utility service where numerous servers are

connected to Internet. The cloud users can access data,

process services, store data, retrieve data for domestic

as well as commercial purposes without owning

datacenter, software, hardware and server by paying

for its usage from any geographical region having

Internet. Mainly three types of services are provided

by the cloud. First is Infrastructure as a Service (IaaS),

which provides cloud users the infrastructure for

various purposes like the storage system and

computation resources. Second is Platform as a

Service (PaaS), which provides the platform to the

clients so that they can make their applications on

this platform. Third is Software as a Service (SaaS),

which provides the software to the users; so users

don’t need to install the software on their own

machines and they can use the software directly from

the cloud. Cloud providers exploit virtualization

technology and supply their clients with computing

resources in the form of virtual machines (VMs).

Service providers, on the other hand, benefit from

these VMs to provide users with application level

services. To assign users' tasks to VMs, reduce the

response time, provide promising quality of service

(QoS), and make the most of the resource, service

providers exploit task scheduling techniques.

Therefore, the task scheduling algorithm is one of the

core elements of each cloud infrastructure. Task

scheduling is one of the most important and critical

problems in cloud computing and many researches

have tried to find an optimal solution for scheduling

tasks on existing resources in cloud environment.

1.1 Scheduling Problem

Scheduling problem is how to allocate tasks with

limited resources to achieve some pre-set goals. The

goal of cloud computing scheduling is to achieve the

optimal scheduling submitted by the user. In order to

improve the overall throughput of cloud computing

systems with Specific objectives include the optimal

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 324

makespan, quality of service,(QoS), load balance,

economic principles and so on.

1.1.1. Optimal Makespan

Makespan is a very important and common goal in

task scheduling. Users usually hope that their tasks

can be completed as soon as possible. Optimal

makespan is the common goal of both cloud provider

and clients.

1.1.2. Quality of Service (QoS)

Scheduling system must guarantee the QoS specified

by the users. On the one side, it needs to improve the

efficiency of resources based on application

characteristics in order to ensure the efficiency and

accuracy of customers. On the other side, it should

select and redirect resources dynamically based on

users' status changes to meet the user’s economy and

satisfaction. So the goal is not only to protect users

but also helpful for the long-term sustainable

development of cloud computing.

1.1.3. Load balancing

Since the number of computers in the cloud

computing platform is very large. In additional, the

complex composition and different heterogeneous

cloud computing platform make load balancing in

current could challenging.

1.1.4. Economic principles

Economic is a key factoring in scheduling of cloud

computing because of ultra large scale and pay-per-

use business model. Market driven cloud users and

providers can have mutual benefits from an efficient

scheduling system.

1.1.5. Throughput of the system

Mainly for cloud computing systems, throughput is a

measure of system task scheduling optimizing

performance, and it is a target, which has to consider

in business model development. Increase throughput

for users and cloud providers would be benefit for

them both.

 Fig.1. Cloud scheduling model

1.2. Scheduling Problem Formulation

In the following, I adopt the general model and

notation used by existing works on PSO-based

scheduling. A workflow is usually represented by a

Directed Acyclic Graph (DAG), and denoted by

(,)G V E= . The set of nodes 1,{, }nV T T=

represents the tasks in the workflow applications, and

n is the total number of tasks in the workflow. The

arcs { },1 ,ijE d i j n= denotes the data

dependencies among the tasks. An arc,

(,)i jdij T T E= implies that iT transfers data to jT .

In this relationship, iT is the parent task of jT , and jT

is the child of iT . The child task cannot be executed

without receiving data transferred from all of its

parents.

Suppose there are a total of m resources in the cloud

environment. The resources can be denoted as

1 2{ , ,...., }mR R R R= .All the resources are

interconnected with each other so that they can

transfer data among each other. The scheduling

problem is to find an optimal mapping M between

tasks and resources according to some optimization

objective. As mentioned before, cost is a common

objective that is more concerned by user; makespan is

another objective that is critical for scheduling. Let

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 325

()totalMakespan M denote the makespan of the

workflow with respect to the mapping M.

