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ABSTRACT 

 

Melting point depression and enhancement of nanomaterials have been found to depend on size, 

dimension and surface properties of the nanomaterials. Ours is a phenomenological model based on 

classical considerations regarding melting of nanomaterials. The model extensively discusses a nanorod, 

a bare nanorod and an encapsulated nanorod separately. We have considered a nanorod and using a 

simple minded approach of cohesive binding energy observed that the melting point of the nanorod 

gets depressed as the size goes down. Further, to illustrate the phenomena, we have adopted a classical 

thermodynamic approach which is mainly based on Gibbs energy of a bare and encapsulated 

(containing matrix) nanorod. We have minimized the Gibbs energy for the two nanosystems separately 

in different phases and calculated and analyzed the results for the melting point of the nanorod. The 

results of our models are consistent with both of experimental results and other thermodynamic models.  
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Introduction 

 

This millennium looks forward for the major advances in materials headed by the significant strides in 

tailoring and characterizing materials on the nanometer scale. The physical properties of nanoparticles 

are a subject matter of intense contemporary interest. As the size of low-dimensional materials 

decreases to nanometer size regime, electronic, magnetic, optic, catalytic and thermodynamic 

properties of the materials are significantly altered from those of either the bulk or a single molecule.[46] 

Owing to the change of the properties, the fabrication of nanostructural materials and devices with 

unique properties in atomic scale has become an emerging interdisciplinary field involving solid–state 

physics , chemistry , biology and materials science. Also, this field of research is of special importance 

for the study of initial stages of thin film growth in the area of microelectronics. Among the above 

counted special properties of nanocrystals, the melting point of nanocrystals is one of the important 

thermodynamic characteristics which determine many properties of materials. Thus a thorough 

understanding of the thermal properties of low dimensional materials is of importance due to their 

potential applications in the field of microelectronics, solar energy utilization and nonlinear optical 

materials also. This may allow the use of a greater variety of substrates or the formation of laminar thin 
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films without thermal damage to the underlying features. The most striking example of the deviation 

of the corresponding conventional bulk thermodynamic behavior is probably the depression of the 

melting point of nanostructures. A relation between the size of nanostructures and melting temperature 

was first established by Pawlow in 1909 and Takagi in 1954 demonstrated experimentally for the first 

time that ultrafine metallic particles melt below their corresponding bulk temperatures.[20, 47 ] Further 

studies revealed that isolated and substrate-supported nanoparticles with relatively free surfaces usually 

exhibit a significant decrease in melting temperature as compared to the corresponding conventional 

bulk materials. The physical origin for this phenomenon is that the ratio of the number of surface to 

volume atoms is enormous, and the liquid/vapor interface energy is generally lower than the average 

solid/vapor interface energy.[48] Therefore as the particle size decreases, its surface to volume atom 

ratio increases and the melting temperature decreases as a consequence of the improved free energy at 

the particle surface. Moreover, the metallic and organic nanocrystals can exhibit not only a decrease of 

the melting point, but also a superheating , depending on their surrounding environments. [23,25,27]  

  

It is widely believed that the melting temperature Tm of nanostructures goes down with 

decreasing size. The theory for this claim is usually based by considering spherical shaped 

nanostructures. The methodology used ranges from a variety of classical approaches to the first principle 

quantum mechanical calculations. [1,2]. We shall study a novel nanosystem namely a nanorod. We 

adopt a classical thermodynamics approach in which we shall minimize the Gibbs energy. 

 

An elementary approach (Weizsaker Model) 

 

Let us first adopt a simple minded approach based on calculating the cohesive energy for a nearest 

neighbour interacting nanorod. Figure 1 depicts such a nanorod.  

 

 
Fig. 1 Schematic nanorod of length l and radius R.  

 

We can write 2TotE NJ R = − +  …..(1) 

Where J represents the energy per bond and g is a surface energy term. Note that we consider only the 

curved surface area to be significant.  

