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I. INTRODUCTION

Fractional derivatives of non-integer orders [1-2]
have wide applications in physics and mechanics [3-8].
The tools of fractional derivatives and integrals allow
us to investigate the behaviour of objects and systems
that are characterized by power-law non-locality,
power-law long-term memory or fractal properties.
Historically, it emerged almost at the same time of the
genesis of classical calculus and owes its origin to an
inquiry raised by L’Hospital, in a letter sent to Leibniz,
of whether the meaning of a derivative to an integer
order could be extended to a non-integer order. For
further details on the history of fractional calculus,
see [9-11]. But the rule of fractional derivative is not
unique, the definition of fractional derivative is given
by many authors. The commonly used definition is
the Riemann-Liouvellie (R-L) fractional derivative
[12-13]. Other useful definition includes Caputo

definition of fractional derivative, the Grunwald-
Letinikov (G-L) [12],

Jumarie’s modified R-L fractional derivative is used to

fractional derivative and
avoid nonzero fractional derivative of a constant
functions [14].

In this article, we can find any order fractional
derivatives of some elementary fractional functions
such as fractional exponential function, trigonometric
functions and hyperbolic functions, regarding the

Jumarie type of modified R-L fractional derivatives.

The method we used is to introduce a new
multiplication and the fractional power series
expansions of these fractional functions. The

fractional differentiation term by term theorem plays
an important role in this study, and our results are the
generalizations of the results obtained by the

traditional calculus.
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II. PRELIMINARIES

In this section, we introduce some fractional
functions and their fractional power series expansions.

Notation 2.1: If « is a real number, then

[a]
ifa <0,

0
- {the greatest integer less than or equal toa  ifa > 0.

Definition 2.2: Let a be a real number, m be a positive
and f(x) € C%9([a,b]). The modified
Riemann-Liouville fractional derivatives of Jumarie
type ([14]) is defined by ,DZ[f(x)]

integer,

—1)7 £ (1)dr, if a <0

“f()—f(a)]dr if 0<a<1

1 x
S et W
r(- a)dxf( _T)
L (DEMIF @)

fm<a<m+1

(1)

where I'(y) = fooo tY"le~tdr is the gamma function
and (,D%)" = (4DZ)( DE)

(4D¥) is the n-th order fractional derivative of ,Dg.

defined on y >0,

We note that ( aD,‘f)n # oDy% in general, and we
have the following property [15].

Proposition 2.3: Let a, B, c be real numbers and f >
a > 0, then

al+B1 — r(g+1) B-a
oDF[xF] = B phe, ()
and
oDz [c] = 0. 3)

The followings are the power series expansions of
trigonometric functions and hyperbolic functions [16]
used in this paper.

Proposition 2.4: Let By, E, be k-th Bernoulli number
and Euler number respectively for all non-negative

integers k. Then

exp(x) = Niooxk , 0 <x <o (4)

1
sinx = Y. 0(;k+)1), Zktl _o<x <o (5)
_1\k
cosx = Zk=0((2i))! x?*, —co<x <o (6)

DR 22K 22K -1D)Bok k-1
2k(2k-1)! ’

tanx = Yy

(7)

2 2

_1 w (DF22KBy o
cotx—x+2k 1 ey ,0<x<m (8)

o (-DFE
secx = Zk=0(2—k)!2k 2k —g <x< g 9)
_ 1,y CEDM2HTI-DB gk
csex =2+ Yi=1 2k(2k—1)! x ’
0 <x<m(10)
sinhx = Z,‘:’:Oﬁxz"” ,—o<x<o (11)
coshx = Z,‘;‘;O%xz" ,—o<x <o (12)
v 22@Z-1)By  op_ 1T T
tanhx = Yp- 1—2k(2k w S <x <3 (13)
cothx = + Yt (2:)2"‘ x?klo<x<m (14)
sechx = Y5 o(ii'} x2k, —E <x< E (15)
2k—1_
cschx =§—Zf=1% x21 0 <x <m (16)

In the following, we define a new multiplication of
fractional functions.