() totalMakespan M finish time of the last task start time of the first task= −

The makespan of a workflow is the time duration

from the process of first task till finishing all tasks.

Since a workflow consists of interdependent tasks,

both execution time and transfer time need to be

considered.

Let ()exec iCost R and ()trans iCost R be the execution

and transfer costs of resource iR , respectively.

()total iCost R denotes the total cost of resource iR

() () ()total i exec i trans iCost R Cost R Cost R= + 1 i m

Let ()totalCost M denote the total cost of processing

workflow w.r.t the mapping M:

1
() ()

m

total total ii
Cost M Cost R

=
=

For the objective of minimizing the cost while

balancing the load, the fitness function is given as:

1 (()) 1total iFitness function Max Cost R i m=

The objective is to minimize 1 Fitness function . The

reason for not using the total cost of all the resources

is to prevent from mapping all the tasks to a single,

least-cost resource. For the objective of optimizing

makespan, the fitness function can be defined as:

2 ()totalFitness function Makespan M=

The objective is to minimize 2 Fitness function

The objective of minimizing the weighted sum of

total cost and makespan; the fitness function can then

be defined as:

3 () (1) (), 0 1total totalFitness function Cost M Makespan M = + −

where is the weight given to the total cost and

(1)− is the weight given to makespan. This fitness

function can be easily tuned by changing the value

to satisfy the various QoS requirements including

budget constraints.

II. Task scheduling using Adaptive Task Scheduling

PSO Algorithm

2.1. Basic description of PSO

PSO is a swarm intelligence meta-heuristic inspired

by the group behavior of animals, for example bird

flocks or fish schools. Similarly to genetic algorithms

(GAs), it is a population-based method, that is, it

represents the state of the algorithm by a population,

which is iteratively modified until a termination

criterion is satisfied. In PSO algorithms, the

population of the feasible

solutions is often called a swarm. The feasible

solutions are called particles. The PSO

method views the set of feasible solutions as a

“space” where the particles “move”. For solving

practical problems, the number of particles is usually

chosen between 10 and 50. The purpose particle

swarm optimization (PSO) algorithm is to solve an

unconstrained minimization problem: find such

that for all d-dimensional real vectors

. The objective function is called

the fitness function.

2.1.1. Swarm Topology

Each particle has its neighborhood (a subset of

). The structure of the neighborhoods is called the

swarm topology, which can be represented by a graph.

Usual topologies are: fully connected topology and

circle topology.

2.1.2. Stopping Rule

The algorithm is terminated after a given number of

iterations, or once the fitness values of the particles

(or the particles themselves) are close enough in some

sense.

2.1.3. The Scheduling System

{ , ,..., }1 2=P np p p

, ,...,1 2 np p p

dR

x*

))f(x* f(x

x →df : R R

i iN

P

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 326

Figure 1 illustrates an overview of the scheduling

system. The system consists of three modules, the first

module is the application which represents the set of

the cloudlets (tasks). The second module is the

Mapping Algorithms (MA) which estimates the

expected time for each cloudlet to allocate on each

virtual machine, and it is assumed that these values

are available to the scheduler. A third module is a

virtual machine (VMs) which used to execute the

cloudlets. The cloudlets expected time have been

stored in a matrix, where the number of is

virtual machines, and is the number of cloudlets.

Obviously, will generally be greater than 1,

with more cloudlets than virtual machines, so that

some machines will need to be assigned multiple

cloudlets. The Estimated Running Time (ERT) is

defined as the time of executing task on resource

 [21]. Each column of the expected running times

(ERT) matrix contains the expected running time

(ERT) of each cloudlet on machine .