If the total energy per atom be  then we can also write 
2

3

0

Tot

R
E

a


=   ….(2), where a0 is the interatomic 

distance.  
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Note that the volume V is, 2V R= and Hence, the total number of atoms N is 
2

3

0


=

R
N

a
…..(3), 

whereby the total energy per atom can be written as- 3.
02

2TotE R
J a

N R





= = − +  which implies 

3

0

2
J a

R
= − +  ….(4) 

It is reasonable to assume that the melting temperature Tm is related to the binding energy per atom. 

The greater the binding energy the greater the melting point. Hence  −mT  

which implies, 3

0

2
mT J a

R


 
 − 
 

 ….(5) 

The melting temperature Tm is then 3

0 0 1

2
mT T a C

R
= − ….(6), where T0 is the bulk melting point and C1 

is a constant.  

The above expression indicates that if R goes down the second term on the right hand side of eqn (6) 

increases thereby decreasing the melting temperature Tm. We must note that R scales with l. A similar 

argument has been advanced by C.F. Von Weizsaker to explain the nature of binding in a nucleus. It 

goes under the name of the famous Weizsaker semi empirical mass formula.  

 

 

Gibbs energy based analysis of a bare nanorod 

Figure 2 depicts a thin nanorod with R its radius of cross section and  the length (R<< ). 

Melting of the rod is considered only on the curved surface. The surface properties especially the surface 

energies in various phases play significantly besides others when the study of melting of a nanorod is 

undertaken. Surface energy quantifies the disruption of intermolecular bonds that occurs when a 

surface is created. In the physics of solids, surface must be intrinsically less energetically favorable than 

the bulk of a material; otherwise there would be a driving force for surfaces to be created and surface is 

all there would be. The surface energy may therefore be defined as the excess energy at the surface of 

a material compared to the bulk. We can start with equating the mass of the melted cylindrical shell in 

the solid and liquid phases as- 
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Table-I; Describes the various quantities used in the analysis 

Table-I 

Symbol Meaning 

rs Density of the solid phase of the nanorod 

  Density of the liquid phase of the nanorod 

s  Surface thickness of the outer melted shell of the 

nanorod. 

( )− sR  Radius of the solid phase of the nanorod which 

does not melt 

a / s  

B / s R  

R  Radius of the liquid state of the nanorod 

m  Surface energy of the liquid matrix-interface of 

the nanorod 

s  Surface energy of the solid liquid-interface of the 

nanorod  

sv  Surface energy of the solid-vapor interface of the 

nanorod 

 

Symbols used in the analysis in this chapter. 

Mass of the melted shell in solid phase = mass of the melted shell in liquid phase.  

i.e. 
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(The symbols used in the analysis are explained in Table I) 

i.e. 2 2 2 2( ) ( )      − − = − −   s S SR R R R  

Here our aim is to define R  in terms of ss Therefore, 2 2 2( ) ( 1)= − − −sR R R    ….(7) 

which implies ( )( )
22 2 1 1  = − − −

 
R R B  ….(8) 

Thereby ( ) ( )2 2 1 1 2= − − −  R R B B  ….(9) 

We consider the ratio  
2

2
1 ( 1) ( 2)

R
B B

R
= − − −  ….(10) 

Whereby we can further write  
1

21 ( 1) ( 2)= − − −eR
B B

R
 ….(11) 

Taylor expanding the R.H.S of eqn.(11), we obtain 
( )

( ) ( )
2 22

1 ( 2) 1
~1 1 2

2 8

− −
− − − −−

B BR
B B

R


  

Rearranging we get to order B2 (i.e. ignoring terms of order B3 and higher) 

( ) 2
2

1 ( 1)
~ 1 2 ( 1) 4

2 2 8

−  − −
+ + − −−  

 

R B
B B

R

 
  

which implies )11(
2

1
)1(1 2 +−−

−
+−+ 


 BB
R

Rl  

Simplifying we have 


 2

2

1
)1(1 BB

R

Rl −
+−+  …..(12) 

We thus have ]
2

1
)1(1[ 2


 BBR

R

Rl −
+−+  …..(13) 

We now differentiate the above expression to obtain ]
2

)
2

1
(

)1(
[ 



R

B

R
R

R

Rl −
+

−
  (note that 

1s

s

dB
B and hence

R d R




= = ) 

Therefore ]1)[1( 


−−
s

l

d

dR
 ….(14) 

We already have from eqn. (10 )  
2

2
1 ( 1) ( 2)

R
B B

R
= − − −  
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Differentiating once again the above expression We have 

 
2

2( ) 2 2
( 1)

6s

d R B
R

d R R


  
= − − −  

  

( )
 

2

. 2 ( 1)(1 )
6

= − −
S

d R
i e R B

d
 ….. (15) 

The central part of this analysis is to equate Gibbs energy in various phases. 