Definition 2.5: Let 4,4,z be complex numbers, 0 <
a <1, j,l,k be non-negative integers, and ay, by be
zF for all k. The ®

real numbers, py(z) = TGeatD

multiplication is defined by
pj(Ax%) @ pi(uy®)

ayj 1 anl
Ax*) @ taarn W)

= TGa+D
— ; ] +l ayj a\l
-t (T axiwal ar)
where (] + l) = M
j i

If f,(Ax*)and g,(uy%) are two fractional functions,
fa Q) = Lot peAx) = Eilo ey (X9,
(18)
Ja(Wy®) = Tio bi P (™) = Tiomomss (y ™)
(19)
then we define

fa(Ax%) @ ga(uy®)
= Y=ok Pk (Ax®) @ il by Pk Wy ®)
= Z;‘?:o(an:o A —mbmPr-m(1x%) ® pm(.uya))- (20)
Proposition 2.6: f,(1x%) @ g (uy%)
= 50 rmrs Zhamo () @cmbm X Gy,
(21)
.. ®n
Definition 2.7: Let (f,(1x%))" =f,(1xY) ® - ®
fa(Ax%) be the n times @ product of the fractional
function f,(Ax%). If f,(1x%) @ go(Ax*) =1, then
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Ga(Ax%) is called the @ reciprocal of f,(Ax%), and is
denoted by (f, (1x®)® ™",
Remark 2.8: The @ multiplication satisfies the
commutative law and the associate law, and is the
generalization of ordinary multiplication, since the &
multiplication becomes the ordinary multiplication
ifa =1.
Definition 2.9: Let 0 <a <1, f(x) = Z,‘f:o%xk“ ,
then

Fe(x) = Eiio%y (F(a1+1) xa)®k

_ V' ak ka
= Yk=0 T(ka+1) x
(22)

is called the a-order fractional function with respect

to f(x). And Z,}”zoﬁxk“ is called the fractional
power series expansion of F, (x%).
Proposition 2.10: et 0 < a < 1, f(x) = Z,";O%xk“
and g(x) = $_o x| If f(x)-g(x) =1, then
Fpr(x%) ® Go(x*) = 1.
Proof Since
o 1
) g(x) = B0~ (B ay_pby)xt® = 1,
it follows that
agby = 1 and Z’;zo ax—pby, = 0 forallk > 1.

By Proposition 2.6, we have

Fo(x*) @ Go(x%)
w 1 k _
= S0 s Zheo () @-pby GO PGP
=1 q.e.d.
Remark 2.11: E,(x%) is the a -order fractional

exponential function with respect to exponential
function exp(x). And the a-order fractional function
with respect to related trigonometric functions and
hyperbolic functions are as follows:

sing(x%) , cosg(x%*) , tang(x%) , coty,(x%) ,
sece(x%*) , cscu(x®) ; sinhy(x%) , coshy(x%) ,
tanh,(x%), coth,(x%), sech,(x%), cschy,(x%).
Proposition 2.12 (fractional Euler’s formula) ([17]):

LetO<a<1,,i=+vV-1, then

E,(ix%) = cosa(x*) + isin,(x%). (23)
Proposition 2.13: Let0 < a < 1, then
sing (x* +y%)
= sing (x*) @ cosq (¥*) + cose (x) & sing (),
(24)

and
cosy(x* +y%)

= €054 (x%) @ coso(y¥) — sing (x) & sing (y*).
(25)

Notation 2.14: Let 0 < a < 1. The smallest positive

real number T, such that E,(iT,) = 1 is called the

period of E, (ix?%).

Remark 2.15: By Proposition 2.12, we have

sing(T,)=0 and cos,(T,) = 1. Taking advantage of

Proposition 2.13 vyields sing(x% + T,) = sin,(x%)

and cos,(x* + T,) = cosa(x%), i.e., the periods of

both sin,(x%) and cos,(x*) are T,. On the other

hand, all the periods of tan,(x%) , cot,(x%) ,

secy (x%), csc,(x%) are %Ta.
III. MAIN RESULTS

In the following, we can obtain the fractional power

series of fractional trigonometric functions and

hyperbolic functions.
Theorem 3.1: Let 0 < a < 1, then
o 1
Ea(x®) = Zi=o r(ka+1)xka , o <x <™ (2)
, w (=¥

Slna(x“) = Zk=0m (2k+D)a ,—oo < x <o
(27)
ay — o (_1)k 2ka  __ 28
cos,(x%*) = Yo fakasn X T <x < (28)

(CDR122K @2 Dok | (2k-1)a
2k T((2k-1)a+1) ’