 Fig.2.Scheduling System

2.2. The Scheduling System

The main objective of allocating tasks on virtual

machines is to reduce the makespan. The makespan of

a task is defined as the overall task completion time.

We denote completion time of task on as

. Hence, the makespan is defined using the

following equation

and

 (1)

Where is the maximum completion time

of task on a , and , are the number of

tasks and virtual machines respectively.

Let be the number of

 virtual machines that must be processed tasks

represented by the group . The

virtual machines are parallel and independent, and

the schedule allocates independent tasks to these VMs.

Also, the Processing a task on a virtual machine

cannot interrupt (i.e.) Non-preemption. We denote

end time of a task by . The aim of the

proposed algorithms is to reduce the makespan which

can be denoted as . The run time of each task

for each virtual machine must be calculated for the

purpose of scheduling, if the processing speed of a

virtual machine is , then the processing time

for task can be calculated by equation.

(2)

Where is the processing time of task by virtual

machine and is the computational

complexity of the task .The processing time of

each task on are stored in the runtime

matrix. The processing time of each task in the virtual

machines can be calculated by equation

(3)

According to (1), (2) and (3), the task scheduling

algorithm should satisfy the following equation

(4)

By considering the load balancing, the tasks will be

transferred from one VM to other to reduce , as

well as, response time. The processing time of a task

varies from one VM to another based on the speed of

the virtual machines. In case of transferring, the

completion time of a task may vary because of load

balancing, optimally. The main objective of the

m n m
n

/n m

j

r

j i

iT jVM

ijCT

max[] | 1,2,.., =CT i, j i T,i n

1,2,j VM, j = ..,m

max[]CT i, j

i jVM n m

1 2, ,..., m=VM VM VM VM

m n

1 2, ,..., nT = T T T

iT jCT

maxCT

jVM jPS

iP

/= iij jT C PS

ijP iP

jVM CI

iP ijP

iP jVM

1=
=

n

ij iji
P P

max1=

n

iji
P CT

maxCT

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 327

Adaptive Task Scheduling PSO Algorithm is that the

tasks should be allocated on the virtual machine in

order to minimize the makespan and maximize the

resource utilization.

Adaptive Task Scheduling PSO Algorithm

Initialization: Initialize position vector and velocity vector of each particle.

Conversion to discrete vector: Convert the continuous position vector to discrete vector.

Fitness: Calculate the fitness value of each particle using fitness function.

Calculating : Each particle’s is assigned its best position value till now. If particle’s current

fitness value is better than particle’s , then replace with current position value.

Calculating : Select the particle with best fitness value from all particles as .

Updation: Update each particle’s position vector and velocity vector using following equations:

Where , , rand1, rand2=uniformly distributed random

numbers and , ,

, .

Repeat steps 2 to 6 until stopping condition is met. Stopping condition may be the maximum number

of Iterations or no change in fitness value of particles for consecutive iterations.

Output: Print best particle as the final solution.

III. Results and Analysis

This strategy is performed on the cloudsim 3.0.3 with

Eclipse Jee Oxygen IDE on windows 10 platform with

core i5 processor with 8 GB RAM and 2 GB Radeon

graphics card. The language used by cloudsim is JAVA

which provides simulating environment of cloud. The

algorithm is implemented by considering the

parameters like average round trip time average cost,

average execution time, average make span. The PSO

used in the strategy is with mutation and provides

better results when compared with other genetic

algorithm and other modified version of PSO. The

APSO is implemented and compared with the longest

VM longest cloudlet algorithm, genetic algorithm and

standard PSO then it provides the optimized results.

This strategy is used with increasing number of tasks

i.e. 100,200 upto1000. APSO is performing better

than other two as we increase the number of tasks.

3.1. Makespan Comparison of Fixed VMs

In this section, simulation is conducted to evaluate

the efficiency of the proposed scheduling approach to

the optimized solution. The results of the proposed

APSO algorithm is compared with other heuristics

algorithms such as PSO and ACO from performance

parameters like makespan and throughput. Simulation

outcomes show that our proposed algorithm

outperforms than other heuristics algorithm.