Note that the Gibbs energy is ( ) ( ) 2 ( )  = + − + + − + −s ss
G U PV TS U PV TS R  

  2 2 22 ( ) ( )     + − − + −
 v s sv sR R R  …… (16), where the symbols have their usual meanings. We 

minimize the Gibbs energy with respect to sS which gives 

 0


=
s

dG

d
…..(17) 

One can break-up the Gibbs energy into three components 1 2 3G G G G= + + ….(18) 

With ( ) ( )1 S
G U PV TS U PV TS= + − + + − whereby  

STTRSTTmG mssm −−=−= )()()( 0

2

01   , where m is the mass of nanorod in the solid and liquid 

phases.  

So LTTBRSTTBRG msms )()1()()1( 0

22

0

22

1 −−=−−=   , where L is latent heat. …. (19) 

2 2 ( )  = −s sG R  …. (20) And  2 2 2

3 2 ( ) ( )     = − − + −
 v s sv sG R R R  ….(21) 

We extremise these components 1 2 3,G G and G  with respect to ss  

( )1

0

1
1 2 1 ;


 

 

   
= − − = =   

   

m s
s

s s

TdG dB
L R B B

d T R d R
 ….(22) 

2 2 


= − s

s

dG

d
 …..(23) 

( ) 3 4 1 ( 1)    


= − − + −v v sv

s

dG
R B

d
 …..(24) 

( ) 3 4 1  


= − −v sv

s

dG
R B

d
 …..(25) 

where we have used eqn. (13) 

We can also write 
( )2
1

(1 ) 2


−
− = −

s

Bd
B

d R
 …..(26) 

Using eqn. (22), (23) and (24), we obtain  

 31 2 0
   

= + + =
s s s s

dGdG dGdG

d d d d
 …..(27)  

 

which implies ( )
0

1 2 1
 
− − 

 

m
s

T
L R B

T
( )2 4 (1 ) 1 0      − + − − + − =  s v v svR B  …..(28) 
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R

R

s

Fig. 3 Before melting.4
 

This lengthy exercise finally is ( )
0

1 2
1

(1 )


  



 
= − − − 

− 

m s
v sv

s

T R

T R L B
 ….(29) 

We can now analyze the above expression for the melting point as 

(i) If R and/or L be large, the denominator of the coefficient of the second term on the right 

hand side of eqn.(29) goes smaller and can be approximated to zero which provides 0TTm   

If the density of the solid nanorod is large, Tm is approximately closer to the bulk temperature 

T0. The undetermined parameter is ss i.e., the melted thickness. Thus it may be reasonable to 

define melting when ss/R is equal to 0.1.  

 
Fig. ( 5 ) Tm as function of Al and In nanoparticles the solid lines are theoretical predictions. 

Symbols (l) denote the experimental results of Tm values of Al nanoparticles. Symbols (n) denote 

the experimental results of Tm values of In nanoparticles.  
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Fig.( 6 ) Tm functions of four organic nanorods: Benzene, Chlorobenzene, 

heptane and nepthaline. The solid lines of theoretical predictions and the symbols 

l,n, •,t denote the experimental results of Benzene, Chlorobenzene, heptane and nepthaline 

respectively. 

 

In general, We have 0


= −mT T

R
, Where

1



=

s

, the coefficient of the 2nd term of the R.H.S. of eqn. 

(29).  

Therefore, we observe that as the size R goes down, Tm goes down. We also note that the coefficient 

b depends inversely on the latent heat L. Clearly, as the latent heat L decreases, Tm decreases. If b is 

positive, we obtain the Tm vs 1/R plot as shown in fig.-5, which clearly indicates that Tm decreases as 

1/R increases.  

m

 
Fig. 5 

(iii) When b is negative, superheating may arise. Considering the three terms within the box of the 

second, term on the right hand side of eqn. (29), the possibility of superheating can be analyzed.  

