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ABSTRACT 
 

Using empirical formulae, we have evaluated low temperature specific heat of high Tc superconductor in a 

magnetic field. Our theoretically evaluated result shows that specific heat increases with magnetic field and 

also with temperature which are in good agreement with the experimental data. 

Keywords : Tc Superconductor, Magnetic Field, BCS Theory 

 

I. INTRODUCTION 

 

One of the most extensively studied properties of 

superconductor is the specific heat. It represents bulk 

measurement of the entire sample. Above the 

transition temperature Tc the specific heat Cn of high 

temperature superconductor tend to follow Debye 

law.1 We know that Cn of a normal metal far below 

the Debye temperature D is the sum of linear term 

(Ce= T) arising from the conduction electrons, a 

lattice vibration or phonons term (Cph=AT-3) and 

sometime an additional schottky conribution2 aT-2 

such that 

 Cn = aT-2 +  T + AT3 (1a) 

In the case of high Tc superconductor one ignore the 

schottky term aT-2. When (Cexp/T) verses T2 plot was 

observed then it was found that high Tc 

superconductor obey at low temperature and deviates 

from it at higher temperature from Debye 

approximation. For most low temperature 

superconductor, the transition temperature Tc is 

sufficiently below D so that the electronic term in 

the specific heat is appreciable in magnitude and 

sometimes dominants. This is not case for high Tc 

superconductors. Using measured values of  and A 

one has shown3 that 2

cAT > for (La0.9 Sr0.1)2CuO4- 

and YBa2CuO4-. Thus for oxide superconductor the 

vibrational term dominantes at Tc in agreement with 

the experimental data.4 If the conduction electron 

have effective names m* that differ from the free 

electron mass m, the conduction electron specific 

heat coefficient  is given by 

 = (m*/m0)0 

where 0 is the ordinary electron counterpart of . In 

free electron approximation we have 

0 = ½2 R / TF 

where R = NAKB is gs constant and NA is avagedro's 

number. TF is Fermi temperature. The effective mass 

ratio 

m* / m0 = TF / ½2R 

 

Discontinuity at Tc 
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The transition from the normal to the 

superconducting state in the absence of an applied 

magnitude field is second order phase transition. This 

means that there is no latent heat but there is a 

discontinuity in the specific heat. The BCS theory 

predicts that the electronic specific heat jumps 

abruptly at Tc from the normal state value  Tc to the 

superconducting state value Cs with ratio 

cγT
cγTsC −

= 1.43 

Now in case of high Tc superconductor the magnitude 

of the jump is small compared to the magnitude of the 

total specific heat because it is superimposed on much 

larger AT3 vibrational term.5 

 

Specific heat below Tc 

For T < Tc, BCS theory predicts that the electronic 

contribution to the specific heat Cs depend 

exponentally on temperature 

Cs = a 












 −

Tk

Δ
Exp

β

 

where 2 is the energy gap in the superconducting 

density of states. 

The vibrational term AT3 becomes negligible as OK is 

approached and other mechanism becomes important 

for example, antiferromagnetic ordering and nuclear 

hyperfine effects, two mechanisms that are utilized in 

cyrogenic experiments to obtain temperatures down 

to the microdegree Kelvin.6 

So far, we have discussed that specific heat of 

superconductor in the normal and superconducting 

states in the absence of an applied magnetic field. 

When the magnetic field is present the situation is 

much more complicated. In this case for treating the 

superconducting state, one makes uses of the free 

energy because (i) the superconductivity state is 

always the state of lowest free energy at a particular 

temperature, (ii) the free energies of the normal and 

superconducting states are equal at the transition 

temperature. One uses Gibbs free energy G(T,B) and 

study the difference [Gs(T,B)-Gn(T,B)] between the 

superconductivity and normal state. Because of the 

close relationship between superconductivity and 

magnetism, one adopts the free energy to specific heat 

procedure and examine the Gibbs free energy of 

superconductors in the presence of magnetic field. 