— 1Ty <x <7Ty (29)

tan, (x%) = Yr=q

1 ®-1
cote(x%) = (r(a+1)xa) +

(-1)*22kB,;,

o (2k-Da 1
Li=1 2k-F((2k—1)a+1)x » 0<x< 2 Te (30)

w (DKE
secy(x®) = X o) Fak

1 1
x2ka, _ZT(Z <x< ZTa

rka+1)
(31)
1 ®-1
cSCe(x*) = (F(a+1)x“) +
w DM202K 1By ok_1)a 1
Li=1 2k T(2k-Dat1) 0<x< zT"‘ (32)

1
x(2k+1)a

sinha (x*) = Xk=o rGranarn

, —oo < x <

(0]
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(33)
,—00 < x < 0
(34)

(2k-1a

1 2ka

coshy,(x%) = Z?=0m

w 22K@%K-1)By
a — 7 e
tanhe (x*) = k=13 Dt

1 1
_ZT“ <x < ZT“
1 «\®1
F(a+1)x ) +
Zoo 22kBZk
k=12k.r(2k-1)a+1)

35)

coth,(x%) = (

2D 0 < x < 2T, (36)

) Ezk 2k
= Zk:o X ay

sechq (x%) r(2ka+1)

1 1
—ZTa <x< ZTa
(37)

1 ®-1
cschq (x%) = (F(a+1) a)

2(22k~1-1)B,y

o (2k-1)a
Yhk=1 2k T((2k—1)a+1)

L0 <x<2T, (38)

Proof Using Proposition 2.4 and Proposition 2.10
yields the desired results hold. q.e.d.

The following is the major result in this article. We
can evaluate any order fractional derivatives of these
fractional functions discussed above by using
fractional differentiation term by term theorem.
Theorem 3.2:

integer, then

Let 0<a<1,n be any positive

n o 1
(0D%) [Ea(x™)] = Eo(x*) = Zk:or(meka :
—o<x <o (39)
n
(oD¥) [sing(x™)] =
(_l)k (2k+1-n)a

Zk:[g] [((2k+1-n)a+1)
—o0 < x < o0 (40)

[n+1] —F((Zl(c D
n)a+1)

—0o<x <o (41)

(D$) [cosa(x)] = 2.

(oD2) " [tang (x®)]

( 1)k—122k(22k_1)32k x(Zk—l—n)a
2k T((2k—1-n)a+1) ’

— Ty <X <T, (42)

= L[

)®—1—n +

(oDF)"[eote(x)] = (-1t (—

Zoo (- 1)k22kB2k
ke=["22| 2k T((2k—1-n)a+1)

T(a+1)

1
x@k-1-ma 0 < x < =T,
2

(43)

(k-n)a

(—D*Ey

2k-n)a
r'((2k-n)a+1) ?

( ng)n[Seca(xa)] = Zk [n+1]

1
—ZTa <x <ZTa

(OD“) [esca @] = (~ D! (g

(- 1)k+12(22k 1_1)sz

(44)

)®—1—n 4

x@k-1ma o<y <iT
2

[n+2] 2k T(Zk—1-m)a+1)
(45)
( oD,‘é‘)”[sinha(xa)] _
Zf:[g]m @k+1-ma
—o<x <o  (46)
( ng)”[cosha(xa)] _ Z°° an 1 e

] r((2k—n)a+1) x
—o<x < oo (47)

n
(oDF) [tanhy (x®)]
22k (22k-1)By

_ g (2k-1-n)a
z:kz["T“] RT((2Zh—1-ma+D) * ’
_lTa<x<%Ta (48)
) ) i ®-1-n
(oDg ) [coth, (x®)] = (—1)"n! (F(a+1) ) *

I 22kB, (2k-1-n)a 1
e [22] 2k T(2k-1-myar1) 2 0<x<3Ta
(49)

@ @ __Ea__,(k-ma
(OD ) secha(x )] Zk ["“] r((2k— n)a+1)x ’

_ZTa <x <ZTa

(oD£) " [escha(x®)] = (—1)"n!

ZOO 2(22%"1-1)B,)
k= [”*2] 2k-T((2k-1-n)a+1)

(50)

RX-1-n
a
I'(a+1) )
(2k-1-n)a

1
,O< X<5Ta

(51)
IV. CONCLUSION

The fractional functions studied in this paper are
generalizations of traditional elementary functions.
And the fractional differential problem of these
fractional functions is also the generalization of
classical differential problem. The methods we used
in this article are fractional power series expansions
and fractional differentiation term by term theorem.
In the future, we will use the modified R-L fractional
derivatives and the new multiplication & to study the

engineering mathematics problems.
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