Superheating is possible only if  v sv , because the last term is small on account of being 

dependent on 
R

 

 (iv) We can readily proceed with writing ; 0.1
 

= = 
 

n S S
mT f

R R

 
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Dependence of S

R


 is studied for a typical system like indium (In) with S

R


 ranging  

from 0.05 to 0.2 in the steps of 0.05. The results were in a good agreement as expected  

 theoretically. 

 

(IV) Gibbs energy based analysis of an encapsulated nanorod  

 

We consider an encapsulated nanorod with its radius of cross section as R, the radius of the 

surrounding matrix shell being Rm and (R-ss), the radius of its inner shell. Fig. 6 depicts such a 

nanorod and figs. 7(a) and 7(b) show the cross sectional view of the nanorod before and after melting. 

Rm and R are the radii of the nanorod upto the matrix and the solid portion respectively. (R-ss) 

represents the portion of the nanorod which does not melt on heating.  

 

 

 

6

s

2R

 
 

 

7

 

 

7

 
 

We can proceed with the statement of Gibbs energy for the system as: 

 

 

( )  ( )
22 2 2 2

( ) ( ) 2 ( )

2 ( ) .....(30)

    

     

= + − + + − + + − +

 + − − + − + −
 

s m s s m mv

v s sv s mv m

G U PV TS U PV TS R R R

R R R R R  

As discussed earlier  

( ) ( ) ( )
2 2

0

1 1 .....(31) 
 

+ − + + − = − − 
 

m
ss

T
U PV TS U PV TS L B R

T
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Equating the mass of matrix before and after melting ( )2 2

m m mm R R = −  

Which yields 2 2m
m

m

m
R R

 
= +  …. (32)  

We consider an imaginary rod of radius R0 consisting of the matrix material 2

0m mm R =  

Thus 2 2 2

0mR R R= + , which implies, ( )2 2 2

0 1 1 2
 


  

= + + − −  
  

s s
mR R R

R R
 ….(33) 

 

 

We consider two cases 

 

(i) For a thin shell we consider the following first order adjustment with 

s

l

s

m
lm

d

dR

d

dR
RR


=  

Where, 

1
22

2 0

2
1m

R
R R

R

  
= +  

  
 

2

0

2

1
1

2

R
R

R

 
= + 

 
 ….(35) 

  

For thin shell, eqn (30) can be re-written as 

( ) ( )

( )  ( )

2 2

0

2 22

1 1 2

2 ....(36)

      

    

 
= − − + + − +    

 

 + − − + −
 

m
S m s s mv

v s sv s

T
G L B R R R R

T

R R R

  

 

Because for thin shell lm RR   …. (37) 

 

Extremising Gibbs energy with respect to ss we find 0
s

dG

d
=  …..(38) 

This implies  

( ) ( )( )

( )( ) ( ) ( )

0

1 2 1 2 1 1 2

2 1 1 4 1 1 0 ...(39)

      

        

 
− − + − − − 

 

+ − − + − − + − =  

m

m
s s

mv v v sv

T
L R B B

T

B R B

 

 

This gives 

( )( )

( )

( )( )

( )
( )

0

1 1 1 11 2
=1- – ...(40)

1 1

      
  



 − − − − −
− − 

− − 

s m mvm
v sv

s

B BT R

T R L B B
 

 

This ultimately reduces to  

( )( )

( )
( )

0

1 1 ( )1 2
=1-

1

    
 



 − − − +
− − 

− 

s m mvm
v sv

s

BT R

T R L B
 …. (41) 
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(ii)  For thick shell lm RR  , Therefore, ( )2 2 2

0mv m mvR R R − =  ….(42) 

But = −2 2 2

0 m L
R R R  , which gives ( )= −

1/2
2 2

0 m
R R R   

Therefore, 
( )

 
 



− − −
= = − − −

−

0 :

1/2
2 2

0

( 1)(1 )
( 1)(1 )