One first obtain an expression for the free energy 

difference [Gs(T,B)-Gn(T,B)] between the 

superconducting and normal states. Then, one deduce 

the expression for entropy and enthalpy.7-9  

 

In this paper, we have evaluated that low temperature 

specific heat of high temperature superconductors in 

the presence of magnetic field. In section II, we have 

given the mathematical formulae used in the 

evaluation. In the last section, we have discussed the 

obtained result. 

 

II. METHODS AND MATERIAL  

 

Mathematical formulae and in the evaluation of specific heat of a superconductor in a magnetic field 

One writes down the expression for Gibbs free energy GS(T,B) of the superconducting state in the absence of 

applied magnetic field B. 

Gs(T,B) = Gn(T)-
1

0μ
2

1 −
[Bc(T)2-B2] for B < Bc (T) (2) 

Here, Gn(T) is the Gibbs free energy of the normal stage and 
1

0μ
2

1 −
Bc(T)2 is the magnetic energy density 

associated with critical field Bc. 

Gn(T) = -
42 AT

12

1
γT

2

1
−   (3) 
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Now the critical field Bc(T) is given by 

Bc(T) = Bc(0)
























−

2

cT

T
1  (4) 

Now at B = 0 

Gs(T,0) = Gn(T)- 1

0μ
2

1 − Bc(T)2    (5)     

Now substituting (4) in (5) we get 

Gs(T.0) = -
























−−− −

2

c

2

c

1

0

4

T

T
1(0)Bμ

2

1
AT

12

1
γT

2

1
 (6) 

Now Gibbs free energy GS(T,B) of the superconducting state in the presence of an applied magnetic field B. 

Gs(T,B) = -













−










−−− − 2

2

c

2

c

1

0

4

T

T
1(0)B x μ

2

1
AT

12

1
γT

2

1
B  (7) 

Since the applied field B does not depend on the temperature, the entropy obtained by differentiating the Gibbs 

free energy (7) assuming the presence of a field is the same as in the case where there is no magnetic field 

present 

Ss(T) =
























−−− −

2

c

2

2

c

2

c

1

0

3

T

T
1 

T

T
 x (0)B μ2AT

3

1
γT   (8) 

The enthalpy obtained does depend explicitly on this field 

21
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2

2

c

2
2

c

1

0

44'

s B μ
2

1

T

T
41x

T

T
1 x  (0)B μ

2

1
AT

4

1
γT

2

1
  B)(T,H −− +








+

























−−+=  (9) 

and specific heat is given 

Cs(T) = T + AT3 + 







−− 1

T

T
3 

T

T
 x (0)B μ2

2

c

2

2

c

2

c

1

0  (10)  

 where Eqs. (8) and (10) are the same as their zero-field counterparts, the field dependent Gs and H's 

terms of Eqs. (7) and (9) on the other hand, differ from their zero-field counterparts by the addition of the 

magnetic energy density B2/20. 

In a magnetic field the sample goes normal at a lower temperature than in zero field. One denotes this 

magnetic field transition temperature by TC(B) = T'c, where, of course, Tc(0) = Tc and T'c < Tc. This transition 

from the superconducting to the normal state occurs when the applied field H equals the critical field BC(T) at 

that temperature. Equation (4) may be rewritten in the form 

1/2

c

c

'

c
(0)B

B
1TT 








−=  (11) 

to provide an explicit expression for the transition temperature T'c in an additional field B. Now one can show 

that this same expression is obtained by equating the Gibbs free energies GS(T,B) and Gn(T) for the 

superconducting and normal sates at the transition point 

Gs(T,B) = Gn(T) T = T'C (12) 
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At the transition temperature TC = TC(B) the superconducting and normal state entropies respectively, differ. 

Their difference gives the latent heat L of the transition by means of the standard thermodynamic expression 

L = (Sn - Ss)Tc(B) (13) 

 = 

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
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2

c

c

2

c
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c

1-

0
T

(B)T
1x

T

(B)T
B2μ  (14) 

One can show this same result can be obtained from the enthalpy difference L = '

s

'

n HH − . The latent heat is a 

maximum a the particular transition temperature TC(B) = TC/ 2 , as may be shown by setting the derivative of 

Eq. (14) with respect to temperature equal to zero. One sees from this equation that there is no latent heat 

when the transition occurs in zero field, i.e., when T=TC, or at absolute zero, T=0. In addition to the latent heat, 

there is also a jump in the specific heat a Tc(B). 

