
Copyright : © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET

361

Integrating Hashing with Encoding to Eliminate Password
Managers

Aditya Ray1, Aman Roy2

*1Student of Divya Bhaskar Public School, India
2Department of Computer Engineering, GHRCEM, India

Article Info

Volume 7 Issue 5

Page Number: 361-367

Publication Issue :

September-October-2020

Article History

Accepted : 15 Oct 2020

Published : 23 Oct 2020

ABSTRACT

The Internet has created a utopia which enables us to access any information.

However, This boon comes with a curse. Everyone is prone to attack. Textual

passwords remain one of the most common authentication methods [1]. For

being safe online, using strong and different passwords for each website is the

way to go. As easy as it looks, in the real world, it becomes very unmanageable.

Most people do not follow this norm. Few people who do, end up using

password managers who have their own issues. The solution which we came up

with uses hashing and encoding to generate passwords. Hashing will be done

using the Secure Hash Algorithm(SHA-256). As far as the encoding is

concerned, we are going to design our own procedure for producing a pseudo-

random combination of letters. There are three counterparts for generating the

secret key. One is the website/app name, which is variable. Remaining two is

constant, i.e. password and key length all the time. In this algorithm, the

secrecy of password is only essential. This method will allow the user to

eliminate the role of password managers and also need not to worry about the

strength of the password. This should be used as an ideal way of keeping track

of passwords.

Keywords: Password, Hashing, Encoding, SHA-256, Password managers

I. INTRODUCTION

Computer passwords have been used for

authentication for a long time. In the year 1961, the

password was used in a Compatible Time-Sharing

System for the first time [2][3]. As time progressed, it

grew tremendously, and with that, it became

complicated day by day. At first, the passwords were

saved in the system as plaintext, which was not safe at

all and later got replaced with keeping the password

in a hashed format. Now the narrative of "passwords

are dead" is reaching its new heights, and people are

looking for alternatives of authentication.

The use of passwords for online authentication is a

great choice or not is out of this paper's scope. The

fact is, according to Michael B., in 2014, an average

person online has 40 login credentials [4]. In 2020, it

would have been much more than that six years down

the line.

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 362

Technology has grown at lightning speed but not

humans. They still do not follow good practices for

being safe online. Each person on the internet signs

up for many websites. The websites use some login

credentials for verification purposes. Generally,

people make two mistakes while choosing a password

-

1) Keeping a weak password.

2) Repeated use of the identical password

everywhere.

A weak password is problematic because it can be

broken using various techniques such as - dictionary

attack or rainbow tables [5]. Using the same password

for every website is not an optimal solution even

though our fragile mind tends to go for that. It is risky

because if one of our accounts gets hacked by

someone, the attacker can use the same login

credentials to access other websites. Being safe online

can be possible only if we try to avoid the mistakes

mentioned above. To use strong and non-identical

passwords for each website is impractical and not

usually practiced. For making it possible for the

masses, password managers are used. They help users

to keep a strong password without any headache of

remembering it all. We just need to remember one

master password which will be used to access all

other passwords. However, being so accessible to use,

it holds few threats that need to be addressed.

Problems imposed by password managers

Password managers can be widely categorized into

two groups, i.e. offline and online.

As far as Offline Password Managers are concerned, it

feels safe to have all the data locked inside one's own

local computer. There is no trust involved in third

parties. However, an offline system does not allow

people to sync all the data to multiple devices which

makes it impractical.

On the other hand, Online Password managers are

good with syncing the passwords to multiple devices,

but that feature comes with a price. Users have to

trust the internet company in the middle who is

making this possible. Also, there is a chance of a data

breach because all the data is on the cloud.

Either way we have to compromise on one thing or

the other.

Password Generator as an alternative

Storing login credentials either on a local machine or

cloud has their own demerits. The better way of

managing passwords can be achieved using password

generators. Password Generators are a special kind of

algorithm which produces a strong password. The

solution of enabling users to follow good practices

while choosing a password can be achieved using it.

Instead of generating a completely random password,

the idea is to generate passwords according to the data

passed by the user. Also, the data provided by the user

will not be different each time except on field

(website/app name). Only one password will be used

to generate all the passwords, i.e. now the user is not

saving any kind of data anywhere. All the passwords

are getting generated on the go. The algorithm can be

implemented across different platforms without any

inconsistency. Even if any individual generated

password gets disclosed, the attacker should not be

able to recover the original secret key which is used

to generate all the passwords.