S
m

dR R B R
B

d RR R
 ….(43) 

we must note that the matrix in general takes relatively larger time to melt therefore we can consider 

Rm to be independent of 
s
 i.e., 


= 0m

S

dR

d
 And 


= − − −

2

0 2 ( 1)(1 )
S

dR
R B

d
 ...(44)  

The Gibbs energy for the thick shell of the nanorod can be written as  

  ( )            
 

 = − − +  − + +  + − − + − + −      
 

2 2 2 2 2 2 2

0 0

0

1 (1 ) 2 ( ) 2 ( ) ( )m
S Sl S lm mv v S sv s mv

T
G L B R R R R R R R R R

T
 

…(45) 

Extremizing the Gibbs energy with respect to ss we obtain 


= 0
s

dG

d
  

Which gives          


    
= − − − − − − + − −     −     0 0

1 1 2
1 ( 1)(1 ) 2 ( 1)

(1 )
m

s m mv v sv mv

S

T R R
B

T R L R B
 …(46) 

 

Results and Discussion 

 

We can now summarize the above discussion for the melting point of the bare and encapsulated 

nanorod. At nanoscales, particles exhibit many thermophysical features distinct from those found at 

microscales. As the size decreases due to the increase in surface to volume ratio the melting temperature 

deviates from the bulk values and becomes a size-dependent property. This change in melting point is 

primarily caused besides others because nanoscale materials have a much larger surface surface to 

volume ratio than bulk materials, drastically altering their thermodynamic and thermal properties. This 

decrease may be of the order of the order of tens to hundreds of degrees for metals for with nanometer 

dimensions. Surface atoms bind in the solid phase with less cohesive energy because they have fewer 

neighboring atoms in close proximity compared to atoms in the bulk of the solid. It is well established 

that the melting 
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temperature of Au(1064K) decreases when the particle dimensions are aeduced to the nanoscale. 

Therefore, at 3 nm diameter, Au particles can melt at temperature ~ 500 K. Similarly, the melting 

temperature of B4C (2450K) lowered to ~ 764 K range with spherical-shaped and ~ 495K ranges with 

cylindrical nanorods .Also, GaN (2770 K) nanorods are observed to melt at the temperature ~ 1553 K 

range.  

As an elementary approach we observe through eqn.(6) that if R goes down the second term on the 

right hand side of eqn (6) increases thereby decreasing the melting temperature Tm. We must note that 

R scales with l. A similar argument has also been advanced by C.F. Von Weizsaker to explain the nature 

of binding in a nucleus. It goes under the name of the famous Weizsacker semi empirical mass formula.  

 
  

The expressions for the melting point of the bare and encapsulated nanorod as discussed by eqns. (29), 

(41) and (46) suggest us that  

 

(i) If the size of the nanorod R and / or L be large, the denominator of the coefficient of the 

second term on the right hand side of eqns. (29), (41) and (46) goes smaller and can be 

approximated to zero which provides 0TTm   

If the density of the solid nanorod is larger then Tm is once again closer to the bulk 

temperature T0. The undetermined parameter is ss i.e., the melted thickness.  

In general, We have, 0


= −mT T

R
, Where

1



=

s

, 

Therefore , we observe that as the size R goes down, Tm goes down. We also note that the 

coefficient b depends inversely on the latent heat L. Clearly, as the latent heat L decreases, 

Tm decreases. If b is positive, we obtain the Tm vs 1/R plot as shown in fig.-8, which clearly 

indicates that Tm decreases as 1/R increases.  
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m

 
Fig. 8 

(iii) We have assumed that b is positive. However, the possibility of b being negative cannot be ruled 

out. This would imply a superheating. Considering the three terms within  

the box of the second term on the right hand side of eqn. (41) (note b<1), the  

possibility of superheating can arise.  

Superheating is possible if  v sv  and 
lm mv sl
  +   

It should be noted that when the surface atoms of the particles is smaller than that of the interior atoms 

due to the coherent interfaces between the particles and the matrix , the superheating of the nanorod 

is evident. Tm decreases as r decreases.  

Clearly it is observed that the melting temperature decreases when the particle size reduces.  
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