 

Normalized Thermodynamic Equations 

The equations for GS(T,B), SS(T) and CS(T) given in the previous section, together with H'S(T,B) can be written 

in normalized form by defining two dimensionless independent variables, 

 t = 
cT

T
 b = 

cB

B
 (15) 

and two dimensionless parameter 

 a = 
γ

AT2

c  
2

c0

2

c

γTμ

B
α =  (16) 

These expressions are valid under the conditions 

 t2 + b < 1 (17) 

The sample becomes normal when either t or b are increased to the point where t2 + b = 1, and the value of t 

that satisfies this expression is called t': 

 t'2 + b = 1 (18) 

This is the normalized of Eq. (11) where t' = T'c/Tc is the normalized transition temperature in a magnetic field. 

The normalized specific heat jump has the following special values : 

 1)(3t' t'2α
γT

ΔC 2

c

−=   

  
 

where 4/9 is its maximum magnitude of C/Tc for reduced temperatures in the range 0< t' < -1/ 3 . The 

normalized latent heat has special values. 
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                             where its maximum ½  is at t' = 1/ 2  

Normalized Equations for the thermodynamic Functions of a Superconductor in an Applied Magnetic Field B 

Gibbs Free Energy               gs =  22242
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Definitions of normalized variables (t,b) and parameters : 

t =
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T
 b =

)0(B

B

c

 a =
γ

AT2

c  
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'

cT

T'
 b =

)0(B

)(T'B

c
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2

c0

2

c

γTμ
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The first four expression are valid under the condition t2 +b < 1 and the last two are valid at the transition point 

given by t'2 + b2 =1. 

Now the specific heat of high Tc superconductor in the presence of magnetic field can be studied with the use of 

the empirical formulae 

T

C
= [+'(B)] + [A-A'(B)]T2 (21) 

 

III. Discussion of Results 

 

In this paper, we have evaluated the low temperature specific heat of high temperature superconductor in a 

magnetic field using an empirical formulae given in Equation (21). Theoretically evaluated results are shown in 

table T2 along with the experimental result.10-15 We have taken the values of A= 4.38 mJ/mol K2 and 
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A=0.478/mol K4 with the coefficient '(B) and A'(B) increasing as the applied magnetic field was increased. For 

magnetic field H = 3T we have put the value of 

 /' = 0.54, and 

 A/A' = 0.11 

These value give close match with the experimental data. The other values like Debye temperature D and 

density of state D(EF) for various high Tc superconductor are given in table T1. Our theoretical evaluated results 

indicates that specific heat of high temperature superconductor increases with magnetic field and also with 

temperature. 

Table T1 

Debye Temperature D, Density of states D(EF) 

 Superconductors TC(K) D(K) D(EF) 

1. (La0.925Sr0.075)2CuO4 36 360 1.9 

2. YBa2Cu3O7 92 410 2.0 

3. YBa2Cu4O8.5 80 350 2.1 

4. Bi2Sr2Ca2Cu3O10 110 260 2.5 

5. Tl2Ba2Ca2Cu3O10 125 260 2.7 

6. HgBa2Ca2Cu3O8 133 280 2.2 

 

Table T2 

Evaluated result of Low temperature specific heat of YBa2Cu307-  in a magnetic field 

 

                    T(K2)                                          (C/T) (mJ/k2 mol) 

 (H = 3T)    (H = 5T) 

 Theo. Expt. Theo. Expt. 

5 7.5 6.6 8.6 9.7 

6 8.6 7.8 9.5 10.2 

7 9.2 8.7 11.2 12.7 

8 11.8 10.2 12.7 13.8 

9 13.5 12.5 14.9 15.4 

10 15.6 14.5 16.3 17.6 

15 17.9 16.2 18.7 19.8 

20 20.6 18.6 21.5 20.2 

25 22.4 19.8 23.8 22.0 

30 23.6 20.5 24.8 23.1 

35 25.5 23.2 26.7 25.2 
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