Table.1.Makespan Comparison of Fix VM

S.No
No. of

Task
VM

APSO PSO ACO

1 100 50 17.04 25.32 28.55

2 200 50 52.01 109.00 117.15

3 300 50 104.96 176.19 198.90

4 400 50 175.95 271.50 279.56

5 500 50 264.96 561.50 454.29

bestP bestP

bestP bestP

bestG bestG

1 1 2 21 rand *() rand *()+ = + − +i i i ibest bestc P x c G -xV VΨ

1 1+ = + +i i iX X V

inertia=Ψ
1 2, acceleration coefficients=c c

ε[0,1] =best position of each particlebestP

= best position of entire particles in a populationbestG =iterationi

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 328

6 600 50 371.98 579.70 667.71

7 700 50 497.03 945.23 955.52

8 800 50 647.99 834.54 1103.58

9 900 50 818.99 1032.28 1167.71

10 1000 50 1010.00 1554.21 1625.86

 Fig.3.Makespan Comparison of Fix VM

 3.2. Comparison of Makespan of Variable VMs

The Makespan of proposed APSO algorithm

compared by PSO standard and ACO. This test has

been implemented more than 50 times using

timeshare policy at the independent nature of task,

and the result has been presented. The makespan has

been compared by varying the numbers of tasks 100

to 1000 while keeping a fixed number of VMs 50.

Further, the results have conducted at varying

number of tasks from 100 to 1000 and a varying

number of VMs from 40 to 140. The experiment

result has been shown in Table 2 and 3 and depicted

in Fig.3 and 4. The Makespan produced by APSO

algorithm is improved compared with makespan

produced by PSO standard and ACO.

Table. 2. Makespan Comparison of variable VMs

S.No
No. of

Task
VM

APSO PSO ACO

1 100 40 20.71 37.32 43.72

2 200 50 51.99 105.50 116.51

3 300 60 88.15 197.32 213.11

4 400 70 122.60 222.62 258.22

5 500 80 189.30 319.05 347.72

6 600 90 210.30 428.01 449.02

7 700 100 257.38 484.34 549.54

8 800 110 333.30 510.88 655.93

9 900 120 362.80 687.09 822.36

10 1000 140 421.09 663.96 809.22

 Fig.4. Makespan Comparison with variable VMs

3.3. Comparison of Throughput

The comparison of throughput of proposed APSO,

ACO and PSO is illustrated in Table 3 and depicted in

Fig.5. The performance parameter is computed for

analysing the maximum throughput. Table 3 and Fig.

5 shows that the performance of the APSO algorithm

improved even when numbers of tasks are increased

from 100 to 1000 while fixed number of VMs 50.

Table 4 and Fig. 6 shows the throughput of the

proposed task scheduling algorithm is also improved

when varying the number of tasks from 100 to 1000

and VMs from 40 to 140. The throughput of the

proposed algorithm is much improved when

compared to PSO standard and ACO algorithm.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 329