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 363

II. PROPOSED WORK

Figure 1: Complete Diagram of the proposed system

for password generation

As shown in Fig. 1, the input consists of three

counterparts. The feeded data goes into a series of

operations which at the end gives a very strong

password. The details of how exactly all the

operations work under the hood will be discussed

later into this section.

Input Data

The algorithm takes three inputs to compute the

secret key. All the three counterparts can be

categorized into two parts, i.e. variable and constant.

✓ Variable field - Only one field is going to change,

which is the website/app name. The user does not

need to remember it as it will be known by default

explicitly.

✓ Constant field - Two fields will be constant for all

the websites/app, i.e. secret key and key length.

The key length is advised to be less than or equal

to 20.

The generated password depends on all three

components. Secrecy of secret keys is very crucial.

Key length may or maynot be kept secret. Unlike

these two website/app names will always be kept

open. It is not advisable to keep it secret.

Procedure

After getting all the three inputs, the algorithm

processes the input and gives the generated password

as a result. The process works in four stages –

✓ Infuse

✓ Hash

✓ Chunk

✓ Encode

Stage - I [Infuse]

In this very first stage, the app name and password

gets infused together. For doing that, in both the

strings, one character is taken alternatively until one

string is out of range. If still some part of a string is

remaining then that will be reversed and added to the

final result.

Let 𝑋 be the website/app name, and 𝑌 be the

password. Where 𝑋, 𝑌 ∈ 𝑈, 𝑋 ≠ 𝜙 and 𝑌 ≠ 𝜙.

𝑓(𝑋, 𝑌)will be used to compute the final infused text

if length of 𝑋 and 𝑌is equal.

if 𝑋. 𝑙𝑒𝑛 = 𝑌. 𝑙𝑒𝑛, then -

𝑓(𝑋, 𝑌) = ∑

𝑋.𝑙𝑒𝑛−1

𝑘=0

(𝑋𝑘 + 𝑌𝑘)

If 𝑋and 𝑌are not equal, then using 𝑋 and 𝑌, first the

largest string 𝑀 and length of shortest string 𝑛 is

computed. 𝑓(𝑋, 𝑌, 𝑀, 𝑛)will be used to generate the

infused text.

if 𝑋. 𝑙𝑒𝑛 ≠ 𝑌. 𝑙𝑒𝑛, then -

𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 (𝑀) = 𝑚𝑎𝑥(𝑋, 𝑌)

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 (𝑛)

= 𝑚𝑖𝑛(𝑋. 𝑙𝑒𝑛, 𝑌. 𝑙𝑒𝑛)

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 364

𝑓(𝑋, 𝑌, 𝑀, 𝑛) = ∑

𝑛−1

𝑘=0

(𝑋𝑘 + 𝑌𝑘) + ∑

𝑛

𝑗 = 𝑀.𝑙𝑒𝑛−1

𝑀𝑗

Here, it is assumed that the string starts from index 0.

For e.g., if website/app name(𝑋) = “facebook”

and password(𝑌) = “pass”

Using 𝑋 and 𝑌, largest string (𝑀)= “facebook”

length of shortest string (𝑛)= 4

therefore, 𝑓(𝑋, 𝑌, 𝑀, 𝑛) = “fpaacseskoob”

Stage - II [Hash]

The value generated after the infusion of the

website/app name and password will be hashed now.

For hashing purposes, Secure Hash Algorithm(SHA)-

256 will be used. A hash function takes an arbitrary

length of data as an input, but the output will always

be fixed. There are few properties that a typical hash

function fulfills [6]. They are -

● Fast Computation - If H(x) is the hashing

function, it should not take a long time to output

the result.

● One way - If H(x) has computed the hash of X as

Y, i.e. H(x) = Y. If anyone knows Y's value, it

should be infeasible to find out x with the help of

Y.

● Avalanche Effect - A small change in input will

completely change the output.

● Deterministic - Identical hash will be generated

for the same input every time.

● Negligible collision - There should be very less

chances of two different input data producing the

● same hash value. i.e. 𝐻(𝑥1) = 𝑌1and 𝐻(𝑥2) 𝑌2 ,

if 𝑌1 = 𝑌2then 𝑥1 ≠ 𝑥2or vice versa.

SHA-256 fulfills all the properties listed above [7][8].

It outputs a string of fixed length of 64 characters[9].