Table.3. Throughput Comparison of variable VMs

S.No
No. of

Task
VM

APSO PSO ACO

1 100 40 4.82 2.67 2.87

2 200 50 3.90 1.89 1.71

3 300 60 3.44 1.52 1.40

4 400 70 3.26 1.79 1.54

5 500 80 2.64 1.56 1.43

6 600 90 2.85 1.40 1.33

7 700 100 2.75 1.44 1.27

8 800 110 2.40 1.56 1.21

9 900 120 2.48 1.30 1.09

10 1000 140 2.37 1.50 1.23

 Fig.5.Throughput Comparison of variable VMs

Table.4.Success Ratio Comparison with Tasks

S.No

Task-Resource

Scheduling

Algorithm

No. of

Task

Success

Ratio

1

ACO

200

0.87

PSO 0.9

APSO 0.94

2

ACO

400

0.85

PSO 0.88

APSO 0.91

3

ACO

600

0.86

PSO 0.86

APSO 0.9

4

ACO

800

0.83

PSO 0.85

APSO 0.86

5

ACO

1000

0.81

PSO 0.84

APSO 0.85

IV. Conclusion

In this paper the problem of task scheduling in

cloud computing environment is evaluated. PSO

algorithm and ACO are most famous algorithms

for scheduling tasks in distributed systems. In

order to improve the performance of standard

PSO algorithm the Adaptive PSO algorithm is

suggested, in which objective function is

modified in the standard PSO algorithm for

generating initial population in order to

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 330

minimize makespan. Our experiments depicts

that even if both ACO and PSO algorithm show

acceptable results, it can be said that by and large

PSO algorithm shows better results than ACO

but modified PSO algorithm outperforms these

two algorithms from minimizing makespan point

of view. This algorithm can be used in cloud

computing environment for efficient scheduling

of tasks on existing resources, so that completion

time of tasks become minimized. PSO based

scheduling algorithm in cloud computing.

V. REFERENCES

[1]. Cloud computing. Peng Liu:cloud computing

definition and characteristics

http://www.chinacloud.cn/.2009-2-25.

[2]. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I.

Brandic, “Cloud Computing and Emerging IT

Platforms”, Vision, Hype, and Reality for

Delivering Computing as the 5th Utility, Future

Generation Computer Systems 25(6), 599–616

(2009).

http://dx.doi.org/10.1016/j.future.2008.12.001

[3]. P. Kumar, A. Verma, “Independent Task

Scheduling in Cloud Computing by Improved

Genetic Algorithm”, International Journal of

Advanced Research in Computer Science and

Software Engineering,Vol2, Issue 5, May 2016.

[4]. Z. Yingfeng, L. Yulin, “Grid Computing

Resource Management Scheduler Based on

Evolution Algorithmj]”, Computer Engineering

Conference, 2003, 29(15):1102175.

[5]. P. Roy, M. Mejbah, N. Das. “Heuristic Based

Task Scheduling in Multiprocessor Systems

with Genetic Algorithm by choosing the

eligible processor”, International Journal of

Distributed and Parallel Systems (IJDPS), Vol3,

No.4, July 2017.

[6]. Abraham, R. Buyya, and B. Nath.” Nature’s

heuristics for scheduling jobs on computational

Grids”, 8th IEEE International Conference on

Advanced Computing and Communications

(ADCOM 2000), India, 2000.

[7]. H. Yin, H. Wu, J. Zhou, “An Improved Genetic

Algorithm with Limited It rat ion for Grid

Scheduling”, IEEE Sixth International

Conference on Grid and Cooperative

Computing, GCC 2007, Los Alamitos, CA, pp.

221-227, 20013.

[8]. R. Verma , S. Dhingra, “Genetic Algorithm for

Multiprocessor Task Scheduling”, IJCSMS

International Journal of Computer Science and

Management Studies, Vol.1, Issue 02, pp. 181-

185, 2011

[9]. J. Kennedy, R.C. Eberhart, “Particle swarm

optimization”, Proc, IEEE Conf. Neural Netw.,

vol. IV, IEEE, Piscataway, NJ, 1995,pp.1942-

1948.

[10]. L. Zhang, Y. Chen, B. Yang “Task Scheduling

Based on PSO Algorithm in Computational

Grid”, 2013 Proceedings of the 6th International

Conference on Intelligent Systems Design and

Applications, vol-2, 16-18 Oct, 2013, Jinan,

China.

[11]. T. Chen, B. Zhang, X. Hao, Y. Dai, “Task

scheduling in grid based on particle swarm

optimization”, The Fifth International

Symposium on Parallel and Distributed

Computing, ISPDC '06. pp. 238-245, 20015.