In SHA-256, 256 represents bits of the output string.

Size of one character = 4 bits.

No. of characters in output string = 64 characters.

No. of bits used = 64*4 = 256 bits.

So, the string derived from the last stage will be

hashed using SHA-256. For example -

𝑆𝐻𝐴256("𝑓𝑝𝑎𝑎𝑐𝑠𝑒𝑠𝑘𝑜𝑜𝑏")

= 𝑎𝑎𝑒𝑓𝑒. . . (54 𝑐ℎ𝑎𝑟). . . . 𝑏𝑏𝑎37

Stage - III [Chunk]

This step is just a bridge between the previous and the

next step. It prepares the hashed value to be prepared

for encoding.

The process converts the hashed string into a list of

similar size of chunks. Before chunking, the last 4

characters of the hashed value are dropped. The size

of the chunks is determined by - 𝑓𝑙𝑜𝑜𝑟(60/

𝑘𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ).

The number of chunks will be equal to the key length.

Let’s say if the key length is 8, the size of each chunk

will be 𝑓𝑙𝑜𝑜𝑟(60/8) = 7. There will be 8 chunks,

and each chunk will consist of 7 characters. The total

character used will be 8*7 = 56 characters. In hash

value, there are 64 characters, in which 56 characters

are used. The remaining 8 characters(64 char - 56

char) will be dropped.

For example, the hashed value derived from the

previous stage, if the key length is 8, can be chunked

as - ['aaefedc', '69d578b', '095cf6c', '8e934e6',

'01d78f2', 'fbb57b0', '18cd75a', '3912c63'].

The remaining part of the hashed value (‘da0bba37’)

will be dropped.

Stage - IV [Encode]

This is the last piece of the whole puzzle. Here the

chunked hash value will be encoded. Each chunk will

give a single character.

For doing the encoding, a list of shuffled characters

will be used. The list of shuffled characters that will

be used in the process is not chosen at random

without any reason. It is derived after shuffling letters

randomly each time and running some tests. This

shuffled list of characters was giving us better results

(See Section III).

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 365

Here is the shuffled character list -

Figure 2: Shuffled characters to be used for encoding

The shuffled character list consists of all the alphabets

small, along with capital. Apart from that, it also has

all the digits and special characters. As far as the

length of this list is concerned, it is 94, to be precise.

After the shuffled list is ready, we can proceed to the

actual encoding. For deriving one character out of

each chunk, the following algorithm will be used -

procedure Encode(chl, sl):

 gen_pass ← “”

 for each chunk in chl

 val ← 1

 for each char in chunk

 if char = ‘0’

 continue

 val ← val * hex2decimal(char) + val

 endfor

 gen_pass ← gen_pass + sl[val mod length(sl)]

 endfor

return gen_pass

For the given pseudo code, here is the flowchart -

Figure 3: Flowchart of the encoding function

Note:- Here CHL stands for Chunked Hash list and SL

stands for Shuffled Letters.

III. RESULTS AND DISCUSSION

The proposed algorithm will generate passwords of

different length according to the instruction given by

the user. But, what about the strength of the

password? A password is considered strong if it

consists of small letters, capital letters, numbers, and

special characters.

The generated password strength will be determined

between 0 and 1. 0 being the lowest and 1 being the

highest. The following flowchart will be used for

determining the strength of the generated password.

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 366

Figure 4: Flowchart for getting the strength of a

password

In Fig. 4, as shown, if the generated password has

small letters, capital letters, and numbers, or special

characters, then the strength is 1, i.e., very strong. If

only one condition is fulfilled, then it will give 0 as a

return value, i.e., very weak. If two of the conditions

are satisfied, then 0.5 strength will be returned,

which implies a moderate strength.

We have iterated over 100,000 most used passwords

on the internet, converted into generated passwords,

and checked their strength. The average of all the

strengths of the generated password is filled in

TABLE I.

TABLE I

PASSWORD STRENGTHS GENERATED BY THE ALGORITHM

Website/App

Name

Key

Length

Strength

facebook 6 84.53 %

instagram 6 84.28 %

facebook 8 92.52 %

instagram 8 92.51 %

facebook 10 96.35 %

instagram 10 96.33 %

facebook 12 98.10 %

instagram 12 98.19 %

facebook 16 99.54 %

instagram 16 99.53 %

facebook 20 99.88 %

instagram 20 99.87 %

(100k password list source - https://bit.ly/31H2uKl)

According to TABLE I, the strength largely depends

on key length. Change in website/app name has a

very insignificant effect. Also, even for a very small

key length, the strength of the password is very good.

The advisable key length is between 8 to 20. In that

range of key length, the password's strength is more

than 90 percent, which is a good sign.

III. LIMITATIONS

The whole system may seem very efficient, but there

are few caveats. Some special case scenarios need to

be addressed.

The first one is that if the generated password for any

particular website is known to someone and we want

to change it. We can’t get a newly generated

password individually. As it is known, the

website/app name will be there for that specific

website. If you do any change in the secret key then

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 7 | Issue 5

Aditya Ray et al Int J Sci Res Sci Eng & Technol. September-October-2020; 7 (5) : 361-367

 367

the generated password for other websites will also be

affected. The other limitation of the system is that

there is a very less probability of getting a weak

password, but there is still a chance. If any particular

website is insisting on a strong password, then, in that

case scenario the user will be trapped. These are the

limitations that we are aware of, but there may be

more shortcomings of this algorithm, which is still

unknown.

IV. CONCLUSION

We all know that passwords are not the best way of

authenticating users. Replacement of passwords is

important because people are careless while taking

care of their login credentials. Still, we cannot deny

that most of the websites are using passwords for

authentication and will use it for a few more years.

Password managers are paving their way in this very

niche to solve this problem. Saving login credentials

on the disk or in the cloud is problematic.

The solution to this whole system can be fixed with

the use of password generators. According to user

input, the hash value will be generated. For hashing,

SHA-256 is used. It is a trapdoor function (one-way

function), so deriving the actual string is quite

infeasible. The hashed value contains the characters,

which range between 0-9 and a-f. Due to this reason,

directly using the hashed value as a password is not a

good option. This hashed value is later encoded so

that the character range can be exceeded.

Despite having few limitations discussed in Section -

IV, it can still be used in many case scenarios. The

areas in which it is lacking can be later fixed with

further improvements.

V. REFERENCES

[1]. Bosnjak, Leon & Brumen, Bostjan. (2019). Rejecting

the death of passwords: Advice for the future.

Computer Science and Information Systems. 16.

313-332. 10.2298/CSIS180328016B.

[2]. McMillan, R. (2017, June 03). The World's First

Computer Password? It Was Useless Too. Retrieved

October 21, 2020, from

https://www.wired.com/2012/01/computer-

password/

[3]. Hunt, T. (2017, August 03). Passwords Evolved:

Authentication Guidance for the Modern Era.

Retrieved October 21, 2020, from

https://www.troyhunt.com/passwords-evolved-

authentication-guidance-for-the-modern-era/

[4]. M. Bachmann, "Passwords are Dead: Alternative

Authentication Methods," 2014 IEEE Joint

Intelligence and Security Informatics Conference,

The Hague, 2014, pp. 322-322, doi:

10.1109/JISIC.2014.67.

[5]. Jose, J., Tomy, T. T., Karunakaran, V., Varkey, A.,

& Nisha, C. A. (2016, March). Securing passwords

from dictionary attack with character-tree. In 2016

International Conference on Wireless

Communications, Signal Processing and

Networking (WiSPNET) (pp. 2301-2307). IEEE.

[6]. Pieprzyk, J., & Sadeghiyan, B. (1993). Design of

hashing algorithms. Springer-Verlag.

[7]. Gilbert, H., & Handschuh, H. (2003, August).

Security analysis of SHA-256 and sisters. In

International workshop on selected areas in

cryptography (pp. 175-193). Springer, Berlin,

Heidelberg.

[8]. Appel, A. W. (2015). Verification of a

cryptographic primitive: SHA-256. ACM

Transactions on Programming Languages and

Systems (TOPLAS), 37(2), 1-31.

[9]. Yoshida, H., & Biryukov, A. (2005, August).

Analysis of a SHA-256 variant. In International

Workshop on Selected Areas in Cryptography (pp.

245-260). Springer, Berlin, Heidelberg.

Cite this article as :

Aditya Ray, Aman Roy, " Integrating Hashing with

Encoding to Eliminate Password Managers,

International Journal of Scientific Research in Science,

Engineering and Technology(IJSRSET), Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 7, Issue 5,

pp.361-367, September-October-2020.

Journal URL : http://ijsrset.com/IJSRSET207562

http://www.ijsrset.com/
http://ijsrset.com/%20IJSRSET207562

